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Abstract 
 
 

 In designing small high-power electromagnetic radiators (of the order of a half wavelength or so in size) 
based on switched resonant circuits, there are questions concerning the control of the resonance frequencies.  This 
paper explores some techniques for tuning these frequencies based on the reactive properties of the source.. 
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1. Introduction 

 

 Begin with some antenna with 

 

 ( ) ( )1
a aZ s Y s−= ≡� �  input impedance 

 s jω= Ω + =  Laplace-transform variable or complex frequency (1.1) 

 ~ =  two-sided Laplace transform 

 

Let this be driven, as in Fig. 1.1, by 

 

 ( ) ( )1
s sZ s Y s−= =� �  source impedance  (1.2) 

 
These two impedances are connected by a closing switch which we model by 
 

 ( ) 0
sw

VV s
s

=�  

 0V =  charge voltage before switch closure (1.3) 

 
In time domain this is a step function.  We should remember that the switch does not close in zero time [4], and that 

this limits the performance at high frequencies.  

 
 If ( ) 0sZ s =�  then the antenna current (at the input terminals) is just 
 

 ( ) ( )0
a a

VI s Y s
s

=� �  (1.4) 

 
This typically exhibits resonant behavior at frequencies given by 

 

 ( ) 0a a as Z s =�  (1.5) 

 

Neglecting 0as =  the contribution of a pole is given in time domain by 

 

 ( ) ( ) ( )
1

02 Re a

a

s t
aa a a

s s

dI t V s Z s e u t
ds

−

=

⎛ ⎞⎡ ⎤⎜ ⎟⎢ ⎥= ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

�  (1.6) 

 

Where the conjugate pole is now included. 
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Fig. 1.1  Antenna and Source 

( )aZ s�  ( )sZ s�  

( )swV s�  
+ _ 



4 

2. General Considerations 

 

 Now consider the influence of the source impedance.  This might be a simple capacitance Cs .  However, 

at high frequencies ( )sY s�  may have more complex structure [5].  This nonzero ( )sZ s�  then combines with ( )az s�  

to shift the resonance frequencies. 
 

 The source impedance has resonances given by 

 

 ( ) 0=�s sZ s  (2.1) 

 

When combined with the antenna impedance we have new natural frequencies given by 

 

 ( ) ( ) 0+ =� �a m s mZ s Z s  (2.2) 

 

Then (1.6) is replaced for a single pole pair by 

 

 ( ) ( )
1

0( ) 2 Re ( )
−

=

⎛ ⎞⎡ ⎤⎜ ⎟⎡ ⎤⎢ ⎥= +⎜ ⎣ ⎦ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

� � m

m

s t
am m a s

s s

dI t V s Z s Z s e u t
ds

 (2.3) 

 

So our approach is to see how we might shift the antenna resonances in desirable directions.  The factor 

 

 ( ) ( )
1−

=

⎡ ⎤
⎡ ⎤⎢ ⎥+⎣ ⎦⎢ ⎥⎣ ⎦

� �
m

m a s
s s

ds Z s Z s
ds

 (2.4) 

 

can be used (at least for high-Q resonances) as a scaling factor for the strength of the resonance. 



5 

3. Distributed Capacitive Source 

 

For present purposes we need a model for the source impedance.  Let us choose an open-circuited transmission line 

as indicated in Fig. 3.1.  It might include a high-dielectric-constant medium with 

 
 0ε ε ε= r  (2.4) 
 
With a transit time rt , the capacitance (low frequency) is just 

 

 C = r
s

c

t
Z

 

  =cZ  characteristic impedance of transmission line (2.5) 
 

The source impedance is then 

 

 ( )
2

2
1 coth( )
1

r

r

st
s c c rst

eZ s Z Z st
e

−

−
+

= =
−

�  (2.6) 

 

with open-circuit resonances at 

 

 
( ) ( )sinh 0 , sin 0

, 0 , 1 , 2 ,

2 2

ω
ω π

ω
π

′ = =

′ = =
′

′ = =

…
s r s r

s r

s
s

r

s t t
t n n

nf
t

 (2.7) 

 

i.e., multiples of a half wavelength. 

