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Abstract

For a THz pulse (damped sinusoid) radiator consisting of a dipole-like antenna
separated by a dielectric from a ground plane, there are many design considerations.
These include the stored energy, radiation efficiency, and resistive losses.
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1 Introduction

Pursuing the design of a pulsed (damped sinusoid) THz radiator we need to find some optimization
conditions. Given some frequency, f0, how much energy can we radiate in a damped sinusoidal
pulse? This depends on the various parameters of the antenna and the source. For present purposes
let us consider the configuration in Fig. 1.1.

(a) Side view

(b) Front view

Figure 1.1: THz radiator.

Here we have a conducting ground plane (typically copper). This is separated from the antenna
by a dielectric of permittivity, ε, and thickness, h. The antenna is a half-wavelength radiator of
length, la. Each half is charged to ±V0. These halves are separated by a switch medium (say
semi-insulating gallium arsenide) of length, ls. The width of the antenna is w. The switch is
illuminated by a femto second laser to cause it to conduct (close).
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2 Maximizing the Stored Energy

The stored energy is

U0 =
1

2
C[2V0]

2 = 2CV 2
0 . (2.1)

The energy available at f0, the dominant half-wave resonant frequency, is estimated as [1]

U1 =
8

π2
U0 ≈ 0.81U0, (2.2)

the remaining energy being for higher order resonant frequencies, which we neglect. We need to
maximize this energy and radiate as much of this as possible. Thus we need to maximize 2CV 2

0 .
Consider the capacitance, C ≈ εwla/h. For a given h, this is maximized by large w, the length,

la, being given by

λos ≈ 2la =
v

f0
, (“os” = oscillator),

v ≈ cε−1/2r , εr =
ε

ε0
, (2.3)

or more accurately

c > v > cε−1/2r , (2.4)

with v approaching cε
−1/2
r for large w, since most of the capacitive energy lies between the antenna

and the ground plane. However, we do not want w to be so large that higher order oscillation
modes are supported. So we might limit the width as

w ≈ la − ls
2

, (2.5)

for obtaining a large capacitance. This capacitance can be estimated as

C ≈ εw[la − ls]
4h

, (2.6)

as two capacitors in series.
One can maximize C by minimizing h, but it is the energy we wish to maximize. So consider

maximizing V0. As an approximation we can estimate this via

V1 = Edh, (2.7)

Ed ≡ average breakdown electric field through dielectric to ground plane.

This includes the edge effects on the antenna which can be mitigated to some extent by roll-ups
on the edges.

Another voltage limitation concerns the switch which needs to be highly insulating before the
arrival of the fs laser pulse. Let us estimate the voltage stand-off as

V2 = Esls, (2.8)

Es ≡ average breakdown electric field through switch between two antenna halves.
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As we increase V0 and accordingly increase h we have

U0 = 2CV 2
0 =

εw[la − ls]
2h

[Edh]2 =
εw[la − ls]

2
hE2

d , (2.9)

thereby increasing U0. Similarly, as we increase V0 and accordingly increase ls we have

U0 = 2CV 2
0 =

εw[la − ls]
2h

[Esls]
2. (2.10)

Increasing h then (2.9) increases the stored energy up until the switch limits the voltage. Increasing
h beyond this decreases the stored energy. Equating the two results gives

εw[la − ls]
2

hE2
d =

εw[la − ls]
2h

[Esls]
2 ⇒ h

ls
=
Es
Ed
, (2.11)

as an approximate optimum. However, while one may wish

h ≈ λ

4
, (2.12)

for radiation characteristics, we need

ls < la, (2.13)

as a limiting factor which may alter the results of (2.11). For example, if

Ed > Es, (2.14)

then our limitation on the energy is given by (2.10) with the limit in (2.12). In that case we need
to maximize (for fixed la)

X = [la − ls]l2s . (2.15)

Differentiating with respect to ls gives

0 = 2lals − 3l2s ⇒
ls
la

=
2

3
. (2.16)

There are still other factors to consider such as switch losses and conductor losses.
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3 Ideal Radiation Characteristics

3.1 Single electric dipole radiator

Let us make some simple estimate of the radiated fields. An electric dipole, in free space, has far
fields [2]

~̃Ef (~r, s) =
µ0

4πr
s2e−γr

←→
1 r × [~1r × ~̃p(s)] = −µ0s

2

4πr
~1r · ~p(s)e−γr, (3.1)

~̃Hf (~r, s) = Z−10
~1r × ~Ef (~r, s),

˜≡ Laplace transform (two sided),

γ ≡ s/c ≡ propagation constant,

s ≡ Ω + jω ≡ Laplace-transform variable or complex frequency,

Z0 ≡ [µ0/ε0]
1/2 ≡ wave impedance of free space,

~̃p(s) ≡ p̃(s)~1z ≡ electric dipole moment,
←→
1 r ≡

←→
1 −~1r~1r = ~1θ~1θ −~1φ~1φ ≡ transverse dyad.

