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Abstract 
 
 

 This paper develops some analytic approximations for the focal waveform produced at the second focus of 
a prolate-spheroidal reflector due to a TEM wave launched from the first focus.  This is extended to consider the 
spot size of the peak field near the second focus. 
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1. Introduction 

 

 Two previous papers [9, 10] have discussed the basic concept of using one or more prolate spheroidal 

reflectors to focus a fast-transient electromagnetic pulse on some targets of interest.  Another paper [11] has shown 

that an inhomogeneous spherical TEM wave launched on guiding conical conductors from one focus is converted by 

a double stereographic transformation to a second (reflected) inhomogeneous spherical TEM wave propagating 

toward the second focus.  Both waves have the same temporal waveforms before other scattering (from feed arms, 

etc.) can reach the observer. 

 

 The present paper is concerned with analytic calculations of the waveform at the second focus.  For this 

purpose let us consider the geometry in Fig. 1.1.  Let there be two thin perfectly conducting cone wave launchers 

with electrical centers lying in the xz plane.  With respect to the negative z axis they are oriented at 

 

 1 cθ θ=  (1.1) 

 

in the wave-launching spherical system ( 1 1 1, ,r θ φ ).  These are related to cylindrical ( 1 1 1, , zφΨ ) and Cartesian 

(x, y, z) coordinates as 
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 The prolate spheroid is described by 
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The thin-cone electrical centers are described by the angle cθ  with 
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At the reflector we have (subscript p) 
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Fig. 1.1  Wave Launcher in Prolate-Spheroidal Reflector 
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 (1.5) 

 

Given cθ  one can solve for pz  and pΨ .  One can also specify pz  and compute pΨ  and cθ . 

 

 As a special case one may choose the symmetry plane for which 

 

 0pz z= =  (1.6) 

 

This simplifies the equations to  
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 (1.7) 

 

 For the present let us truncate the reflector at the pz z=  plane.  The portion used is pS ′ , to the left.  This is 

consistent with the traditional truncation of paraboloidal reflector impulse radiating antennas (IRAs).  More 

sophisticated truncation contours can be considered, but are beyond the scope of this paper.  For later use the 

truncation plane will be taken as an aperture plane.  The portion of this plane inside the prolate sphere is designated 

aS .  It is this surface which will be used for integrating over the reflected TEM wave to find the fields at the second 

focus, 0r→ . 
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2. Prepulse 

 

 The stereographic projections in [11] can be used to calculate the fields.  Let wave 1 have the form 
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 [ ] 1/ 2c με −=  = wave speed in medium 

 

Let the wave have 1 0V V= ±  on the two cones. 

 

 The stereographic projection of this wave is 

 

 [ ] 1
0 0 0 12 tan ,

2
a z θ φ φ φ⎛ ⎞Ψ = − = − = −⎜ ⎟

⎝ ⎠
 (2.2) 

 

The electrical center of the thin wire on this projection plane is 

 

 [ ]0 0 02 tan , 0,
2
c

c ca z θ
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⎝ ⎠
 

    0wr  = radius of thin wire on projection plane  (2.3) 

 

For the two thin wires we have the well-known solution [1, 5] 
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From this we have 
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 0c gZ Z f= ≡ characteristic impedance 
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It is often convenient to specify cZ  (around 400 Ω ), and from this determine the various transmission-line 

parameters.  In this case we have 
 

 0
0

400 1.06 , 14
377

c
g

w
f

r
Ψ� � �  (2.6) 

 

for typical numbers. 

 

 Converting (2.4) to ( 1 1,θ φ ) coordinates we have 
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for the potential in wave 1.  The gradient in (2.1) then gives the electric field.  A special case has 
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which is a symmetry plane (the x = 0 plane).  Another symmetry plane (the y = 0 plane) has 
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For 1θ  near π  this is 
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 From (2.1) we have at the second focus 
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This is the prepulse orientation and magnitude (for step excitation).  It lasts for a time [11] 
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after which the reflector signal arrives at the second focus. 

