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Abstract

This paper introduces an aperture synthesis procedure for producing a desired pulse shape, including the
desired frequency spectrum of the pulse. This is accomplished by controlling the time-of-arrival of fields on the
aperture plane, thereby synthesizing a delay as a function of radius for the arrival of a stop-function TEM-like wave
on the aperture plane. Amplitude taper as a function of radius can also be included. The procedure is illustrated

with gate and sawtooth waveforms radiated on boresight.
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1. Introduction

While an impulse-radiating antenna (IRA) is appropriate for a narrow beam (focused at infinity) [7], for
synthetic aperture radar (SAR) one may wish to have a broader beam. This allows as the antenna is moved for the
target of interest to remain in the important part of the antenna pattern for a significant angular spread to take
advantage of the SAR processing. However, for target identification purposes, one would still like to have
hyperband operation (band ratio greater than a decade) to encompass the complex natural frequencies of the target
(aspect independent) that are a fundamental part of the singularity-expansion-method (SEM) representation of the
target scattering [8]

A previous paper [4] addresses this problem by illuminating the aperture with a sphqiml TEM wave.
There it is observed that with a circular aperture centered on the direction to the observer (the z axis) and the
spherical-wave center also on this axis, the radiated field on boresight has notches in the frequency spectrum. In
terms of step-function temporal excitation this is due to a second step associated with the truncation of the aperture
at a particular radius, a. In the previous paper one method for eliminating the second step and replacing it with a
constant-times-time decay to zero was investigated. This involved a resistive sheet with a special profile (function

of radius, ¥) on the aperture.

The present paper delves further into this problem. In particular we consider altering the spherical wave
illuminating the aperture by increasing the delay near the aperture edge. As we shall see, this also can be designed

to eliminate the second step.




2. Far Fields from Spherical TEM Wave on Circular Antenna Aperture

Summarizing from.[4] let us consider a spherical TEM wave with coordinates as in Fig. 2.1 as an ideal

step-function wave of the form
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For convenience we have cylindrical (¥, ¢, z) and spherical (r, 8, ¢ ) coordinates related to Cartesian (x, y, z)

coordinates as
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The potential function o) gives a change in voltage A®Y) between appropriate conductors, but these

need not concern us here. The potential function takes the form for spherical TEM waves as
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Fig. 2.1 TEM Step-Function Wave Incident on Antenna Aperture
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On the aperture plane (z = ) this becomes
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For use on the aperture plane we have the tangential electric field via
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Further details can be found in [4]. For later use we can note that on the z axis (0 = 0) the terms for m > 1 are zero

and the above reduces to
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The far field radiated from the aperture is [1, 2]

- -> - &> 2> > > .

E ()= o le . lr]l—lzlr} 'EJ.Et Pa, 1-1r 2 Ta g
. ot c

Sa

N - - -
ra =%¥Y1y + £1; = r evaluated on aperture plane

re =17al 2.3)

¢

E; = tangential electric field on aperture plane
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Note that » = 0 is not taken on the aperture plane for convenience. However, the r 1 dependence for the far field

is still asymptotically correct.

Considering a circular aperture (unloaded) of radius a we can define

6, = arctan (%) 2.9)

For 0 <8 <@, the initial far field is exactly the same as the formula in (2.1) (by causality). Consider the first ray

- -
(straight line) from 7=0 passing through aperture, as compared to a second ray from 7 =0 tothe aperture edge
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For retarded times <1, the spherical TEM wave gives the exact far-field result. After #; the aperture integral as in

(2.7) gives a more complicated result, including portions with zero electric field. After a second retarded time given
by
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the far field is zero from (2.8) (the time derivative of a constant vector given by the integral over the entire aperture

of radius a). Between #] and ¢, the radiated waveform decays from that given by (2.1) to zero.
For the special case of =0 we have #; = 1, implying a step function giving
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As discussed in [4] this waveform has problems due to notches in the frequency spectrum corresponding to periods
which are positive integer submultiples of 2. In that case a resistively tapered aperture was considered to smooth

the decay of the waveform, eliminating the second step. Here we take a different approach to removing the spectral

notches from the boresight waveform.