This gives a radiated power s = jω as

P1 =
1

2

∫
S

[ ~̃Ef (~r, jω)× ~̃Hf (~r,−jω)]4πr2dS, (3.2)

S ≡ sphere of radius r. The factor 1/2 gives the average power over a cycle. Appropriately
substituting gives

P1 =
µ0ω

4

32π2r2c

∫
S

~̃p(jω) · ←→1 r · ~̃p(−jω) 4πr2dS

=
µ0ω

4

8πc

∫ π

0

∫ 2π

0

|~p(jω)|2~1z ·
←→
1 r ·~1z sin(θ)dφdθ

=
µ0ω

4

4c
|~p(jω)|2

∫ π

0

[~1z ·~1θ]2 sin(θ)dθ (3.3)

=
µ0ω

4

4c
|~p(jω)|2

∫ π

0

sin3(θ)dθ

=
µ0ω

4

3c
|~p(jω)|2 ≈ 0.33µ0ω

4 |~p(jω)|2 ,

c = [µ0ε0]
−1/2 ≡ speed of light.

3.2 Two dipole radiators λ/2 apart

Modifying this for our geometry let us approximate this as two dipoles separated by a half-
wavelength, 180◦ out of phase, but only radiating into a half-space. Let one dipole be at y = +λ/4
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with the second at y = −λ/4. Then we can superimpose the two dipole fields as

~̃Ef (~r, s) =
−µ0

4πr
s2
←→
1 r · p̃(s)~1z[e−γ[r−

λ
4
~1y ·~1r] − e−γ[r+

λ
4
~1y ·~1r]]

=
−µ0

4πr
p̃(s)
←→
1 r · p̃(s)e−γr2 sinh

(
γλ

4
sin(θ) sin(φ)

)
, (3.4)

~̃Hf (~r, s) = Z−10

←→
1 r × ~̃Ef (~r, s).

This is an odd function of φ (or sin(φ)). For s = jω we also have

γ = jk = j
ω

c
. (3.5)

Now it is convenient to change variables so that the argument of sinh is a function of only one
coordinate. For this purpose choose

(x′, y′, z′) = (z, x, y)⇒ (~1x′ ,~1y′ ,~1z′) = (~1z,~1x,~1y),

r = [x2 + y2 + z2]1/2 = [x′
2

+ y′
2

+ z′
2
]1/2,

z′ = r cos θ′,

ψ′ = [x′
2

+ y′
2
]1/2 = r sin(θ′),

x′ = ψ′ cos(φ′) = r sin(θ′) cos(φ′), (3.6)

y′ = ψ′ sin(φ′) = r sin(θ′) sin(φ′),

~1r = ~1z′ cos θ′ +~1ψ′ sin(θ′)

= ~1z′ cos(θ′) +~1x′ sin(θ′) cos(φ′) +~1y′ sin(θ′) sin(φ′)

= ~1z cos(θ) +~1ψ sin(θ)

= ~1z cos(θ) +~1x sin(θ) cos(φ) +~1y sin(θ) sin(φ).

This implies

sin(θ) sin(φ) = cos(θ′), (3.7)

~1x′ ·
←→
1 r ·~1x′ = 1− [~1x′ ·~1r]2 = 1− sin2(θ′) cos2(φ′).

