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Abstract 
 
Antennas are regarded as transmission lines with space dependent parameters.  The frequency 
response is generally scale dependent.  However, imposing frequency independence on the 
transmission line equations leads to a scale independent geometry.   
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1. Introduction 

 
Bandwidth can be an important attribute of an antenna, if it is required to perform over a range of 

frequencies. Other performance parameters of any antenna can be summarized by an acronym BRIDGE [1] 
denoting Beamwidth, Radiation pattern, Input impedance, Directivity, Gain and Effective area.  In this note, we 
focus on the bandwidth and investigate a way of improving the bandwidth. When we talk of the bandwidth of an 
antenna, we need to distinguish between two types which we will call i) CW bandwidth and ii) transient 
bandwidth. For instance, when the so called “Frequency Independent Antennas” came on the scene in 1958 [2], 
it is noted that this class of antennas have a large CW bandwidth. A log periodic antenna works for a large range 
of frequencies, if these frequency signals are applied at different times. It is highly dispersive and does not work 
if one applies a transient pulse which contains many frequencies at the same time. In other words, a log-periodic 
antenna has a large CW bandwidth and no transient bandwidth to speak of. If we apply a pulse to a log periodic 
antenna , different frequency components get radiated from different parts of the antenna and reach an observer 
at a distance at slightly different times resulting in a significant loss of pulse fidelity. Essentially the phase 
centre of the log periodic antenna is not stationary. Pulsed antennas have received a lot of attention in recent 
years and a good example is the Impulse Radiating Antenna [3-5]. Such an antenna is TEM wave-fed and hence 
non-dispersive. It has a large transient bandwidth and can also be used at single CW frequency over a wide (100 
to 1) frequency band. 

 
 
 There exist a number of methods for increasing the bandwidth of antennas.  Increasing the diameter of 
the elements of a dipole [6], assembling arrays of non-resonant antennas [7], specifying the antenna shape by 
angles [2], varying the impedance with position so as to inhibit reflections [8]. The first three approaches have 
relatively severe limitations, approach 1 only producing a modest range, approach 2 results in a frequency 
dependent direction, and approach 3 requires an infinite scale.  It is the last approach that is developed here.  It 
is found that finite structures exist that support outgoing waves with no reflections. 
 
 2. The Approach 
 
 An antenna is modelled as a transmission line with position dependent parameters, and a wave solution 
is sought that maintains the wave shape as it progresses. 
 
The transmission line (TL) equations are 
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where L′ and C′  are the inductance and capacitance per unit length of line. 
 
Letting the inductance be a function of position 
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noting that  

                                                                     2
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c

CL =′′                                                      (5) 

for a line with dielectric 0ε .  We now look for a solution representing an arbitrary travelling voltage wave with 
varying amplitude 
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Inserting this function into the differential equation 
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V0 is independent of t and so we must have  

                                                                       






 ′

′
−

dx
dV

dx
Ld

L
1

dx
Vd 0

2
0

2

=0                                      (8) 

                                                                          






 ′

′
− 0

0 V
dx
Ld

L
1

dx
dV2 =0                                        (9) 

An arbitrary choice of the inductance variation will not in general be compatible with both the above equations.  
Eliminating V0 there results 
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The solution of this equation, for a line of length   is 
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Substituting this result into the first order equation for V0 and integrating 
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With this variation of parameters with position we have a frequency independent transformer where the 
impedance is, for a length X, 
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If the transformer is left open circuit, we have an antenna.  Not only is it frequency independent, it is also scale 
independent.  Practically there will be limitations; in particular we cannot expect the highest frequency to be 
greater than that indicated by the dimensions of the feed.  The low frequency limit is more difficult to define.  
Matching the antenna to Z0 for a 50 Ω input impedance 
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The dependence of the impedance on the ratio of the dimensions means that the set of antenna designs is 
infinite.  A few of the more interesting designs are considered below. 
 
