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ABSTRACT

This note considers the optimization of feed arm geometry of 4-arm, coplanar plate IRAs
when the angular position and extent of the arms are taken as free parameters. Previously,
optimization of this class of antenna considered only the symmetric case where the two pairs of
crossed feed arms were perpendicular to each other. Comparison is made using the prompt
aperture efficiency, and the results indicate that the efficiency of 4-arm IRAs can be increased
from ~25% for the perpendicularly crossed arms to ~35% for the optimum configuration. In
addition to the optimization, the feed impedance of coplanar feeds is presented for general values
of feed arm angle and plate width, and the optimum feed impedance is computed for each feed
arm angle. The results in this note can be used to design the optimal 4-arm IRA with an arbitrary
specified input impedance.



L Introduction

Impulse radiating antennas (IRAs) are members of a class of antennas that are designed
for the radiation of ultra-wideband (UWB) electromagnetic impulses. These antennas are
perhaps better characterized as dispersionless, high band ratio antennas, where band ratio is
defined as the ratio of the upper and lower 3dB rolloff frequencies of the radiated pulse. Current
systems can achieve band ratios approaching 100 (2 decades of bandwidth) [1]. Through a
combination of a non-dispersive transverse electromagnetic (TEM) feed structure and a focused
aperture, TRAs act like differentiators for the early-time portion of the waveform. When excited
by a fast-rising step, the radiated field closely resembles a narrow impulse. While the nature of
the focusing optic and the feed structure do affect the features of the radiated waveform before
and after the prompt impulse, the fast part of the radiated signal for a general IRA is [2,3,4]
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V(1) is the applied voltage waveform, ¥ is the peak of the applied voltage waveform, and the
surface integral is over the transverse components of the TEM mode in the aperture defined by
Sa. The radiated field can also be described in terms of the geometric impedance factor of the
TEM transmission line feed defined by '

fg = Z:’I’ne /Zmed : | (2)
and the aperture height [5]

b, =+~£’Z_ [, Bl y)avy. ©

The aperture height is a convenient parameter, because both the transmitted and received peak
waveforms can be expressed in terms of %, as [3]
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where E,,4 and E;, are the magnitudes of the principal component of the radiated or incident
field respectively.

LA. Performance Metrics
A number of metrics have been proposed to compare the performance of antennas

operating in the time domain [6,7,8]. The difficulty in comparing performance arises from the
non-unique choice of a norm for time domain comparisons. In [7] and [8], performance metrics



are defined in terms of the co-norm, or the peak radiated field. Farr and Baum define a power
normalized gain

G, = ta )

T

that is used to compare the performance of antennas under constant input power conditions, and
a voltage normalized gain

G, == 6)

that is used to compare the performance of antennas under constant input voltage conditions.
Optimization of the latter quantity typically is accomplished by allowing f; to go to zero, an
impractical scenario that requires infinite input power and results in infinite fields in the
aperture [7]. For that reason, the power normalize gain is often a better metric; however, G, as
defined in (5) has units of length, and care must be taken when applying it to an optimization
problem in order to make a fair comparison between antennas of different sizes, as G, can be
increased simply by increasing the physical size of the antenna. For example, when optimizing
the feed impedance of a lens IRA constrained to fit within a circular aperture of fixed radius, Farr
and Baum [9] used G, to conclude that low-impedance horns were undesirable. This result is
true given the imposed constraint, but the result is dominated by the fact that the area of the
aperture of low impedance horns that fit inside a circle of fixed radius goes to zero as Z — 0.