Then we have the radiated power

P2 =
1

2

∫
S

[ ~̃Ef (~r, jω)× ~̃Hf (~r,−jω)] ·~1r dS (3.8)

=
µ0ω

4

32π2r2c
|p̃(jω)|2

∫
S

~1x′ ·
←→
1 r ·~1x′ 4 sin2

(
kλ

4
cos θ′

)
dS

=
µ0ω

4

2πc
|p̃(jω)|2

∫ π

0

∫ 2π

0

sin2

(
kλ

4
cos θ′

)[
1− sin2(θ′) cos2(φ′)

]
sin(θ′)dφ′dθ′

=
µ0ω

4

2c
|p̃(jω)|2

∫ π

0

sin2

(
kλ

4
cos θ′

)[
2− sin2(θ′)

]
sin(θ′)dθ′.
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Substituting

η = cos(θ′), dη = − sin(θ′)dθ′, (3.9)

sin2(θ′) = 1− cos2(θ′) = 1− η2,

gives

P2 =
µ0ω

4

2c
|p̃(jω)|2

∫ 1

0

sin2

(
kλ

4
η

)
[1 + η2]dη. (3.10)

Substituting

ν =
kλη

4
, dν =

kλ

4
dη, (3.11)

gives

P2 =
µ0ω

4

2c
|p̃(jω)|2 4

kλ

∫ kλ
4

0

sin2(ν)

[
1 +

[
4ν

kλ

]2]
dν, (3.12)

which is simplified, using Mathematica1, as

P2 =
µ0ω

4

2c
|p̃(jω)|2

[
−4kλ cos

(
kλ
2

)
− 2 (k2λ2 − 4) sin

(
kλ
2

)
k3λ3

+
2

3

]
. (3.13)

For a resonant (half-wave) condition we have

λ0 = 2la,

f0λ0 = c, f =
ω0

2π
=

c

λ0
=

c

2la
, (3.14)

k0λ0 =
ω0λ0
c

= 2π.

In (3.13) we have

sin

(
kλ

2

)
= 0, cos

(
kλ

2

)
= −1,

giving

P2 =
µ0ω

4

2c
|p̃(jω)|2

[
4

k2λ2
+

2

3

]
=
µ0ω

4

2c
|p̃(jω)|2

[
1

π2
+

2

3

]
≈ 0.38

µ0ω
4

c
|p̃(jω)|2 . (3.15)

Noting that, with the ground plane, the radiation is only in the z′ direction we have

P3 =
P2

2
≈ 0.19

µ0ω
4

c
|p̃(jω)|2 , (3.16)

as the forward radiated power.

1http://www.wolfram.com/
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3.3 Applicability

The foregoing analysis applies strictly to an imaged dipole in free space. The permittivity of the
medium above the ground plane alters these results somewhat. So ,they should be applied for
relatively small εr.

As εr is increased the half-wave resonant length becomes less than λ/2 in free space, making
the antenna a less efficient radiator. It sill radiates, but it takes a longer time to radiate the energy,
U1 giving a higher Q.

Also, as εr is increased there can be surface bound waves propagating along the dielectric
surface. This takes some of the energy in an undesirable direction.

Even for ε = ε0, the antenna is no longer electrically small, making the dipole characterization
of the antenna only approximate.

3.4 Two closely spaced electric-dipole radiators

Now let the two dipoles be placed at

z′ = ±h, h� λ

4
. (3.17)

Then (3.4) is replaced by

~̃Ef (~r, s) =
−µ0

4πr
s2p̃(s)

←→
1 r ·~1ze−γr2 sinh(γD sin(θ) sin(φ))

≈ −µ0

4πr
s2p̃(s)

←→
1 r ·~1ze−γr2γD sin(θ) sin(φ), (3.18)

~̃Hf (~r, s) = Z−10

←→
1 r × ~̃Ef (~r, s).

Making the same coordinate transformation as in (3.6) and (3.7) gives a radiated power

P2 =
1

2

∫
s

[ ~̃Ef (~r, jω)× ~̃Hf (~r,−jω)] ·~1r dS

=
µ0ω

4

8π2r2c
|p̃(jω)|2

∫
S

~1x′ ·
←→
1 r ·~1x′ [kh]2 cos2(θ′) dS (3.19)

=
µ0ω

4

2πc
|p̃(jω)|2 [kh]2

∫ π

0

∫ 2π

0

cos2(θ′)[1− sin2(θ′) cos2(φ)] sin(θ′) dφ′dθ′

=
µ0ω

4

2c
|p̃(jω)|2 [kh]2

∫ π

0

cos2(θ′)[2− sin2(θ′)] sin(θ′) dθ′.