 For the special case as in (1.6) and (1.7) for which the launcher intersects the reflector at the z = 0 

symmetry plane we have 
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3. Fields on Aperture Plane 

 

 Now we consider the wave heading from the reflector toward the second focus.  There is no set of conical 

conductors guiding the wave there.  So we consider this second spherical TEM wave [11] on the aperture plane, 

which we can use in turn to find the fields at 0r
→  (and other positions as well).  For present purposes we take the 

aperture plane as pz z= , as in Fig. 1.1.  The reflected wave illuminates aS , a disk of radius pΨ . 
 

 Note that the reflector is truncated at the aperture plane.  This is because the field from the wavelauncher 

reverses sign for the wave on the “other side” of the launching conductors.  This is the same truncation used for 

typical reflector IRAs, based on a self-reciprocal geometry [12].  There are more sophisticated (nonplanar) 

truncation geometries which may be considered in the future. 

 

 In [11] the reflected wave was related to the first wave by a double stereographic transformation.  They are 

equal (except for a minus sign) on the stereographic projection plane ( z a= − ) for which 
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The second TEM wave takes the form 
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Note the factor giving an incoming (on 0r→ ) step-function wave. 
 
 For the aperture integral we need the tangential electric field on aS .  First we have 
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For 2θ  near zero we have 
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Comparing this to the prepulse amplitude in (2.11) we have ( 2θ  near 0) 
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For the special case (as in (2.13)) that the launcher intersects the reflector at the z = 0 symmetry plane we have (for 

2θ  near zero) 
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a fairly simple result. 
 
 At the center of the aperture plane we have 
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For 0pz =  this reduces to 

 

 0 2a pE E=  (3.8) 
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 Wave number 2 is focused on 0r→ .  Without guiding conductors (3.5) cannot hold all the way as 2 0r → .  

So we are considering the fields on aS  for later integration.  On the center of aS  we have the electric field 0E  

polarized in the 1 x
→

 direction. 
 

 In IRA-related calculations [5, 6] it has been seen that, for circular apertures, the field at the center is an 

important parameter.  The boresight radiated field can be found by integrating the TEM field over the aperture, or by 

integrating a uniform field of the center value (including polarization) over the same circular aperture.  Seen another 

way, one can expand the field in cylindrical coordinates and note that terms with cos( )mφ  and sin( )mφ  for 2m ≥  

integrate to zero (for observation field points on the z axis).  (There is no m= 0 term.)  This is basically a symmetry 

result. 

 

 Similarly here, let us consider a uniform field on the ( 0 0, φΨ ) projection plane.  This corresponds to a 

potential function 
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for a uniform field 0E  polarized in the x direction.  Matching this field to the second wave at 
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02 0

0
0

0

20
0

1

1 cot
2

2 cot
2

x

c
g

c
p

z aE E u t
c

VE
f a z

zE
a z

θ
π

θ

→ →−⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− ⎝ ⎠

⎛ ⎞
⎜ ⎟− ⎝ ⎠

�

�

 (3.10) 

 
For 0pz =  this becomes 
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 Now convert 2V ′  on the projection plane to ( 2 2,θ φ ) coordinates as 
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giving an electric field 
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 On the aperture plane we have 
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The tangential electric field is then 
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Converting to Cartesian coordinates we need only the x component (due to symmetry) as 
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4. Fields at Second Focus 

 

 We are now in a position to evaluate the fields at 0r→  by integrals over the fields on aS .  A previous paper 

[2] has developed the formulae.  From [2 (3.3)] we have (in time domain for step excitation) 
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 Using cylindrical coordinates on aS  we can evaluate the integrals.  Considering first the φ  variable we 

have 
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 (4.3) 

 

Note that sE  has units V/m, while Eδ  has units Vs/m corresponding to the time integral (or area) of the δ  

function. 
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5. Some Design Considerations 

 

 Summarizing, we have 
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 (5.1) 

 

One can compute cθ  from pz  (or pΨ ) in (1.5).  For the special symmetric case of 0pz = , merely replace 

p bΨ = , giving 
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 (5.2) 

 A first observation concerns the common factor 0 /( )gV fπ .  For large fields one needs large voltage and 

low wave-launcher impedance.  Note that an extra factor of 2  increase in the fields is obtained by going to a 4-

arm feed in the usual sense of a IRA with arms at 45° [4], and a little more can be achieved by arms at about 60° 

from the horizontal (the x = 0 plane) as projected on a constant-z plane [7, 8].  This is just another common factor 

with which we can deal separately. 
 