Buchenauer, et al, [8] introduced the dimensionless quantity of prompt aperture
efficiency defined as

=17, {% I jEy(x,y)dxdy} , Q

where 4 is the area of the aperture defined by S, and E, is the principle component of the electric
field in the aperture, taken without loss of generality as being parallel to the y-axis. Because of
the area normalization in (7), aperture efficiency is the preferred metric for comparing the
inherent performance of classes antennas regardless of physical size. In contrast to the result
presented in [9], it was demonstrated in [8] that low impedance horns are actually more aperture
efficient than high impedance horns, and they can be used to efficiently fill a given aperture by
arraying. Aperture efficiency and power normalized gain are related by

=G’ /4. (®)

Regardless of the metric used to compute the optimum, it is clear from (4) — (7) that the optimum
antenna for a fixed input impedance (fixed f;) is the one that maximizes the aperture height.
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Figure 1: Schematic of the arbitrary crossed coplanar feeds. The feed arms originate from the
focal point of the paraboloidal reflector, and the plane of the feed arm makes an angle ¢y with the
horizontal symmetry plane. Each pair of feeds is taken to be coplanar, and the intersection point
with the circle of symmetry (after sterographic projection) satisfies the self reciprocal condition
[1, 10]. Once the focal length £, diameter D, and ¢y are specified and the ratio b, /b, is chosen
(equivalent to specifying feed impedance), f, £, and £ can be determined using the relations in
the figure.



LB. Self Reciprocal Apertures

An important class of IRAs is the set of antennas that are fed by self-reciprocal feed
structures. Self reciprocal antennas are discussed in [10], and have feed geometrics that are

unaltered by the reciprocation operation » — a? / r, where ¥ =rcosék +rsinéy is the position
vector in the aperture plane (after stereographic projection) and a is the radius of the circle of
symmetry. The coplanar feed IRAs discussed in this paper are examples of self-reciprocal
apertures, as shown in fig. 1. Self reciprocal apertures have a number of interesting properties,
but the most important ones for this study are 1) exactly half of the power on the transmission
line propagates outside the circle of symmetry, 2) the total charge on the feed arms inside the
circle is equal to the total charge on the feed arms outside the circle of symmetry, and 3) all
contiguous points on the circle of symmetry that are not occupied by conductor lie on a single
field line.

For the important class of self reciprocal apertures, which are typically confined to
focusing the circle of symmetry, the aperture area 4 is constant for all configurations, and 7, and
Gp are equivalent metrics. Aperture efficiency will be the parameter used in this study to
optimize the feed configuration in crossed coplanar fed IRAs, primarily because of its
dimensionless property and ready interpretation [8].

LC.  Reflector IRAs with Crossed Coplanar Feeds

One of the most common types of IRAs used is the reflector IRA with two pairs of
perpendicularly crossed, coplanar feeds [1] (g, = 45° in fig. 1). Because of the symmetry of the
system, the field distribution, feed impedance, and aperture height of this type of antenna can be
calculated analytically [2]. While there is no additional complexity associated with making a
more general IRA with feed arms that are not oriented at right angles, the only analysis of
crossed coplanar fed IRAs whose arms make an arbitrary angle ¢, with respect to the ground
plane as shown in fig. 1 was performed by Baum [11] for the high-impedance limit of a wire-fed
IRA. In Section I, the TEM mode for the arbitrary coplanar structure is computed numerically
using a finite element method code. TIn Section III, the important design parameters of feed
impedance, aperture height, and aperture efficiency are calculated. Section IV contains a
discussion of the results and implications of optimizing various features of the antenna, and
Section V contains an example of how to use the results in this paper to design a specific system.
Conclusions are drawn in Section VI.



I Computation of the TEM Mode Distribution

It 15 well known that the field distribution of the TEM mode on a multi-conductor
transmission line can be computed as the gradient of a scalar potential that satisfies the Laplace
equation [12]. For many classes of feeds, the potential can be calculated using a combination of
the stereographic projection and conformal transformations [13]. However, for arbitrary
geometries, the conformal map may not exist in closed form. In this study, it is assumed that the
stereographic projection has already been carried out, and the conically symmetric feed structure
has been transformed to a longitudinally symmetric structure as discussed in [14]. The important
properties of the stereographic projection for this class of antennas are summarized in fig. 1 and
discussed in greater detail in [14].