(3.20)

Substituting as in (3.9) gives

P2 =
µ0ω

4

c
|p̃(jω)|2 [kh]2

∫ 1

0

η2[1 + η2] dη

=
µ0ω

4

c
|p̃(jω)|2 [kh]2

[
1

3
+

1

5

]
(3.21)

=
8

15

µ0ω
4

c
|p̃(jω)|2

[
ωh

c

]2
≈ 0.53

µ0ω
4

c
|p̃(jω)|2

[
ωh

c

]2
.
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Note the extra factor of [kh]2, lowering the radiated power. This factor is the square of the fraction
of a half wavelength given by la. The electrically small antenna is a less efficient radiator.

Noting that the radiation in only in the +z′ direction we have

P3 =
P2

2
=

4

15

µ0ω
4

c
|p̃(jω)|2

[
ωh

c

]2
≈ 0.27

µ0ω
4

c
|p̃(jω)|2

[
ωh

c

]2
. (3.22)

4 Matching to Electric Dipoles

4.1 Dipole Characteristics

Our formulae are in terms of the dipole moment at the resonant frequency. We need to evaluate
p̃(jω). When the switch is closed (ideally instantaneously) there is generated a square wave
oscillation with frequency f0. The current in this wave is

I =
V0
Zc
,

Zc ≈ Zw
h

w
≡ transmission line characteristic impedance, (4.1)

Zw ≈ Z0ε
−1/2
r =

[
µ0

ε0

]1/2
≡ wave impedance. (4.2)

This is only approximate. Zc is lowered by fringe fields if w is not � h. Furthermore, the
impedance is influenced by ε0 above the dielectric as well as ε in the dielectric.

In [1] it is shown that the peak current in the resonant mode is

Imax =
4

π
I0. (4.3)

In this resonant mode the current is Imax at the antenna center, but zero at the ends, giving,

I(z) = Imax cos

(
πz

la

)
, (4.4)

as the spatial distribution of the current.
An alternate formula [2] (compared to charge times distance) for an electric dipole moment is

~̃p(jω0) =
1

s

∫ la/2

−la/2
Ĩ(z, s) dz =

Imax

jω0

∫ la/2

−la/2
cos

(
πz

la

)
dz =

Imax

jω0

(
2la
π

)
(4.5)

= −j 8

π2

la
ω0

I0 = −j 8

π2

la
ω0

V0
Zc
≈ −j 8

π2

la
ω0

w

h

V0
Zw
≈ −j 4

π2

λ0
ω0

w

h

V0
Zw

= −j 8

π

c

ω2
0

w

h

V0
Zw

.

Hence we see the advantage of a large (but not too large) width w. As discussed in Section 2 we
may not use the λ/4 for h, but something less to increase the stored energy as in (2.10). This may
also increase the Q of the resonance, except for possibly other losses.
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4.2 Radiation Q

The radiation is, of course in the form of a damped sinusoid. The Q of this resonance can be
estimated as

Q = πN, (4.6)

N = number of cycled for field to fall to e−1 or energy to e−2.

In one cycle the energy radiated is

U3 ≈ P3T,

T =
1

f0
≈ λ0

c
≈ 2

la
c

(4.7)

= period of resonance.

The fractional energy radiated in one cycle is

∆U =
U3

U1

=
π2

8

P3T

U0

. (4.8)

The fractional field lost in one cycle is

∆F ≈ ∆U

2
=
π2

16

P3T

U0

, (4.9)

giving

N =
1

∆F
=

2

∆U
=

16

π2

U0

P3T
, (4.10)

Q = πN =
16

π

U0

P3T
.

4.3 Combined results for h = λ/4

Combining (4.5) with (3.16) gives

P3 =
1

2

[
1

3
+

1

2π2

]
µ0ω

4
0

c

[
8

π

c

ω2
0

V0
Zw

]2
≈ 1.25

V 2
0

Zw
. (4.11)

This result is for h = λ/4, which is also of the order of w. So radiated power is of the general
order of V 2

0 /Zw as one might expect.
Assuming the dielectric as the basic limitation with

V0 ≈ hEd, (4.12)

U0 ≈
εw[la − ls]

h
V 2
0 . (4.13)

the Q is then

Q = πN ≈ 16

π

εw[la − ls]
h

V 2
0

Zw
1.25V 2

0

c

2la
≈ 2

w[la − ls]
hla

. (4.14)

