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Abstract

Symmetry considerations have led to feed-arm structures for an impulse-radiating antenna lying on
perpendicular planes (also perpendicular to the aperture plane). This paper extends these considerations to other

constant-¢ planes for the feed arms. Based on an approximation of this conductors of circular cross section, analytic
formulae are obtained. Retaining horizontal and vertical symmetry planes, the position of the first feed-arm plane
can be increased from a ¢g of 45° (previous, noninteracting case) to somewhat larger values with some potential
improvement in performance, depending on various factors. An interesting case has a ¢g of 60° leading to a

symmetrical 6-arm case with appropriate combinations of four arms giving various polarizations.



1. Introduction

In [2] various choices of feed-arm configurations for an impulse-radiating antenna (IRA) were discussed.
Among these was a set of two arms of nominally 400Q. There was also a set of four arms with one pair rotated by
90° with respect to the other so as not to interact significatnly with the other pair (by symmetry) giving a 200 Q feed
when appropriate arms are connected together. The arms can be circular cones or flat-plate cones, although the
latter have the advantage that they can be oriented to minimize the aperture blockage in the case of a reflector IRA.
Such feed structures have accurately calculable characteristic impedances, accomplished by a combination of
stereographic and conformal transformations [4]. There it is also shown that, when appropriately used with a
paraboloidal reflector, the spherical TEM wave on the feed exactly transforms to a planar TEM wave (before other
scattering can reach the observer) according to the above stereographic transformation. This allows us to consider

the two-dimensional form of the transmission-line feed in the calculations.

Summarizing from [3] we have the impulsive part of the far field on boresight as
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0, = approximate delta function — delta function as r — oo

r= distance from aperture plane to observer

t =0 = time step-function field arrives on antenna aperture d,

fg= Ze = ;ﬁ = geometrical impedance factor
d \%

Z
c = speed of light = 2.997925 x 108 m/s

Ho =47x10" H/m (1.1
ZO =HgC = 376.73 Q
= wave impedance of free space

Vo u(t) = voltage on transmission-line at aperture plane

This leaves the equivalent height of the aperture
- - -
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which can be expressed in complex form as
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where

w({)=u({)+ jv({)= complex potential function
{=x+ jy= complex coordinate on aperture plane
Au = change in the electric potential 4 between conductors (1.4)
Av = change in the magnetic potnetial in going around conductors (say all the positive ones)

C, = aperture contour (boundary) with integral taken in positive direction (counter clockwise)

The form taken by the potential depends on the specific boundary value problem at hand. For present

purposes, let us use a simple potential consisting of a linear combination of functions of the form
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location of equivalent line charge (15

Here a minus sign corresponds to a positively charged wire; this reverses for a negatively charged wire. We

constrain the sum of the wire charges to be zero to give a finite energy per unit length for differential TEM modes.

Figure 1.1 shows the general configuration of the aperture and feed. For convenience web define a

parameter

£= n _ _ wire radxu§ (1.6)
a aperture radius

which we approximate as being small. The wire center is at a distance a’>a from the origin which is clarified in

the next section. In the cylindrial (¥, ¢ ) coordinates given by
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the wires (circular cylinders) have centers on values of ¢ given by ¢y and 7w —¢@g] with upper wires positive

(1.7)

and lower wires negative.



Sa
antenna
aperture

e
\
/ \
/ \
/
Fig. 1.1. Four-Wire TEM Transmission-Line Feed for Circular Aperture.
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2. Two-Wire Feed .

N
First we consider the case of a single two-wire feed (superscript 1) located at 90 =%m/2(90°).
Summarizing from [3] we have
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The two-wire case has an exact potential function as given above. Contours of constant u being circles, one
of these is taken to define each wire. This in turn relates a’ to a.
\g_,."