The asymmetrically crossed coplanar feed structure depicted in fig. 1 can be described in
terms of successive conformal mappings, but the Schwartz-Christoffel transformation integrals
for the asymmetric cases {g, # 45°) have not been performed analytically. When the analytic
form of the conformal transformation is not known, a numerical approximation can be obtained
by employing a Laplace equation solver such as the method of moments or finite element
method (FEM). The properties of self-reciprocal symmetry discussed in section I B. above make
the geometry depicted in fig. 1 ideally suited to analysis by the FEM. After numerical
calculation of the fields, the integrals in (1) — (7) can be evaluated directly or by casting the
aperture integral into one of the alternate contour integral forms presented in [3].

The FEM requires a closed computational domain, so it is not always straight-forward to
calculate open-mode problems using FEM. The complex potential distribution on a TEM
transmission line is an example of an open mode problem, but the reflection symmetries at the

x=0 and y =0 planes and the reciprocation symmetry on the circle of radius & shown in fig. 1
allow the geometry to be bounded by perfectly electrically conducting (PEC) (x=0) and

perfectly magnetically conducting (PMC) (x =0r = a) surfaces. The symmetry planes also
allow the structure to be modeled by considering only one quadrant of the antenna.

The FEM was employed in this study using the Matlab (ver. 5.3) Partial Differential
Equations Toolbox (ver 1.0), which was designed to solve 2-dimensional vector and scalar
differential equations numerically. The electrode was positioned at an arbitrary position ¢y from
the x-axis and held at constant electric potential. The PDE toolbox required the electrode to have
finite thickness, and past experience has shown that then the ratio of plate thickness to the next
smallest dimension (either separation or width) was less than 1:60, the field distribution was
very close to the theoretical zero-thickness plate result [8,15]. The FEM mesh was composed of
linear, triangular elements, and was generated automatically by the PDE toolbox. After
computation of a solution to the Laplace equation, the mesh was adaptively refined by
subdividing elements where the gradient varies most rapidly in order to better approximate the
local electric field near the plate edges.



I 4. Validation of Modeling Method

When ¢, =45°, the two crossed pairs of coplanar feeds are perpendicular to each other,

and the presence of the second set of electrodes does not alter the fields that are due to the first
set alone. For a single pair of electrodes, the complex potential is given by the conformal

; )

transformation z(w) = jm v sn(w | m)
Z=x+iy;w=u-+iv

where sn(Wlm) is a Jacobian elliptic function [16] and m is the parameter of the elliptic function.
In (9), u gives the electric potential and v gives the magnetic potential (or electric field lines).
The product of the short and long radii of the electrode is fixed by the self-reciprocal symmetry

condition to be by =a?[10], and the parameter of the elliptic function is given as-

m= (bl /b> )2. The field distribution can be computed analytically by superposing the fields

given by (9) for the two sets of feed arms taken one at a time [2,3]. The feed impedance and
aperture heights of the 4-arm IRA are [7]
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This case can be used as a validation tool for the FEM modeling method. Furthermore, the
performance of the adaptive mesh refinement described above can be evaluated, and a stopping
criterion can be established for the general case where the analytic solution is not known.

The results of the numerical calculations for the case of ¢, =45°, b, /a=0.5 are shown

in figure 2. The diagnostic quantity that was used for the stopping condition in the following
sections was the geometric impedance factor f,. The error in the calculated value for £, relative

to the theoretical value of f, =0.285 as a function of iteration number is shown in panel 24,

and the number of elements as a function of iteration number is shown in panel 2B. The