This is of the general order of 2.0 (since it is assumed that la � ls and w ≈ h; ∴ Q ≈ 2w/h = 2.0),
indicating a highly damped oscillation, for which our approximations are inaccurate. This low Q
is associated with our very fat dipoles. This would change significantly if w were � h.
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4.4 Combined results for h� λ/4

Using the results of (3.22) instead, we have

P3 =
4

15

µ0ω
4
0

c

[
ω0h

c

]2 [
8

π

c

ω2

V0
Zw

]2
=

256

15π2

[
ω0h

c

]2
V 2
0

Zw
. (4.15)

Now we see the power reduction by the factor [ω0h/c]
2. We see a power radiated proportional to

h2V 2
0 , and a field proportional to hV0.
Again in energy as in (4.12) we have

Q = πN ≈ 16

π

εw[la − ls]
h

V 2
0

15π2

256

[
c

ω0h

]2
Zw
V 2
0

c

2la
≈ 15π

32

w[la − ls]
hla

[
c

ω0h

]2
. (4.16)

With h� la/2 we might make ls small since the switch needs to hold off less voltage. This gives,

Q ≈ 15π

32

w

h

[
c

ω0h

]2
=

15

128π

w

h

[
c

f0h

]2
=

15

128π

w

h

[
λ0
h

]2
=

15

32π

w

h

[
la
h

]2
. (4.17)

With

w ≈ la
2
, (4.18)

this becomes

Q ≈ 15

64π

[
la
h

]3
, (4.19)

allowing one to adjust to some desired Q.

4.5 Limitations

The foregoing is for the case of air, dielectric between the antenna and the ground plane. Practi-
cally, one needs a dielectric plane with relative dielectric constant of a few to support the antenna.
This will shorten la for a given resonance frequency, thereby lowering the efficiency of radiating
into air, thereby raising the Q. There may also be some thin dielectric to coat the switch and
perhaps antenna to increase the voltage standoff to > V0 as desired.

5 Effect of Dielectrics

Of necessity there needs to be a substrate to support the antenna above the ground plane as in
Fig. 1.1. This complicates the electromagnetic analysis, introducing surface waves guided by the
dielectric over the ground plane.

These surface waves have been studied by [3–6]. It is noted that the cutoff efficiency is obtained
just below the cutoff thickness of the H0 surface-wave mode. The E0 surface wave mode does not
have a cutoff frequency, but for small h is only weakly excited by the antenna. Maximum efficiency
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occurs just before the H0 surface wave mode can be excited. The optimum substrate thickness
satisfies [7]

hopt /
λ0
4

[εr − 1]−1/2. (5.1)

Furthermore, it would appear that the presence of a superstrate may further improve matters [7].
Note that the dielectrics decrease the size of the antenna for the resonant condition. This will

significantly affect the Q.

6 Skin-Effect Losses

There are losses associated with the finite conductivity of the metal. The skin depth for a good
conductor is [8]

δs =

[
2

ωµ0σ

]1/2
=

[
1

πfµ0σ

]1/2
. (6.1)

This gives a surface impedance

Zs = Rs + sLs = [1 + j][σδs]
−1 = [1 + j]

[ωµ0

2σ

]1/2
, (6.2)

Rs =
[ωµ0

2σ

]1/2
= 2π

[
10−7f

σ

]1/2
≡ surface resistance.

At a frequency, f , of 0.3 THz we have for copper

Rs = 0.14 Ω. (6.3)

To model this loss consider the antenna over the ground plane as a transmission line with

Z̃c(s) =

[
sL′ +R′

sC ′

]1/2
≡ characteristic impedance,

γ̃(s) = [[sL′ + 2Rs]sC
′]
1/2 ≡ propagation constant, (6.4)

L′ ≈ µ0
h

w
≡ inductance per unit length,

C ′ ≈ ε0εr
w

h
≡ capacitance per unit length,

R′ ≈ Rs

w
≡ resistance per unit length.

There is also a small correction to L′ from Ls, but we neglect this. Note the 2Rs to account for
losses in both the antenna and the ground plane.