   
 3. TEM Horn Antennas 
 
 A TEM horn antenna can be considered first as a triangular plate transmission line 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 1. A TEM horn antenna viewed as a triangular plate transmission line 
 
 
The impedance of this line is given approximately by 

                                                                  
W
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where Z0 is the impedance of free space.  As the impedance depends only on angle it is independent of 
frequency, provided the plates extend to infinity.  If we now express W as a function of x measured along the 
mid plane, 
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Reflections from the ends of finite planes limit the bandwidth. It is to be expected that for (β <π) there will be 
some enhanced directionality to the radiated field, but this has not been investigated.  Assuming a moderate 
amount of directionality is of benefit, we choose  β = π/2.  Then, taking the initial impedance as 50Ω 
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We then impose the width variation, leading to a finite line 
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There is a significant error, of order 10%, in the approximation due to ignoring the fringe fields.  The 
approximation may be improved, and is investigated later.  Note that the antenna length can be reduced by 
taking it such that the end impedance has some high some high value, 377Ω being an obvious choice. Note that 
this has the wrong dimensions to match free space!  The need to so modify designs is the requirement for 
excessively large or small dimensions. 
  Setting Z=Z0 we require 
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 3.1 Fringe Field Correction 
 
 An approximation for the fringe field of a parallel plate transmission line due to Palmer [9] is 
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Palmer compares the above approximation with the “exact” solution from the Schwartz-Christoffel 
transformation for values of (W/h) in the limited range from 0 to 2. The approximation in equation (26) is 
reasonable for 0.5 < (W/h) < 2. Unfortunately, as the width approaches zero the formula diverges.  Including a 
function of W/h that varies from zero to one in the argument of the logarithmic term removes the divergence and 
has little effect away from zero, where [10] shows the approximation is accurate.  We then have 
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Similarly 
 

 
 
There is a further correction term for thick plates due to Yang [11] that has been ignored.  The expression for the 
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A graphical solution shown in figure 2, then gives 
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(a)     50 Ohm case                                                        (b)   100 Ohm case 

                                       
                                                  Figure 2. Plate profile with fringe field correction       
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Comparing the corrected with the uncorrected profiles the half width maximum is in error by ~7% for the 50Ω 
line and ~33% for the 100Ω line, while the length is in error by~ 25% and ~ 40% respectively.  This error is 
discussed later. 
 
At this point, it is relevant to review some related published work in the literature on this topic.  
 
 Numerical evaluation of the characteristic impedance of a TEM horn of finite length has been 
extensively calculated and tabulated [12], using the method of stereographic transformation. Conformal 
transformation techniques are available for two-dimensional problems, and a stereographic projection is needed 
for a three-dimensional problem. A TEM horn has a spherical wave front which is three-dimensional.  
 
 One approach uses the method of terminating the TEM horn in its characteristic impedance to avoid 
reflections [13-15]. There are several ways to terminate a TEM horn. Figure 3 illustrates some examples of 
back-termination of the TEM horns. Such a back termination minimizes the back radiation at low frequencies. 
At low frequencies, (wavelengths large compared to horn dimensions), the TEM horn is characterized by a pair 
of electric ( )p  and magnetic dipole ( ).m The resultant radiation is in the direction ( )mxp 

which is orthogonal 
to both dipole moments. If the TEM horn is terminated at the exit aperture, the resultant radiation at low- 
frequencies is in the backward direction. Back termination reverses the direction of the magnetic dipole moment 
and results in the low-frequencies going out in the bore sight direction. 
 
 
 

 
Figure 3. Back- terminated TEM horn [reproduced here from [15] 
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Bandwidth of a TEM horn is enhanced by both lowering the low frequency cut off and increasing the high-
frequency cutoff.  
 
It is also recalled that a TEM horn, unlike a dipole antenna is an aperture type of antenna. This means the 
radiated field from the aperture of a TEM horn is a time derivative of the aperture field. This was experimentally 
demonstrated in [16] where they considered a TEM horn as a transmission line and attempted, without much 
success, to apply the integral of a double exponential pulse at the input in order to radiate a double exponential 
pulse. 
 
 The second is an experimental approach [17] along the lines suggested in this note, by controlling the 
impedance as a function of position. In [17], they use a FDTD numerical method to analyze three different types 
of TEM horns. 
 