 

 It is interesting to see at what frequencies the source has zero impedance (short-circuit resonances).  These 

are 

 

 

( ) ( )coth 0 , cos 0
2 1 , 0 , 1 , 2 ,

2
2 1

2 4

s r s r

s r

s
s

r

s t t
nt n

nf
t

ω

ω π

ω
π

= =

+
= =

+
= =

…  (2.8) 

 

i.e., odd multiples of a quarter wavelength.  One might choose the source then as having zero impedance at an 

antenna resonance so as to deliver a large voltage to the antenna. 
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Fig. 3.1  Transmission-Line Capacitive Source 

ε 

≡rt  transit time 
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4. Combination With Magnetic Antenna 

 

 One type of electrically small antenna is a loop of some kind producing a magnetic-dipole moment.  When 

operating in resonance condition there may be some appreciable fraction of a wavelength across the structure [1, 2].  

Let us model the antenna impedance (up to first resonance of current) as 

 

 ( )
1

1 C
−⎡ ⎤

= +⎢ ⎥
⎣ ⎦

�a a
a

Z s s
sL

 

 ≡aL  low-frequency loop inductance (4.1) 

 C ≡a  capacitive correction associated with leads into loop and stray capacitance of loop structure 

 

Note that this neglects the radiation resistance. 

 

 If the source is modeled as a simple capacitance Cs , this appears in series with �aZ  when driven by the 

source 0 /V s  as 

 

 

( ) ( )
1

12
2

1 1 1C
C C

11 C
C

−

−

⎡ ⎤
= + = + +⎢ ⎥

⎣ ⎦

⎡ ⎤
⎡ ⎤= = +⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

� �a a
g a s

a a a
a s

Z s Z s s
s sL s

sL s L
s L

 (4.2) 

 

The resonance is then at 

 

 

[ ] [ ]

12
2

2 2

1/ 2
1/ 2 1/ 2

10 1 C
C

C 1 C

CC C 1
C

ω
ω

ω ω

ω

−

−
− −

⎡ ⎤= − −⎢ ⎥⎣ ⎦

= −

⎡ ⎤
⎡ ⎤= + = +⎢ ⎥⎣ ⎦

⎣ ⎦

m a a
m a s

m a s m a s

s
m a a s a a

a

L
L

L L

L C L

 (4.3) 

 

Compared to the antenna resonance 

 

 [ ]Cω =a a aL  (4.4) 

 

We see that 
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 ω ω<m a  (4.5) 

 

With equality if C 0=s  (or = ∞�sZ ).  The effect of Cs  is to lower the resonance frequency.  Note that for infinite 

, 0ω →s mC . 

 

 At the same time the strength of the resonance is changed with the factor 

 

 ( ) ( )
1−

=

⎡ ⎤
⎡ ⎤⎢ ⎥+⎣ ⎦⎢ ⎥⎣ ⎦

� �
m

m a s
s s

ds Z s Z s
ds

 

 

[ ] [ ]

12

2 2

12
2

2 2 2

1
2

1 1 1C C
C

1 1 1C C
C

C
2C C C C 1

C

C
1 2

C

ω
ω ω ω ω

ω

ω

−−

−−
−

−
−

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= − − + + −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= − − + − + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤
= − + + + +⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦

⎡
= − +

⎣

m a m a
m a m a m s

a m a
m m a m a m s

a
a s a a s s a

m s

a a
m s

s s
s L s L s

j

L L

j L C L

jL
1

2

1/ 2 1/ 2 2

1/ 2 2 3/ 2

C C
1 1

C C

C1 1
2 C

C C
1 1

2 C C C

C C
1

2 C C C

ω

−

−

−

−

⎡ ⎤⎤ ⎡ ⎤
+ + +⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

a a
s s

a a
m s

a s a
a a s

a s s
a a a

jL

Lj

Lj

 (4.6) 

 

So smaller Cs  decreases the resonant current (at the antenna port). 

