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ABSTRACT

The pulse generation of the impedance loaded dipole antenna is
considered. This antenna consists of a cylindrical dipole having a
finite number of lumped impedance loadings symmetrically placed at
distinct points along each of its two elements. The object of the
problem is to determine the radiated pulse resulting from the applica-
tion of a particular voltage pulse to the driving terminals of the
antenna. This.is accomplished by first solving for the steady-state
radiated fields and then obtaining the inverse Fourier transform for
the radiated pulse by numerical techniques. Theoretical results
are presented and discussed.
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Figure 1: Impedance loaded dipole antenna with cartesian,
cylindrical and spherical coordinates.
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A

of a thin

I

loaded with impedances Zfiat points ~ Zk along the antenna axts. If a

slice generator driving mechanism is used, the integral equation solved

to obtain the current distribution is Pocklington’s equation (1) .

n
J

h

Ei(z) = -j &- dz’ I(z’)K (E-Z’)
o -’n a

(1.1)

where E4(z) is the z-component of the electric field at the surface

antenna produced by the current distribution I(z), and

Ka(z-z’) = (+ ’JK(Z-Z’) (1.2)

K(z-z’) = exp (-jko ~-]/ ~- (1.3)

where ka and rI are the free space propagation constant and character-
0

istic wave impedance respectively. The current distribution for the

impedance loaded dipole may be determined by following the procedure

presentedby Taylor [1].

For the resistive rod

~i(z) = Et(z) - Es(z) (1.4)

where Et(z) is the total tangential electric field parallel to the

axis of the antenna, and Es(z) is the x-component of the applied

(or incident) electric field at the surface of the antenna. The total

electric field may be expressed as

Et(z) = Zi(Z)I(Z) (1.5)

“whereZi(z) is the internal impedance per unit ~ewth Of the antenna.

A substitution of equations (1.4) and (1s5) into equation
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(1.1) yields the integral equation for the current distribution.

K

h

1
4nk . 4mk

dz’;(z’,u)Ka(z-z’) -j # Z1(Z)I(Z) = -j ~ Es(z) (1.6)
o 0

For this particular antenna driven by a slice generator and having

multiple impedance loadings along its elements

Es(z) = ;O(u) d(z)

and

where the antenna has 2L point loadings

+
the !2thimpedance load at points - Zk.

(1.7) } and (1.8) into equation (1.6)

(1.7)

(1.8)

+
at points - ZA. Zk is

Substituting equations

produces

h.
4xk

r

OL
-h dz’ I(Z’,LU)Ka(Z-Z’) - j — ~ ZL 6(Jz\ -21);(Z.J!) =

~. ~=1

4nko -

-j y VO(U)6(Z) (1.9)
o

By representing the unknown current distribution with an expansion of

orthogonal functions, a solution to equation (1.9) may be determined,,

The current distribution on a perfectly conducting thin antenna

depends on z approximately as

M = sin (ko(h-lz/)] (1.10)
02

Hence let the current take the form

47Tv (u)
I(z) = -j ~ [f(z) + C Moz)

no
(1.11)
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0
Then a substitution of this current into equation (1.9) yields

1
h 4nko ~

dz’E(z’)Ka(z-z’) -j
h ~’z 2A 6(\z\ - z~f(z) = keg(z) (1.12)

~ J?,=l

where L

-K(z-h) -K(z+h) + 2K(z) COS k h] (1.13)
o

If the internal impedance is considered to be symmetric with respect

to z, then the function f(z) may be represented

N
f(z) = E fn co, [(2II + l)IT

2h
z)

n.()

and”K(z-z’) as
ccl

K(z-z’) = !Z a cos(~ (2-2’))
nl=o m

(1.14)

(1.15)

The expansion coefficients fn may be

(1.14) and (~.l:; into (1.12) .

linear equations

52‘n $nn= ‘m ‘=031’”””
n=O

determined by substituting

The result is a system of

,N (1.16)

where

TI (koh)2(sma2m (1.17)+ a2n +1) Ymn - j amri=
mn

I’m= 1+ C[j213m- 2(-l)ma2m+ 4cm cm koh)
(1.18)

(1.20)
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J
h

c =
m d~ K(c) COS (N)

0

4 (2n+l)(-l)tin
Y

~—

mri 7r(2n+l)2 - 4m2

E =2 form=O
m

= 1 otherwise

For convenience let the constant C shown

(1.11) be

[r 1

-1
c = -4 COS koh dz Re {K(z)]

o

Then the current distribution on

the pulsed voltage, VO(M), where Vo(u) is the

in equation

(1.21)

(1.22)

(1.23)

(1.24)

voltage pulse, is of the form I(z,u). This may

Fourier transform of the current distribution.

may be found by

f’

jot
I(z,t) = — du I(z,u) e

;, .Cn

the antenna driven by — ..

Fourier transform of the

be interpreted as the

Hence the time history

(1.25)

Since I(z,t) must be real, then I(z,-u) = I*(z,w)

Hence

[{

jut
I(z,t) = : du Re {I(z,Lu)e } (1.26)

o

2 Radiated Field Components

If the current distribution I(z,u) on a dipole antenna is known,

the radiated field components may be determined readily. These

components were derived by Harrison et al. (3)
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1~- a
H (r,z,u) = - ~
@

dz’ I(z’,ti)~K(r, z-z’)
-h

(2.1)

no

~

h.
Er(r,z,w) = -j— dz’ I(z,L@& K(r,z-z’)

4rko -h
(2.2)

h
~z(r,z,u) = -j–n’

J

~2 + k2]~(r, z-z’) (2.3)
4nko

dz’ ;(Z’,L@[_

-h az2

where

K(r,z-z’) = exp (-jko

Equations (2.1) - (2,3) are

far zone (radiation zone}.