fractional change in the calculated f; is shown as a function of iteration number in panel 2C. As
~ can be seen from the figure, the model can get to within ~1% of the theoretical value with a mesh
size of ~5000 elements, a number that was fairly typical for most geometries (highly singular
geometries where ¢y was close to 0° or 90° or when b, /ais close to 1 or 0 required more highly
refined meshes). Comparing the results presented in panels 2A and 2C led to the development of
the following stopping criteria for the adaptive refinements: when three successive mesh
refinements had a fractional change of less than 0.003 in the geometric impedance factor, the
algorithm terminated. If the number of elements in the mesh exceeded 7500, the adaptive
refinement was also stopped regardless of the fractional change in f,.
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Figure 2: Performance of the FEM modeling tool for the case of ¢, =45° and b,/a=0.5. The
analytic solution for this case is known and f, = 0.285. A. Absolute error in the computed value
of f; as a function of iteration number, B. Number of elements in FEM mesh. C. Relative
change in the computed value of f; as a function of iteration number. These data were used to
develop the stopping criterion discussed in the text.
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Figure 3: Comparison of numerical computation of geometric impedance factor to the theoretical
value predicted by (10). The fit is very close except for the first point (¢0 = 3°) where the error
15 2.1%. For all other points, the error is less that 0.5%.



Figure 3 presents a comparison of the computed and theoretical values of f;, for ¢, = 45°
over the range of bi/a from 0.02 to 0.97. Theoretical values were obtained using (10). The
computed values were taken from calculations employing the automatic stopping condition
described above (not from the data that went into fig. 2). Except at the lowest impedance
(5, =0.02), the error between the calculated and analytic impedance values was less than 0.5%.
At the lowest impedance, the error was 2.1%. Figure 4 presents a comparison between the
computed and analytic value for the aperture height. Analytic values were obtained using (11).
The error at the lowest impedance was 2.1%, but for all other points the error was 1.2% or less.
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Figure 4: Comparison of numerically computed values of aperture height fo the theoretical
values predicted by (11). The fit for aperture height is not as good as for the impedance,

however, the error is less that 1.5% for all points except for the first (g, = 3°).



I Calculation of Antenna Design Parameters

Using the FEM method described in the .previous section, the feed impedance, aperture
height, and aperture efficiency were calculated at values of ¢ ranging from 3° to 87° and at

values of b, /a ranging from 0.02 to 0.97.
[ITA4. Feed Impedance

Figure 5 presents a surface plot of the transmission line impedance (assuming free space,
Zye = f -1207 ) as a function of &) and ¢. Figure 6 presents curves of f, -vs- by for several
values of ¢ , and fig. 7 presents the value of b; as a function of ¢y to achieve popular values of
the feed impedance. As expected, Z,, — 0 as b — 0(limit as the spacing between the
me —>© as b fa—>1(limit as the electrodes approach
infinitesimal wires). The family of curves in fig. 6 has been fitted to the functional form

clectrodes goes to zero) and Z,

——A(%) + nfl—m)+ m
T = s agy) T CWo)mll=m)+ Dl (12)

where m is given in [7]. The values of the cocfficients 4, B, C, and D are tabulated for the values
of ¢y investigated in this study in appendix 1. The sum of (12) was obtained by analyzing the

solution for ¢, = 45°. The first term is the low-impedance limiting form, the second term is the

high impedance limit. The third term represents the error due to the addition of the two
asymptotic solutions. Because the actual form of £, is expected to be given in terms of elliptic

integrals and elliptic functions (as in (10) for the ¢, = 45° case), the coefficients in (12) do not

have a convenient representation in terms of elementary function of ¢y. The tabulated values are
included for completeness, but estimates for the appropriate value of »; for a particular ¢ can be
obtained to within 3% by interpolating between the curves presented in fig. 6.