 1) A constant impedance TEM horn with no change of impedance as a function of position 
              2) A shaped TEM horn with a resistive termination at the open end 
              3) A TEM horn where the plates have a resistance varying continuously along its length 
 
In all three cases (shown in Figure 4) the reflected voltage from the open end is estimated and measured. It is 
clear that this reflection degrades the performance of the antenna in terms of bandwidth and radiated waveform 
features. At the apex of the horn, the characteristic impedance is set equal to that of the feeding line, typically 50 
Ohms. One can then set the impedance at the aperture to be 377 Ohms like we considered before. The idea is 
that there would be very little reflection from the open end if the impedance of the line is 377 Ohms at the end. 
In fact, they find this to be not the case. This has been called the TWIT (travelling wave, impedance taper) TEM 
horn. The impedance as a function of position is varied in a special manner. Resistive cards were placed over the 
plates at the very end to further reduce the reflections. The excitation voltage was a Gaussian voltage pulse and 
the reflected voltage is measured in the feed coax. The peak of reflected voltage (in time domain) from the open 
end was measured to be about 41% of the incident voltage. So, arranging for 377 Ohm impedance at the open 
end appears to be an erroneous concept, probably because 377 Ohms is the impedance of a uniform plane wave 
in free space and that is not what we have at the open end of a TEM horn.  Shlager et al [17] also found that the 
reflections reduced from 41% to 27%, if they introduced resistive sheets at the end in addition to the matching to 
377 Ohms.  Example of the TEM horn where it is continuously loaded by a triangular resistive profile  
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)0()(                                                             (39) 

 
 
Is in accordance with Wu-King profile described in [18] in the context of a cylindrical dipole antenna. Here r(0) 
is the resistance per unit length at the apex and it gradually increases to near infinity ( or very large values) at 
the open end. Here the idea is that the current flowing on the plate essentially decays out so that there is nothing 
to reflect back, thus eliminating the resonance of the horn plates. 
 
In conclusion one might say that proper loading can improve the bandwidth of the TEM horn and there are 
techniques available to lower the low-frequency cutoff and increase the high-frequency cut off.  However, there 
is no escaping the fact that the radiated field of an aperture antenna such as the TEM horn is a time derivative of 
the aperture field. The feed point considerations are also critical. Application of high voltages at the feed 
requires space to avoid breakdown at the feed, which fights the high frequency cut off. Larger electrode spacing 
near the feed necessarily lowers the high-frequency performance of the antenna. This is the perennial problem of 
high voltages and high frequencies. 
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(A) Unloaded and unterminated TEM horn 

 
 

 
                     (B) Shaped and loaded to match 377Ohms/square    

 
 
 

 
(C) Continuously loaded using Wu-King [18] loading profile 

 
                                                 Figure 4. Three types of TEM horns considered in [17] 
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 4. Modified Plate Antenna 
 
 A triangular plate antenna can be modified by bending the plates at a certain length into a parallel 
formation while at the same time modifying the shape to comply with the requirement for a frequency 
independent response  

 
 
 
 
 
 

                    
 
 
 
Assuming that the impedance of the triangular portion of the plates is Z(0) frequency independence is imposed 
on the parallel section.  Setting x=0 at the beginning of the parallel section, the impedance is given by 
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Half width of the parallel section is estimated and plotted in Figure 6. 
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 Figure 6. Calculated half width of the parallel section as a function of position 
 
Such an antenna was fabricated and shown in Figure 7. 

                                               Figure 5. Notional modification of a TEM horn 
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    Figure 7. Photograph of a modified TEM horn antenna 
 
 
Provisional measurements made with the modified TEM horn antenna of Figure 7 indicated a wide bandwidth.     
 
One can attempt a Fringe Field Correction for the modified TEM horn antenna of Figure 5 and 7. 
The impedance of the tapered section is given by 
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yields W(0)/h = 6.061 for a 50Ω line and 2.567 for the 100Ω line.  Calculating x as a function of u and plotting 
u as a function of x the following profiles of Figures 8 and 9 are obtained. 