Of course, the aperture need not be circular. Even with a circular aperture there may be protrusions into the
circular area by conductors such as feed arms. As discussed in [3] one can use the concept of a circular aperture

(discussed above) as a model pertaining to a smaller circular aperture, which does not have any such protrusions.




3. Rotationally Symmetric Temporal Taper of Aperture Field
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Now let the aperture field be related to a modified form of (2.1) and (2.8). Specifically, the form of E;
_)
remains the same except for the dependenceon ¢t — 1, - _r)a/c , which is changed to some other time-of-arrival

taper on the aperture. For convenience this taper will be rotationally symmetric about the z axis. Specializing to

boresight we write
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Using cylindrical (¥, ¢, £) coordinates on the aperture, we have
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where the aperture radius is limited to a. Noting that 7 is not a function of ¢ let us evaluate (from (2.1) and (2.6))
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Note that for m > 2 all the integrals are zero (orthogonality ). From {4 (Appendix B)] we have
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Taking the ideal form of the aperture field as a step function, we write
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and the radiated field takes the form (on the z axis)
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which can be readily integrated for a specified 7(&).

At this point we can note that one need not use the specific form of spherical TEM wave in (2.1). The

choice of £ is at our disposal. For £ — o this corresponds to a planar TEM wave on the aperture (with delay (taper)

given by 7(£)). In this case (3.10) becomes

2
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which has a simpler form. The factor ¢ [£2 +2§] , or some other amplitude taper can be reintroduced when

desired. In this form it is convenient to define retarded time from the aperture plane on the z axis where we take

(0) = 0.

Making a change of variable gives
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which is a closed-form expression. Again other amplitude tapers can be included. Note for the above result we

have constrained 7 to be a monotonically nondecreasing function of  (and, hence, of ¥).
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4. Spherical TEM Aperture Field

As a first choice for the aperture distribution let us choose

cr(£) = [z%wz]m - [e2+2§]1/2 *.1)

corresponding to a spherical wave arrival on the aperture plane. In this form (3.10) (spherical TEM waveform)

becomes
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Within the constraints set previouslv. we can write a general form for the axial step-response far field as
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where two amplitude taper functions have been used above in (3.11) and (4.2). Following the procedure in (4.3) this

becomes
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Note now that retarded time is defined with respect to propagation parallel to the z axis, not general 7.
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(5.2)

(5.3)




For the simple special case of g(&) =1 this gives

[> o} a2
J.U(t, Ydt, = PN (54

independent of the details of the aperture temporal taper. This is related to the aperture area as one might expect.
So, while one may have various waveforms radiated from the aperture, their complete time integrals are constrained

by the aperture size, a low-frequency limitation.

The normalized waveform function (scalar) can be defined by

W(,) = gL—)— (5.5)

01)

where U (0+) is assumed nonzero and will be taken as the waveform peak in some applications.
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6. Synthesis of Radiated Waveform on Boresight

From (5.2) we are now in a position to synthesize a waveform, i.e., let us specify W () from (5.3) and

compute

o 17025
U@y {g(g)lﬁ]

W () r=t, [u(t,) — u(t, —z'max)] 6.1)

=0,

cdr

The denominator is just a constant for normalization. This is then a differential equation to solve for 7(£), an

equation for aperture synthesis.