I B. Aperture Height

Figure 8 presents a surface plot of aperture height as a function of b, and ¢. Figure 9
presents curves of A, -vs- b for several values of ¢y. Figure 10 presents the aperture height as a

function of ¢ for popular values of the feed impedance. As b, - a, h, — asing,, which is
one-half of the mean charge separation for a four-wire transmission line [5]. As b, — 0,
h, = 0. The family of curves in fig. 9 is fit by the functional form '

hy = aly Yoy + By )+ exply (g oy + 5(8y))- (13)

The tabulated values of &, f3, y, and Sare given in appendix 1. The form given in (13) is valid
only over the range 0.03 <5, /a <1, and strictly does not fit the solution as 5;—0.

10
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Figure 5: Mesh plot of the geometric impedance factor £, as a function of b; and ¢. These
values of impedance were calculated using the FEM technique described in section IL.
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Figure 6: Plots of free space line impedance (fg -12075) as a function of bi/a for a number of
values of g. For a particular valie of ¢, the impedance increases monotonically with b1/a, and
for a particular value of b,/a, the impedance increases monotonically with ¢y. '
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Figure 7: Plate widths as a function of ¢y to obtain popular values of feed impedance. To find
the corresponding angular widths for the feed arms of an IRA, use the relations in fig. 1.
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Figure 8: Mesh plot of the aperture height. As b — 0, the electrodes get closer together and

the mean charge separation goes to 0. As &, —> a, the electrodes approach thin wires, and the
mean charge separation is equal to 2asing, .
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HILC. Aperture Efficiency

Figure 11 presents a surface plot of aperture efficiency as a function of b1/a and ¢y, and
fig. 12 presents curves of 7,-vs- bi/a for several values of gp. It is clear from figs. 11 and 12 that
there is a particular pair of ¢ and bi/a that produces the maximum aperture efficiency. The
maximum value is 7, = 0.35, and it occurs at ¢, = 70°,b; /a =0.84. Figs. 11 and 12 show that

N, >0 as b > 0,b; - a as demonstrated in {8]. Fits for these curves can be obtained by
substituting (12) and (13) into (5) and (8).

13
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Figure 11: Mesh plot of aperture efficiency as a function of 51/a and ¢. There is a clear
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1v. Discussion

The data presented in figs. 5 - 12 provide all of the information needed to design an
antenna wth a particular aperture efficiency, feed impedance, or feed arm angle ¢p. However, if
the information contained in figs. 6 and 12 is combined, curves of 7, -vs- f; can be plotted for
distinct values of ¢ as is done in fig. 13.

Analysis of fig. 13 provides two interesting results. First, for any particular value of feed
impedance, there is a unique geometry that provides the optimum aperture efficiency. The
curves in fig. 13 can be used as a design tool to select a particular feed geometry to match the
impedance of an individual source. Second, it is clear from the figure that as ¢ increases, the
optimum aperture efficiency occurs at higher and higher impedances. The peak value of the
aperture efficiency for each gy is plotted in fig. 14, and the feed impedance corresponding to this
peak is plotted as a function of ¢y in fig. 15. The relationship between optimum feed impedance
and ¢y appears to be lincar so the data points were fit using a constrained least squares linear
regression (setting the intercept to 0). The equation for the line in fig. 15 is

Do opr =1.9234 12’8’; (14)

assuming that the medium is free space. This lincar relationship between optimum feed
impedance and ¢ was unexpected, and if closed form expressions for the conformal mapping
can be obtained, they might provide some physical understanding of the interaction between feed
arm angle, extent of the electrodes, and aperture efficiency. It is worth noting that (14) predicts
an optimum impedance of 307 Q for the case of @, = 90° when the two pairs of crossed coplanar
feeds are at the same location, corresponding to the case of a single pair of coplanar feeds. This
geometry was optimized by Farr and Baum in [7], and the optlmum impedance was found
analytically to be 302 Q, a difference of less than 2%.