As a transmission line it propagates a wave with propagation approximated as

γ̃(s)z = s[L′C ′]1/2
[
1 +

2R′

sL′

]1/2
z

=
s

v

[
1 +

R′

sL′
+O(s−2)

]
z (6.5)

=
s

v
z +

R′z

Zc0
+O(s−1),
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for high frequencies. The first term is delay and the second term is loss with

Zc0 =

[
L′

C ′

]
= Zw

h

w
, (6.6)

Zw =
[µ0

ε

]1/2
= ε1/2r Z0. (6.7)

The propagating wave goes like

e−γ̃(s) ≈ exp
[
−s
v
z
]

exp

[
− R′

Zc0
z

]
= exp

[
−s
v
z
]

exp

[
−Rs

Zw

z

h

]
. (6.8)

One period of oscillation corresponds to a round trip of distance 2la, for which

exp

[
−Rs

Zw

z

h

]
≈ 1− Rs

Zw

z

h
≈ 1− 2la

h

Rs

Zw
, for

2la
h

Rs

Zw
� 1. (6.9)

So that
2la
h

Rs

Zw
is the fractional loss of field amplitude. The number of cycles to e−1 is then

N =
hZw
2laRs

= ε−1/2r

h

2la

Z0

Rs

= ε−1/2r

h

λ0

Z0

Rs

, (6.10)

Q = πN = πε−1/2r

h

λ0

Z0

Rs

. (6.11)

Note that the switch length, ls, is assumed negligible in this calculation.
As an example, the Q as a function of h/λ0 and εr for f0 = 0.3 THz (Rs = 0.14 Ω) is shown in

Fig. 6.1. From this we can see that the copper skin losses do not appear to be a problem, as long
as h/λ0 is not too small.

(a) εr sweep. (b) Density plot of Q.

Figure 6.1: Quality factor (Q) as a function of h/λ0 and εr at f0 = 0.3 THz as per (6.11).
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7 Switch Losses

The switch (1.1) has length ls, width w, and some thickness to be determined (� h). Since we
want the switch to conduct for a “long” time after the fs laser illumination, a good switch material
is SI-GaAs (Cr doped) with characteristics [9]

50− 100 ps = carrier lifetime,

0.1
m2

V s
= mobility, (7.1)

104 Ω m = resistivity,

50
M V

m
= breakdown field.

The switch resistance depends on the carrier density generated by the fs laser. Compared to the
skin-effect resistance, the switch resistance can be somewhat larger and still achieve an acceptable
Q.

Immediately we can that the carrier lifetime can be a limitation depending on the antenna Q.
At 0.3 THz, the period is 3.3 ps which gives 30 cycles in 100 ps corresponding to a Q of about 94.
So one may wish to choose h to get the number of cycles down to 30 or so (large h allows larger
V0).

Assume as in Fig. 1.1 that ls is small, and can be modelled after closure by a resistance Rsw

(time independent). As shown in Fig. 7.1 fold the antenna and ground plane.

Figure 7.1: Equivalent transmission-line model of antenna with switch.

Here the reflection coefficient at Rsw is

ρ =
2Zc −Rsw

2Zc +Rsw

=
1− Rsw

2Zc

1 +
Rsw

2Zc

≈ 1− Rsw

Zc
, for small

Rsw

Zc
. (7.2)

In [10], the number of cycles to e−1 is

N = − 1

2 ln(ρ)
≈ Zc

2Rsw

, (7.3)

Q = πN ≈ π

2

Rsw

Zc
.
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How small should Rsw be?
Choose the parameters

Zc ≈ Zw
h

w
,

h <
λ

4
in dielectric, (7.4)

Zw ≈ Z0ε
−1/2
r ,

εr ≈ 3.

Let w ≈ λ

4
, h ≈ λ

8
,

h

w
≈ 1

2
, (7.5)

2Zc ≈ Zw =
377√

3
≈ 218 Ω.

For N = 30 we have

Rsw =
Zc
2N

=
Zw
4N
≈ 377

4
√

3

1

30
≈ 1.8 Ω. (7.6)

This can be used to estimate the SI-GaAs doping and fs laser parameters.

8 Concluding Remarks

A THz pulse (damped sinusoid) radiator as in Fig. 1.1 has many design optimization questions.
One needs to maximize the stored energy depending on the dielectric thickness and switch dimen-
sions. The antenna needs to radiate most of this energy, and there is a tradeoff between amplitude
and number of cycles (Q). The skin-effect losses are not significant, but the switch losses need to
be quantified and made acceptably small.

As usual one can estimate the combined effect of the various previously discussed factors via

Q−1 =
∑
n

Q−1n , (quality factor), (8.1)

N−1 =
∑
n

N−1n , (number of cycles to e−1).
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