Sensor and Simulation Nétes
Note 105

August 1969

Some Theoretical-Numerical Procedures for the Study of
the Impedance Loaded Dipole Antenna

by =Y
Thomas H. Shumpert

Mississippi State University
State College, Mississippi

o o B
Ll onkioob,

perey oo A
7-29-28

ABSTRACT

The pulse generation of the impedance loaded dipole antenna is
considered. This antenna consists of a cylindrical dipole having a
finite number of lumped impedance loadings symmetrically placed at
distinct points along each of its two elements. The object of the
problem is to determine the radiated pulse resulting from the applica-
tion of a particular voltage pulse to the driving terminals of the
antenna. This 1is accomplished by first solving for the steady-state
radiated fields and then obtaining the inverse Fourier transform for
the radiated pulse by numerical techniques. Theoretical results
are presented and discussed.
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Impedance loaded dipole antenna with cartesian,
cylindrical and spherical coordinates.
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loaded with impedances Z, at points t. along the antenna axis. If a

L 2

slice generator driving mechanism is used, the integral equation solved

to obtain the current distribution is Pocklington's equation (1).

n, h
E (2) = -3 e :éﬁ dz' I(z')Ka(z-z') (1.1)

where Ei(z) is the z-component of the electric field at the surface
of a thin antenna produced by the current distribution I(z), and

a2 2
Ka(z—z') = (-—-— + ko )K(z-z') (1.2)

3z

K(z~z') = exp (—jko Jz;-z')z + az)/ Jzz-z‘)z + a? (1.3}

where ko and no are the free space propagation constant and character-
istic wave impedance respectively. The current distribution for the
impedance loaded dipole may be determined by following the procedure
presented by Taylor (l].

For the resistive rod

Ei(z) = Et(z) - Ea(z) (1.4)
where Et(z) is the total tangential electric field parallel to the
axis of the antenna, and Ea(z) is the x-component of the applied
(or incident) electric field at the surface of the antenna. The total
electric field may be expressed as

E (2) = 21 (2)1(2) (1.5)
where zi(z) is the internal impedance per unit length of the antenna.

A substitution of equatioms (1.4) and (1.3) into equatiom



(1.1) yields the integral equation for the current distribution,

h 4tk 4mk
dz'I(z',w)K (z-z')| -3 =2, (2)I(z) = -§ —2 E (2) (1.6)
- a no no a

For this particular antenna driven by a slice generator and having

multiple impedance loadings along its elements

E_(2) = V (W) 8(z) (1.7
and
‘ L
2t (z) =2 z, 8(]z| - zp) (1.8)
=1
where the antenna has 2L point loadings at points t zz. Z2 is

the 2th impedance load at points t z, . Substituting equations

(1.7) » and (1.8) 1into equation (1.6) produces

4k
h -~ o L -
-[h dz' I(z',w)K (z-2') - j Z Z!Z, 6(’zf -z )I(z,w) =
- a - 2
"o =1
4wko ~
-j - Vo(m)d(z) (1.9)

o}

By representing the unknown current distribution with an expansion of
orthogonal functions, a solution to equation (1.9) may be determined.
The current distribution on a perfectly conducting thin antenna

depends on z approximately as

M= sin (k_(h-|z])) (1.10)
oz o
Hence let the current take the form
4 V(W)
I(z) = - —2— (f(2) + CM_ ] (1.11)
n
o}



Then a substitution of this current into equation (1.9) yields

4ﬁk0 L

h
‘[; dz'E(z')Ka(z—z') ~3 no E;& Z2 §(lzl - z%f(z) = kog(z) (1.12)

where

L
g(z) = §(z) + ¢ (3 %—TL ;Zg §(|z| - zy) M
=1

o oz
-K(z-h) -K(z+h) + 2K(z) cos k h) (1.13)
0
If the internal impedance is considered to be symmetric with respect

to z, then the function f(z) may be represented

N
f(z) = 2{: fn cos &ggg—gﬁlll z] (1.14)
n=0 ’
and K(z-2z') as
K(z-2') = :E: am cos(%% (z—z')] {(1.15)
m=0

The expansion coefficients fn may be determined by substituting

(1.14) and (1.1%) into (1.12) The result is a system of

linear equations

%:: £ Tgn = Tp 0,100, (1.16)
n=(
where
M= (e (egay + agn +1) Yoo = 3 % (1.17)
=1+ (328, - 2(-D", + 4c cos kb (1.18)

h L o+l
o =47 dzZ Zzﬁ(lz[ - zg) cos (( 2-; )Wz)cos(%ﬁz} (1.19)

mo n “~h =1
(o]
= 4 " 3 z,8(lzl - z,)sin [k (h-2)) coscgzz) (1.20)
B ﬁ; . dz %;% gzl -z, o T .
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h
cw=f K@ cos () (1.21)
v h .