In this paper, the optimization was considered for the aperture efficiency (or equivalently,
the power normalized gain of [7]). However, for many UWB systems, the quantity that should

be maximized is the prompt radiated field, which scales like 4,/ f, , or the voltage normalized
gain (G,) of [7]. As mentioned in the introduction and found in [7], the voltage normalized gain
is optimized by allowing f,—0. Not only is this impractical for current-flow reasons (since
current on the antenna goes like fg"_l), but the wide feed arms needed to obtain low impedances

may be expected to significantly enhance feed blockage [17]. However, the importance of G, for
maximizing the radiated field should not be overlooked in designing a system, and hence the
value of G, (normalized to the aperture radius a) is plotted as a function of ¢ in fig. 16 for
several important values of the feed impedance. .

16
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Figure 13: Plots of aperture efficiency as a function of feed impedance (in free space). As ¢y

increases, the curves shift to the right.
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Figure 14: Optimum aperture efficiency as a function of feed impedance. - The peak aperture
- efficiency is 35% at Z,,,, =247€Q). The optimum angle ¢y for each value of Zj,, can be obtained

from fig. 15 or Eq. 14.
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The optimization reported here was for the 4-arm IRA, but there is nothing preventing a
similar analysis of N-arm IRAs. The optimum aperture efficiency for the 2-arm IRA can be
computed using the results from {7] and is 27%. The optimum aperture cfficiency for the 4-arm
case considered here is 35%. Intuitively, the addition of ron-blocking feed arms will continue to
optimize the aperture efficiency. This is true because additional feeds cause the field distribution
in the aperture to be more uniform, hence increasing aperture efficiency. It was shown in [8] that

4p <350% for all self-reciprocal antennas that focus the circle of symmetry, and it was

demonstrated in [18] that the circular conical feed structure depicted in fig. 17 with ¢ = 45° has
the most uniform field distribution in the aperture. It can therefore be concluded that the

optimum 4-arm IRA with ¢, =70°, b,/a=0.84, and J, =0.65 is the one that most closely

approximates the geometry depicted in fig. 17. Furthermore, if only the prompt signal is

considered, the addition of more non-blocking feed arms will make a better approximation to the

geometry in fig. 17, further improving the aperture efficiency. However, the late-time field will

be pulled down more rapidly as more feed arms are added, affecting the nature of the radiated
_pulse, even in the absence of feed blockage. '

The analysis presented in this study assumed no feed blockage by the coplanar feed lines.
This assumption corresponds to the geometric optics analysis that is typically used for IRAs.
The presence of large metallic plates in the aperture might be expected to perturb the aperture
distribution, thereby reducing the aperture efficiency below that which is predicted by the
geometric optics analysis. Quantification of the effect of aperture blockage in coplanar-plate fed
IRAs is an issue that merits further investigation.
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Figure 15: Optimum feed impedance as a function of ¢. The staircased nature of the data is due
to similarities in the progression of the adaptive refinement method and stopping strategies
between similar geometries. The linear regression was a slope fit only, as the line was
constrained to pass thought the origin. Note that the optimum angle for impedances of 100€,
150€2, 2000, and 250Q2 are approximately 30°, 45°, 60°, and 75°, respectively.
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Figure 16: Voltage normalized gain as a function of feed arm angle for popular values of feed
impedance, assuming the feed line is in free space. The lower the feed impedance, the higher G,,
but this enhancement may be offset by increased feed blockage at lower impedances.

Figure 17: Circular-Conical TEM horn-fed lens IRA. The antenna depicted above is configured
with a stripline extension to enhance the late-time response. The 90° section (¢ = 45°) has been -
shown by Liu [18] to be the optimum geometry for self-reciprocal feed structures. The optimum
configuration for the 4-arm IRA is that which most closely approximates the
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V. Example Antenna Design Calculation

In this section, a brief example antenna design is performed which will illustrate how to
use the data presented in this report. It is assumed that an antenna input impedance of 2000

( JSe = 0.5305)has been specified due to other considerations in the system. Furthermore, the
f/D ratio of the dish has been specified as 0.35.

A. Identify the angle ¢y corresponding to the optimum configuration for that impedance
Using either (14) or fig. 15, the optimum feed arm angle is approximately 60° (58.4°).