 
 
 
 
 
 
 
 
 
 

                         Figure 8. Profile of the width as a function of position 
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Rescaled Fringe Correction
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                              Figure 9. Rescaled width profiles as a function of position 
 
 
The above comparison with the rescaled corrected profile and the uncorrected profile accounts for the broad 
band behaviour of the model based on the uncorrected design. 
A further modification is to extend the triangular plates by a  parallell pair of plates of constant width, and then 
to increase the separation with position. The geometry, as before, of the triangular plate is given by Figure  2.  
Setting β=π/2, and the impedance equal to 50Ω 
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The extension of the plates will take the form illustrated below in Figure 10. Similar considerations of shaping 
the plates were also addressed in [21-23]. 
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The main section of the antenna is constructed as a strip line starting with a separation of h=0.04m, increasing 
according to 
 

2

1 





 −

=

L
x

hh o  

 
where L is an arbitrary length.  We can match this antenna to free space by truncating at X where Z=Zo.  We 
then have 
 

6360.=
L
X  

 
 
We are free to choose X, and so to maintain a compact antenna, choose X=0.3m, and we have 
 

 
4720636030 ../. ==L m 

 
  
 
5. The Coaxial Frequency Independent Antenna 
 
The impedance of a coaxial line is 







=

a
bln

2π
ZZ o  

Imposing frequency independence we make b dependent on position and set 
 

 

( ) ( ) ( )
2

o x10Z
a

xbhln
2π
ZxZ

−





 −=







=


 

where ( ) 10 =h .  Solving for ( )xh  
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Figure 10.  Flared Strip Line Antenna 
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Alternatively we can make the inner radius variable.  We then have, with ( ) 10 =h  
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yielding 
( ) ( ) 1x g  x h =  

 
The ratio b/a is 2.301 for 50Ω and 5.294 for 100Ω. The electrode profiles are shown plotted in Figure 11.  
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Figure 11. Electrode profiles of a coaxial transmission line antenna 

 
Only varying the outer electrode rapidly leads to an inconveniently large radius, while only varying the inner 
leads to an impossibly small radius.   Truncating the antenna such that the end impedance is Z0 sets /x = 
0.636, resulting in an outer radius of ~234 × Initial Radius.  With an inner radius of 1mm the maximum outer 
radius becomes 234 × 2.301=538.4 mm, nominally seen in Figure 12. 
 
 
The dimensions can be made more practical by allowing both radii to become x-dependent. For example, we 
may take 
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where α has yet to be chosen.  In Figure 13 below 
07.0
24.0

=α =3.429 giving the angle as ~74o 
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Figure 12. Coaxial Antenna terminated at 377 Ohm 

Figure 13. Profile of Central Electrode for the case of α = 3.429 
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This profile may be truncated for example at 4.5 cm where the impedance is 377 Ω . It is not known but whether 
it is better to truncate than have the full length at a greater diameter than specified. 
 
Choosing an exponential horn, 
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The central electrode profile is given in Figure 14. 
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 6.  The Vertical 'Monopole' Frequency Independent Antenna 
 
The input impedance of a cone over a ground plane shown in Figure 15 is given by 
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Figure 14. Electrode Profiles for 50 Ω /377 Ω  coaxial frequency independent antenna  
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Figure 15.  Mono-cone 
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To consider the variation of impedance with heig ht, the initial impedance is set at  
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Expressing Z0 in terms of the constants in equation (59) , substituting into equation (58) and imposing frequency 
independence 
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Solving this for θ  
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The profile of a 50 Ohm frequency independent monopole antenna is shown in Figure 16. 
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The antenna can again be truncated at h/H =0.636 corresponding to 377Ω  for example.  This is a limiting case 
of the co-axial antenna, with the difference that the feed is not part of the design. 
 
Again in the case of a monocone antenna, using the Wu-King resistive loading profile several large antennas 
have been built for Nuclear Electromagnetic pulse (NEMP) simulation [19-20]. One of the largest such structure 
is the EMPRESS II HEMP simulator shown in Figure 17 [23].  EMPRES II (which is about 40m in height) uses 
a Wu-King resistive profile described in [18] to avoid reflections from the end of the monocone. 
 
The shaping of the monocone can be an alternate method to continuously loading the monocone. It is anticipated 
in this case, the continuous loading to eliminate all reflections from the end of the monocone is superior to 
shaping the cone to achieve 377 Ohm impedance at the end of the cone. 
 
 

(59) 
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(62) 

Figure 16.  Profile of the 50Ω frequency independent monopole antenna   

377Ω 
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