_ 4 () D™P

mn 7T (2n+1)2 - tim? (1.22)

2 form=20 (1.23)

m
L}

1 otherwise

For convenience let the constant C shown in equation

(1.11) be
~1
C = =4 cos k.h dz Re {K(z)} (1.24)
o)
Then the current distribution on the antenna driven by
" the pulsed voltage, Vo(w), where Vo(w) is the Fourier transform of the

voltage pulse, is of the form I(z,w). This may be interpreted as the
Fourier transform of the current distribution. Hence the time history

may be found by

1 ~ jwt ’
I(z,t) = f” dw I(z,w) e (1.25)

2T %o

~

Since I(z,t) must be real, then I(z,-w) = I*(z,w)

> ~ jwt
I(z,t) = J;' dw Re {I(z,w) e } (1.26)
o

2  Radiated Field Components

Hence

If the current distribution I(z,w) on a dipole antenna is known,
the radiated field components may be determined readily. These

components were derived by Harrison et al. (3)



~ 1 h ~ 3
H (r,z,w) = - Zﬁf dz' I(z',u)5¢ K(r,z-2z") (2.1)
¢ _h |
~ No h ~ 2
E (r,z,w) = -j aj' dz' I(z,w) 3 K(r,z-2'
r 14y 322 ) 2,
bk I ' 3raz (2.2)

h
~ n ~ 2
E (ryz,w) = -j—- 2 dz!' I(z’,w)(§- + kz}K(r,z—z') (2.3)
2 bk, 5352
“h

where

K(x,z-z") exp [—jko J(z—z')2 + rz) / \/(z-z')2 + £l (2.4)

Equations (2.1) . (2.3) are valid in both the near zone and the
far zone (radiation zone).

Consider the far zone, kor>>l, then equation (2.1). reduces

to P
k -ik R ~ +jk Z'COS e
.. tosin § e d%0 dz' I(z'.wye = °

H, (r,2,0) * 4§ =z = (z',w) (2.5)

~

~h

-1 f
where 8 = tan CE) and R = r2 + z2 are the usual spherical

coordinates. The electric field component in the far zone is

~
~

EG (r,z,w) = nOH¢ (r,z,w) (2.6)1
The evaluation of equations (2.1) ' - (2.3) requires that

the current distribution be an accurate one. However to obtain

the far zone components given by equations (2.5) and (2.6},

it has been found that a crude approximation to the current

distribution on the antenna is sufficient to obtain reasonably

accurate radiation zone field components.



3 Pulse Radiation

From equations (2.1) - (2.3) it is apparent that the
resulting components are given in the frequency domain. The
field components of the radiated pulse are desired in the real

time domain, therefore taking the inverse Fourier transform yields

1 d - jwt
H¢(r,z,t) -J§§<l: dw H¢(r,z,w) e (3.1)
E (r,z,t) = = dw é (r,z,w) ejwt (3.2)
T {EF Z r
E (r,z,t) = 1 d dw E (r,z,w) ejmt (3.3)
z Jf}' z

-~ ~

where H¢, Er’ and E were determined from equations (2.1) -
z
(2.3) using I(z,w) which was obtained by solving the integral

equation (1.6) ' where Vo(w) is the Fourier transform of the

exciting voltage pulse,

4 Numerical Results

For convenience the antenna is considered to be charged slowly
(time constant Tz). Analytically this voltage pulse may be expressed
as Tlt t<0

vV (t) = (4.1)
° -T. ¢t £50

and for Tl<<1



T T 2

~ A 2 ) (4.2)
Vo(m) = 0 5 T 5+ 3 5 2 " 5
[ w ) wlw + 5 )

The impedance loadings of the "long-wire” antenna of Sandia
Laboratory are used in the numerical computations. These are
shown in Table 1.

The solution of equation (1.6) is obtained using the
representation for E(z,w) given in equation (1.11) and (1.14)
where N = 15 and C is chosen as in Section 2.1 . Then
E(z,w) is substituted into equations (2.1) - (2.3} to compute
the steady-state values for the field components which are used in

(3.1 - (3.3) to compute the radiated pulse. Because of the
smoothness of the functions that are to be integrated, it is most
convenient to use the Simpson's Quadrature formula. However the
inverse Fourier transforms (3.1) - (3.3) require a special
technique. In Figures (2s) and (2b) plots of Ezeij/kOGO(w) and
2nr §¢eij/§o(w), regspectively, versus kh show generally slowly
varying functions of frequency. Because of this, in the evaluatiom
of the inverse Fouriler transforms the ranges of integration are
divided into segments where Ezeij/kOGSw) and 271 ﬁ¢eij/§o(m) are
approximated by straight lines and the integrals over the same
segments then are evaluated analytically. This technique is found
to be much superior to a "brute force" method such as using Simpson's

rule. Because of the ease in obtaining the far zone field

components, the far electric field is investigated and is compared to
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Table 1:

Impedance Loadings

11

Impedance Loading, Zl (in ohms)
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Figure 20: Real and imaginary compc;nenfs of the magnetic fleld versus
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Figure 2b: Real and imaginary components of the electric field versus

electrical haolf-length of the Impedance loaded dipole.

Here r=h, z = 0.



the near zone predictions in the hope that the far zone approximation
may be used to obtain at least qualitative predictioms of the near
zone fields,

The foregoing field components are used to obtain the time
histories in Figures (3a) and (3b). Figure (3c) shows the time
history of the far field approximation. Two Interesting observations
are that the 'rise-times" for all three components are about the
same which indicates qualitative validity of the far field approxima-
tion and the wave impedance (ratio of electric field to magnetic
field) is near 300 ohms for the pulse duration. In obtaining these
data, the parameters V = 1 and h = 500 ft. were used. Note that

o
the time in the foregoing is actually the retarded time.
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Figure 3a: Time history of the magnetic field H¢(r, z, t) for

T2=2x107 sec", r=h, z=0.
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Figura 3b: Time history of the electric field E,(r, 2z, t)}
for T2= 2 x 107 sec~|, r=h, z=o,
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Figure 3c: Time history of the far fieid approximation to the
electric field Eglr,z,t) for T,=2x 107 sec !,

r=h, z=o0.
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