B. For the angle ¢, = 58.4°, estimate the value of by/a that gives 20042

Using fig. 6, b, /a ~ 0.78. Equivalently, the curve-fit values in Appendix 1 could be used
to plot f; as a function of 4, for the appropriate value of .

C Estimate the aperture height and aperture efficiency of the antenna
Using fig. 14, the optimum aperture efficiency for a 2002 feed is ~33%. The aperture
height (normalized to the radius) can be determined using fig. 9 and is ~0.75

D.  Determine the angular extent of the feed plates
Using the relations in fig. 1 [14],

=71°
f/D)—%%;]

By = 2arctan[—b'— tan(ﬂo /2)} = 58°
a

Bo = arctan[ 5 ( !

by

By = MCtanl[iT tan(, /2)] = 85°
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V1. Conclusions

The study described in this paper has provided three principle results. First, the entire
design space for reflector IRAs fed by crossed coplanar feeds with reflection symmetry has been
sampled. Curves are presented in figs. 6, 9, and 12, with corresponding empirical fits in (12) and
(13), that allow ready prediction of feed impedance, aperture height, and aperture efficiency as a
function of the geometric parameters of the antenna. These relationships provide more flexibility
in IRA design beyond what was possible using configurations with known analytic solutions [7].
Second, the data presented in this paper allows the optimization of the aperture efficiency for any
value of the geomterical properties. It has been shown that a distinct optimum exists for any feed
arm angle ¢y and that an absolute optimum configuration exists at ¢, = 70°, b,/a =0.84, and

f, =0.65 (247 Q in free space). Finally, the results presented in figs. 13 and 15 show that for

any specific value of feed impedance, there is a unique optimum configuration that will
maximize aperture efficiency. The feed arm angle is linearly related to the desired impedance by
(14). This is important in that once the input impedance of the antenna is specified, the antenna
can be optimized without impacting upstream components of the system by selecting the
appropriate values of ¢y and b,/a presented in this paper.

The method used in this report are general in that they can be applied to any focused
aperture system to calculate feed impedance and aperture height (and hence any of the
performance metrics described above). While best suited to the analysis of self reciprocal
apertures, iterative boundary condition methods have been developed that allow computation of
open TEM modes [15, 8]. The method can.be easily modified to include the effects of aperture
blockage in the evaluation of (3), allowing analysis of geometries for the feed arms that are not
coplanar plates, including circular-cross-sectioned feed arms, curved plates, or other arbitrary
configurations.
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Appendix 1 - Tabulation of Curve Fit Parameters

Table A1 contains the fitted values of the parameters in (12) and (13). The fitting was
performed using a nonlinear-least-squares curve fitting algorithm employing the conjugate
gradient search strategy. No global optimization was performed, and other functional forms may
fit the data better (as should be expected because the functional forms in (12) and (13) are not
correct for the gy = 45° case). To aid in convergence, the parameters for a neighboring value of
@ were used as the starting point for the fitting for each ¢y. The fitting process was initialized by
considering the low- and high-impedance limit for the ¢ = 45° case. The fitted functions can be
used to estimate the aperture efficiency to within 1% of absolute efficiency (typically <5%
relative).

% ) a B Y 8 A B C D
3.00 | 0.0316 | 0.0205 | -10.3587 | -4.0954 |{| -0.1570 | -3.0223 | -0.1545 | -0.0884

5.90 0.0651 0.0383 | -10.2862 | -3.8281 -0.2820 | -2.8715 | -0.1600 | -0.0354

8.79 0.0986 | 0.0557 | -10.2364 | -3.5305 -0.3917 | -2.6058 | -0.1593 | -0.0145
1169 | 0.1316 | 0.0727 | -10.1859 | -3.3048 -0.4979 | -2.5357 | -0.1550 | -0.0014
1459 | 0.1652 | 0.0890 | -10.1449 | -3.1274 -0.5622 | -2.0432 | -0.1551 | -0.0395