 The δ -function part of the field does not have infinite amplitude when the incident step-like wave has a 

nonzero rise time.  For simplicity let us imagine that the δ -function is replaced by 

 

 ( ) ( ) ( )1t u t u t t
t δ
δ

δ ⎡ ⎤→ − −⎣ ⎦  (5.3) 
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i.e., a gate function of width tδ  and height 1tδ
− .  This makes the impulsive part of the field have amplitude 1E tδ δ

− , 

showing the importance of a small pulse width.  For convenience define 

 

 [ ]02pt a z
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t ctδ δ

Δ −
≡ =  (5.4) 

 

We will want this to be large, which argues for large a. 

 

 Considering the simpler case 0pz =  we have 
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If we want the step from the reflector (the post pulse if you like) to cancel the prepulse step then one would like b to 

approach a, but this has other consequences.  Next compare the main (δ ) pulse amplitude to the prepulse amplitude 

giving 

 

 [ ]
2 210 0 0

0
0

2 2
p p

E b z z zb Ta z T
t E act a ct a z a

δ
δ δ

−+ = =
+

�  (5.6) 

 

The factor 0 /z a  is less than one, but it needs to be large to give a large main pulse.  This is further aided by a large 

T implying large 0a z−  and small tδ .  So, intermediate values of 0z  are called for, i.e., at the maximum of 

0 0[ ]z a z−  which is 
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6. Spot Size 

 Given that the impulse has some small width tδ , the maximum fields will exist in some small region 

around 0r→ .  So let us estimate a pulse width of this impulsive part for positions near 0r→ .  For the δ -function 

pulse we have the wave from every position on aS  arriving at exactly the same time at 0r→ .  We can then estimate 

a pulse width near 0r→  by the dispersion in the arrival times from all parts of aS  at the observation point. 
 

 For this purpose, consider the lengths of the ray paths in Fig. 6.1 indicating the maximum time differences 

from the edges and center of aS  to the observer.  For an observer at 0z z+ Δ  on the z axis we have 
 

 ct ≡  arrival time from center 

 2cct a z= + Δ  

 et ≡  arrival time from edge 
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 (6.1) 

Then we have 
 
 zt ≡  pulse width with respect to z c et t= −  
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For the special case of 0pz =  we have 
 

 01z
zct z
a

⎡ ⎤− Δ⎢ ⎥⎣ ⎦
�  (6.3) 

 
Large 0 /z a  (small b/a) minimizes this. 

 For an observer radially displaced ΔΨ  from 0r→  we have 

 1t ≡  arrival time from near edge 
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Fig. 6.1  Dispersion of Impulse Near 0r→ . 
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 2t ≡  arrival time from far edge 
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Then we have 
 
 tΨ ≡  pulse width with respect to Ψ  2 1t t= −  
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 (6.5) 

 
For the special case of 0pz =  we have 

 2        (  positive)bct
aΨ = ΔΨ ΔΨ  (6.6) 

 
Small b/a also minimizes this. 
 

 Comparing these pulse widths to tδ , the width at 0r
→ , we can note that the pulse widths in the z direction 

are zt tδ + , and in the Ψ  direction t tδ Ψ+ .  The physical spot size is then given by (counting width in both 

directions from 0r→ ) 
 
 2zt t tδΨ � �  (6.7) 
 
Given by (6.2) and (6.4).  For the special case of 0pz =  we have 
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02 1 ,
z az ct ct
a bδ δ
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� �  (6.8) 

 

Of course, these are just rough estimates.  Detailed waveform calculations will give more accurate results, including 

actual waveforms instead of bounds on pulse widths.
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7. Concluding Remarks 

 

 This modest study has found some analytic approximations useful for estimating the focal waveforms and 

focal spot size for the prolate-spheroidal IRA.  One may think of this as analogous to the first of the papers dealing 

with the IRA using a paraboloidal reflector [3].  Considering the sophisticated design papers which followed the 

introduction of the IRA concept, there is much yet to be done for the prolate-spheroidal version. 

 

 Here we have found some especially simple results for the case of reflector truncation at 0pz = .  More 

detailed numerical treatment of the results for 0pz ≠  may lead to yet more insight into an optimal design. 
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