For the special case of g(£) = 1, corresponding to a planar TEM wave on the aperture plane (before

temporal taper) (6.1) reduces to

-1
Ut d d
W(tr) = ..ﬁ = ¢ 4¢) 6.2)
U(0,) dr 7=0, dr r=t,
This form integrates as
tr
dg '\ gy
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r dr T=0+
0
where we have taken £=0(W=0) at 7 = ¢ = 0.
6.1 Gate-Function Waveform
As a first example let (with g(£)=1)
= ()
m(t) = u(ty) - u(tr_fmax) 6.4)

Then we have
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This is a parabolic distribution of ¢ over the aperture. It is the leading term in the spherical arrival time in (4.1)

(delayed to 7(0) = 0) as
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For small a/¢ then our form in (6.4) gives the resuit for a spherical TEM wave on the aperture. Alternately one
may consider a planer TEM wave on the aperture with delay in (6.5). In any event this gives us an alternate way to

view the radiated field as in (4.5) where the far-field amplitude scales as ¢/r away from the aperture.

From (5.4) and (5.5) we have
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This gives a free parameter to choose, namely C; which scales the delay 7., at the aperture edge W =4, and in

turn specifies Cy as
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In turn we have
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Ul(tr) = U1(0+) Wl(tr)
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for the complete solution.

Note the tradeoff between peak field (proportional to r;}ax ) and pulse width (proportional to 7;p,, ). This

is also related to the beamwidth through the approximate relation (from (2.9) and (6.6))

2

2ct
CTmax = ;7 , 8, = arctan(%) = amtan( c;nax) (6.10)

6.2 Sawtooth Waveform

Let us now modify the waveform to the same one considered in [4]. In particular let us look for a

(&) which gives

Wy (t,) = [ (2) ][ () - ( - rg-gx)] (6.11)

Tmax

This has a step discontinuity at , = 0, but only a slope discontinuity at 7, = 7., . For simplicity let us refer to

this as a sawtooth waveform.
Following the previous procedure we have
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Then the solution for the boresight radiated field is
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6.3 Comparison of Solutions
If we compare the radiated field for the two waveforms, gate and sawtooth we have a tradeoff between

peak field and pulse width on boresight. Equating the two for peak far field gives

72 = 2 (6.15)

This should not be surprising This gives the same time integral (low-frequency content) to the waveforms. The fact
that the early-time peaks are the same is associated with the same curvature of the wavefront near the center of the
aperture (¥ =0). In frequency domain, the sawtooth waveform gives comparable high- and low-frequency

performance, but with the absence of the notch behavior of the gate waveform.

Looking in greater detail at 7(£) for the two waveforms we have

1/2
2 2
¥ ¥
1—{1-[—] } oo —H inax
a a

22(¢) - n(f)

Tz(f) - 1'1(5) > 0 for 0 < ES 1 (6.16)

So the difference between the two delay functions is quite small near the z axis, but increases to rgf)m for ¥=a.
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7. Concluding Remarks

Having developed an aperture-delay taper for the sawtooth waveform we can compare the present results to

those in [4] for the same waveform produced by a spherical (or parabolic) delay taper with a special resistive loading

giving the appropriate amplitude taper. For a given aperture radius, a, the present results have rggx equal to twice

the pulse width with the same peak amplitude as the resistively loaded case in [4]. Thus, the boresight response in
the present case has the same high frequencies, but twice the low frequencies, thereby giving a more efficient

design. Essentially, the resistive losses have been removed.

The present paper introduces an aperture synthesis procedure to shape pulse waveforms and their
associated frequency spectra. While the emphasis has been on the delay taper (delay in turning on the aperture field
as a function of radius), amplitude taper is also included in the general expressions. This opens the possibility of the
synthesis of various boresight waveforms. At this point let us also mention some other related considerations of

aperture distributions for puises [5, 6].

While the present paper considers the aperture field for synthesis, it is another matter to physically
construct an antenna with the desired aperture distribution. One can forsee various possible approaches to this
problem, including special lenses and special reflector shapes which modify the designs of IRAs to accommodate
the special nonimpulse waveforms. One can begin with a TEM horn and add additional delay by dielectric near the
aperture edge for an aperture limited to the region between the conical plates. Alternately one can start with a

hyperboloidal reflector designed for a given 8, and deform the hyperboloid near the reflector rim for the additional

delay to the aperture plane.
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