1748 | 0.1993 0.1042 | -10.1147 | -3.0004 -0.6512 | -2.0004 | -0.1506 | -0.0483

20.38 | 0.2340 | 0.1184 | -10.0868 | -2.9018 -0.7378 | -1.9651 | -0.1524 | -0.0734

23.28 | 0.2667 0.1332 | -10.0616 | -2.7897 -0.8173 | -1.9389 | -0.1458 | -0.0840

26.17 | 0.3014 0.1458 | -10.0247 | -2.7246 || -0.8974 | -1.9260 | -0.1494 | -0.1124
29.07 | 0.3326 | 0.1595 | -9.9906 | -2.6339 -0.9779 | -1.9213 | -0.1532 | -0.1447

31.97 | 0.3653 0.1713 | -9.9539 |. -2.5746 -1.0571 | -1.9276 | -0.1599 | -0.1782
3486 | 0.3965 | 0.1830 | -9.9202 -2.5201 -1.1280 | -1.9170 | -0.1532 | -0.1900

37.76 | 0.4288 | 0.1934 | -9.8826 | -2.4742 -1.2128 | -1.9472 | -0.1699 | -0.2369
40.66 | 0.4580 0.2043 -9.8379 | -2.4265 -1.2013 | -1.9817 | -0.1641 | -0.2415

4355 | 0.4875 | 0.2129 | -9.7751 -2.4090 -1.4053 | -2.1955 | -0.1669 | -0.2208

4500 | 0.5019 | 0.2175 | -9.7341 -2.3952 -1.4494 | -2.2173 | -0.1636 | -0.2219
4645 | 05133 | 0.2228 | -9.6684 | -2.3616 -1.5033 | -2.2997 | -0.1669 | -0.2215

49.34 | 0.5407 | 0.2308 | -9.5886 | -2.3413 -1.6441 | -2.5710 | -0.1684 | -0.1935

5224 | 05689 | 0.2363 | -9.5198 -2.3575 -1.7476 | -2.6735 | -0.1659 | -0.1864
55.14 | 0.5925 | 0.2445 | -9.3905 | -2.3243 -1.8475 | -2.7230 | -0.1712 | -0.2038

58.03 | 0.6146 | 0.2499 | -9.3366 | -2.3315 -1.9553 | -2.8292 | -0.1728 | -0.2017
60.93 | 0.6318 | 0.2577 | -9.2838 | -2.2913 -2.0831 | -2.9717 | -0.1676 | -0.1844

63.83 | 06529 | 0.2618 | -9.2085 | -2.3026 -2.1778 | -2.9904 | -0.1587 | -0.1756
66.72 | 0.6717 0.2641 -9.1689 | -2.3354 -2.2700 | -2.9855 | -0.1701 | -0.2067
69.62 | 0.6878 0.2675 | -9.1434 | -2.3349 -2.3482 | -2.9469 | -0.1600 | -0.1997
72.52 § 0.7007 0.2704 | -9.1396 -2.3498 -2.4475 | -2.9515 | -0.1639 | -0.2112

75.41 0.7179 | 02702 | -9.2836 | -2.4160 -2.5470 | -2.9435 | -0.1657 | -0.2119
78.31 0.7172 02770 | -9.3742 | -2.3382 -2.6401 | -2.9020 | -0.1573 | -0.2081

81.21 0.7212 | 0.2806 | --9.9232 | -2.3147 -2.7333 | -2.8553 | -0.1507 | -0.1927
84.10 | 0.7350 | 0.2772 | -12.4472 | -2.2886 -2.8639 | -2.8983 | -0.1517 | -0.1472
87.00 | 0.7247 | 0.2872 | -12.3703 | -2.1695 -3.0014 | -2.9122 | -0.1669 | -0.1140

Table A1l
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