 

 As C →∞s  (zero-impedance source) this resonance has 0ω →m , for which the antenna is zero-

wavelengths long.  Small Cs  corresponds to a quarter wavelength.  Let us consider a higher resonance 

corresponding to a half wavelength. 
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5. Transmission-Line Model of Loop and Source 

 

 Consider the case that both loop antenna and source are modeled as transmission lines as indicated in Fig. 

5.1.  Then we have for the antenna impedanace 

 

 ( ) ( )
1

1

2
12

1 tanh
1

st
a ch chst

eZ s Z Z st
e

−

−
−

= =
+

�  (5.1) 

 

For a zero-impedance source we have current resonances as 

 

 
( ) ( )1 1

1

1

sinh 0 , sin 0
, 0,1,2

2 2

a a

a

a
a

s t t
t n n

nf
t

ω
ω π

ω
π

= =

= =

= =

…  (5.2) 

 

which are multiples of a half wavelength. 

 

 A special simple case has 

 

 c chZ Z=  (5.3) 

 

with 2t  now the transit time of the source part.  This is effectively a single transmission line of transit time, 1 2t t+ .  

With one end shorted and the other open, the first quarter-wave resonance is at 

 

 
[ ]1 2

1
2 4

m
mf t t

ω
π

= =
+

 (5.4) 

 

Here we see that shortening 2t  raises mf , consistent with the previous result with lessened source capacitance.  

Here we can also see that as the switch approaches the right end of the transmission line, where the current in the 

natural mode is weakest, the strength of the resonance is also decreased. 

 

 The more general case has the resonance condition 

 

 
1 2

1 2

2 2

2 2
1 1 0
1 1

m m

m m

s t s t
ch cs t s t

e eZ Z
e e

− −

− −
− +

+ =
+ −

 (5.5) 
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Fig. 5.1  Transmission-Line Model of Loop and Source 
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Note that for small cZ  we have 

 

 
0c

ch

m a a

Z
Z
s s jω

→

→ =
 (5.6) 

 

as in (5.2). 

 

 Another special case has 1 2t t= , for which we have 

 

 
( )

( )

1 1
2 22 2

2
1

2
1

1/ 2
1

1 1 0

tanh

tan

arctan

m ms t s tc
ch

c
m

ch

c
m

ch

c
m

ch

Ze e
Z

Zs t
Z

Zt
Z

Zt
Z

ω

ω

− −⎡ ⎤ ⎡ ⎤− + + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= −

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 (5.7) 

 

With additional solutions based on the periodicity of 2tan . 

 

 The general case (5.5) is readily solved numerically for 1mtω  or 2mtω  as a function of /c chZ Z  and 2 1/t t .  

By taking the derivative of aZ�  as in (5.1) one can also find a perturbation solution about aω  as in Section 4. 
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6. Combination With Electric Antenna 

 

 Another type of electrically small antenna is an electric dipole of some kind, i.e., two separate conductors 

driven by some source between them, produding an electric dipole moment.  Operated in resonance condition there 

may be some appreciable fraction of a wavelength across the structure [3].  Let us model the antenna impedance (up 

to first resonance of current) as 

 

 ( ) 1
a a

a
Z s sL

sC
= +�  

 aC ≡  low-frequency dipole capacitance (6.1) 

 aL ≡  inductive correction associated with leads into dipole and stray inductance of dipole structure 

 

Again this neglects the radiation resistance. 