J=7-=’) /j- ,,.,,
valid in both the near zone and the

Consider the far zone, kor>>l, then equation (2.1)1 reduces

to
h

k -“k R

J“

+jkoz’cos 9
osin Q ~Jo

H (r,z,u) ~ +j ‘~ — dz’ I(z’,ti)e
4 R

(2.5)

-h

where Q = tan 7‘~(~) and R = r + z are the usual spherical

coordinates. The electric field component in the far zone is

EQ (r, z,w) = noHO (r,z,m) (2.6) ~

the

the

The evaluation of equations (2.1) I - (2.3) requires that

current distribution be an accurate one. However to obtain

far zone components given by equations (Z.5) and (2.6),

it has been found that a crude approximation to the current

distribution on the antenna is sufficient to obtain reasonably

accurate radiation zone field components.
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3 Pulse Radiation

From equations

resulting components

(2.1) - (2.3) it is apparent that the

are given in the frequency domain. The

field components of the radiated pulse are desired in the real

time domain, therefore taking the inverse Fourier transform yields

w

J’ jut

‘$(r’z”) -:4 ‘w ‘o(r’z’u) e
m

n jUt
Er(r,z,t) =— du Er(r,z,u) e

; -m

cd

J-

jwt

‘z(r’z”) = * ““ ‘z(r’z’w) e
-a

.-
where H E

4’ r’ andEZ

(2,3) using I(z,u)

were determined from equations (2,1) -

which was obtained by solving the integral

equation (1.6) ~ where Vo(@) is the Fourier transform of the

exciting voltage pulse.

4 Numerical Results

For convenience the antenna is considered to be

(time constant T2). Analytically this voltage pulse

as

{

Tlt t<()
V.e

Vo(t) =
-T2t ‘>0

V.e

(3.1)

(3.2)

(3.3)

charged slowly

may be expressed

(4.1)

and for T <<1
1
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v

[

T
2

T’

V*(u) =~ 2 +j 2

w
U2+T

2
U(W2 + T22)1 (4.2)

The impedance loadings of the “long-wire” antenna of Sandia

Laboratory are used in the numerical computations. These are

shown in Table 1.

The solution of equation (1.6) is obtained using the

representation for I(z,u) given in equation (1.1~) and (1.14)

where N = 15 and C is chosen as in Section 2.1 . Then

I(z,ti)is substituted into equations (2.1) - (2.3) to compute

the steady-state values for the field components which are used in

(3.1) - (3.3)

smoothness of the

convenient to use

to compute the rad<ated pulse. Because of the

functions that are to be integrated, it is most

the SimpsonTs Quadrature formula. However the

inverse Fourier transforms (3.1) - (3.3) require a special

technique. In Figures (2a) and (2b) plots of EzejkR/ko~o(u) and

2rr ; ejkR/~ (u), resDsctively, versus kh show generally slowly
4°”

varying functions of frequency. Because of this, in the evaluation

of the inverse Fourier transforms the ranges of integration are

- jkR/~o(u) are“ jkR/k ti~a)and 2nr H@edivided into segments where E e
z o

approximated by straight lines and the integrals over the same

segments then are evaluated analytically. This technique is found

to be much superior to a “brute force” method such as using Simpson~s

rule. Because of the ease in obtaining the far zone field

components, the far electric field is investigated and is compared to

10



0

Position, ‘%

Table 1: Impedance Loadings

Impedance Loading, ZL (in ohms)

0.04 h
0.08 h
0.12 h
0.16 h
0.20 h
0.24 h
0.28 h
0.32 h
0.36 h
0.40 h
0.44 h
0.48 h
0.52 h
0.56 h
0.60 h
0.64 h
0.68 h
0s72 h
0.76 h
0.80 h
0.84 h
0.88 h
0.92 h
0.96 h

6.0
9,0
10.5
12.0
15.0
21.0
29.0
32.0
43.0
44.0
44,0
49.0
54.0
71.0
71.0
71.0
92,0

100.0
105.0
120 ● o
125.0
150.0
205.0
250.0
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Figure 2a: Real and imaq[nwy components of the magnetic field versus

electric half - length of the impedance loaded d[pole. Here r= h, z = a.
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Figure 2b: Real and imaginary components of the electric field versus

electrical half- length of the impedance loaded dipole.

Here r=h, Z=O.



the near zone predictions in the hope that

may be used to obtain at least qualitative

zone fields.

the far zone approximation

predictions of the near

The foregoing field components are used to obtain the time

histories in Figures (3a) and (3b). Figure (3c) shows the time

history of the far field approximation. Two interesting observations

are that the “rise-times” for all three components are about the
-

same which indicates qualitative validity of the far field approxima-

tion and the wave impedance (ratio of electric field to magnetic

field) is near 300 ohms for the pulse duration. In obtaining these

data, the parameters V = 1 and h = 500 ft. were used. Note that
o

the time in the foregoing is actually the retarded time.
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Figure3Lr:Time hkjtory of the electric field Ez(r, Z,t)

for T2= 2x 107sec -’, r=h, Z=O.
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Figure 3c: Time history

electric field E8(r, z, t ) for T2’ 2 x i07 See-[ ,

r=h, z=o.
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