 

 With the source modeled as a capacitance sC , this appears in series with aZ�  when driven by the source 

/gV s  as 

 

 ( ) ( ) 1 1 1 1
5a a

s a s
Z s Z s sL

sC C C
⎡ ⎤

= + = + +⎢ ⎥
⎣ ⎦

� �  (6.2) 

 

The resonance is then at 

 

 1/ 2

1 1 10

1 1 1

m a
m a s

m
a a s

L
C C

L C C

ω
ω

ω

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦

⎡ ⎤⎡ ⎤
= +⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

 (6.3) 

 

Compared to the antenna resonance at 

 

 [ ] 1/ 2
a a aL Cω −=  (6.4) 

 

We see that 

 

 m aω ω>  (6.5) 
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with equality if sC = ∞  (or 0sZ =� ).  The effect of sC  is to raise the resonance frequency.  For large sC , the 

resonance corresponds to a quarter-wave resonance related to the source (or half wave on the two “dipole” 

conductors).  For small sC  the result of (6.3) is unrealistic in that physically this should go to an open-circuit or 

half-wave resonance related to the source.  For this case another model is appropriate. 

 

 The strength of the resonance is changed as 

 

 

( ) ( )
1

1

2

1/ 2

1/ 2

1 1 1

1 1 1 1
2

1 1
2

m
m a s

s s

m a
a sm

a a s a

a
a s

ds Z s Z s
ds

s L
C Cs

j
L C C L

j L
C C

−

=

−

−

−

⎡ ⎤
⎡ ⎤⎢ ⎥+⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥= − +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤
= − +⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤
= − +⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦

� �

 (6.6) 

 

So larger sC  increases the resonant current (at the antenna port). 
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7. Transmission-Line Model of Electric Antenna and Source 

 

 Model the electric antenna and source as transmission lines as indicated in Fig. 7.1.  Note that this is 

topologically different from the loop case since both ends are open circuited.  Now the antenna impedance is 

 

 ( ) ( )
1

1

2
12

1 coth
1

st
a ch chst

eZ s Z Z st
e

−

−
+

= =
−

�  (7.1) 

 

For a zero-impedance source we have current resonances at 

 

 

( ) ( )1 1

1

1

cosh 0 , cos 0
2 1 , 0,1,2,

2
2 1

2 4

a a

a

a
a

s t t
nt n

nf
t

ω

ω π

ω
π

= =

+
= =

+
= =

…  (7.2) 

 

which are odd multiples of a quarter wavelength. 

 

 For the special case of 

 

 c chZ Z=  (7.3) 

 

we have a half-wavelgneth resonant transmission line of transit time 1 2t t+ .  This gives the lowest-order resonance 

at 

 

 
[ ]1 2

1
2 2

m
mf t

ω
π

= =
+

 (7.4) 

 

For small 2t  this becomes a half wavelength on each antenna conductor.  However, this also implies a small energy 

from the source. 

 

 The more general case has the resonance condition 

 

 
1 2

1 2

2 2

2 2
1 1 0
1 1

m m

m m

s t s t
ch cs t s t

e eZ Z
e e

− −

− −
+ +

+ =
− −

 (7.5) 
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For small cZ  we have 

 

 
0c

ch

m a a

Z
Z
s s jω

→

→ =
 (7.6) 

 

as in (7.2). 

 

 Another special case has 1 2t t= , for which we have 

 

 

1 1

1 1

1

1

sinh(2 ) sinh(2 ) 0

sinh(2 ) 0 , sinh(2 ) 0

, 0,1,2,
2

2 4

c
m m

ch

m m

m

m
m

Zs t s t
Z

s t t
nt n

nf
t

ω
πω

ω
π

+ =

= =

= =

= =

…
 (7.7) 

 

The first nonzero resonance is then when each antenna conductor is a quarter-wavelength long.  Note also that small 

cZ  means more stored energy in the source, giving a larger resonance current. 

 

 The general case (7.5) is also readily solved numerically. 
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Fig. 7.1  Transmission-Line Model of Electric Antenna and Source 

chZ  

( )swV s�  
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8. Concluding Remarks 

 

 As we can see, judicious choice of the frequency dependence of the source impedance can alter the 

resonance frequency and resonance strength of the antenna, whether of loop or electric-dipole type.  Here we have 

chosen some simple forms of the source impedance for illustration.  More elaborate forms can also be pursued. 
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