3. Four-Wire Feed

~
Now consider the case of a four-wire feed (superscript 2) with ¢ general as in fig. 1.1. For evaluating
-
ha we can use symmetry. Define wire-pair 1 as wires 1 and 3. Consider this as a two-wire case as in Section 2,
except that it is rotated by ~[7/2 -¢g]. Similarly define wire-pair 2 as wires 2 and 4. This is also like that in
Section 2, except that it is rotated by 7/2 — gy .
Write the equivalent height of the aperture in complex form as
(2) 1 . . *
hg " = >’ {) w($)ds" +j @ uz($)d¢ (3.1)
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where the electric potential has been written as the sum of two terms, one associated with each of the wire pairs
defined above (and identified by subscript). Now relate these electric potentials to the case in Section 2 via rotations
as
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Here we have assumed that the presence of wire-pair 2 does not significatnly distort u1() except in the vicinity of
the (thin) wires (and conversely). Combining these gives
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In vector form this is
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which is a rather simple result, valid for small £,

For the geometrical impedance factor we need to evaluate Au'® | For this purpose, let us evaluate 4, on

wire 1. From the complex potential in (1.5) we have
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Evaluating this on wire 1 let us take  as €70 since the associated electric field incident on wire 1 is approximately

uniform there. By symmetry the associated part of Au(z) is twice this value (counting contribution at wire 3).

Adding the coﬂuibution from u;({) (wires 1 and 3 on themselves) as in (2.1) we have
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Now approximating a’ as nearly a form small £ we have
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From (1.1) we have that the far field is proportional to
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This shows the influence of ¢ and £ together so that tradeoffs can be made. Also note that a realistic source does

not rise in zero time, and the maximum rate of rise is a function of Z,, and hence f 2"

A convenient value of Z_. is 200 Q, being exacily four times 50Q [2]. For the case of ¢o =n/4 (45°) this
corresponds to 40052 for a single pair of feed arms as in Section 2. For the four-wire feed we have

1% =—ZZ-;-= 053088
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If we keep fg(z) fixed as we vary @, then & will also vary. Consider then a few values of @0 in the following

table.
Table 3.1. Parameters for 200 W Four-Wire Feed
in 3
o sin(¢o) tan(go) tn(tan(gy)) 3 s cos(¢o)

2 @4s5° L _0.707 1 o707
2@ F=0 1 0 3.3356 0.07118 ke

3 - =0.866 B =132 0.5493 2.7663 0.12329 0.5

% (750 |
7 ) 0.9659 24323732 1317 2.0187 0.26566 0.2586




Here we see § significantly increase as ¢ is increased from 45° (no interaction between arm pairs).
Noting the approximation of small § the formula is not valid as ¢ — 7/2 (or 90°) In particular we need to require

that

= LE_ << cos{ b0) = half spacing bet\;veen wire centers (3.10)

The last column in the table indicates that 60° may be appropriate, but that 75° is too large, at least for the assumed

20012 feed impedance.

Noting that a conducting circular cylinder of radius ry is approximately equivalent to a conducting strip of
width 4ny [4], these results can also be applied to flat-plate feed structures. With the plates lying on planes of
constant ¢, the high-frequency (optical) blockage of the wave coming from a paraboloidal reflector (reflector IRA)
is negligible [2]. This high-frequency lack of blockage carries over from the case of @0 =7x/4 (or 45°) to larger
values of ¢g. However, for lower frequencies the blockage is greater due to the wider plates [5], as well as due to

orientation of the second feed pair (2 and 4) such that the conductors are not completely perpendicular to the electric
field from the first feed pair (1 and 3) and conversely.




4. Six-Plate Feed

One application of the previous results is to a six-plate feed as in fig. 4.1. Utilizing the symmetry of the

configuration in fig. 1.1, in which the electric field is perpendicular to the y =0 plane, we can place another pair of
feed arms (flat plates) on this plane with zero electric potential. For this configuration the case of ¢o=x/3 (or
60°) is particularly interesting due to the symmetry. This gives a 6-fold rotation axis with axial symmetry planes or
Céq symmetry [7]. In fig. 4.1, the polarization is vertical. However, by rotating the +, —, and 0 electric-potential

labels in increments of 60° the polarization is similarly rotated with precisely the same antenna performance.

It is interesting to note that this special ¢ of 60° (leading to the symmetrical 6-arm configuration) is also

the special case for a 4-wire transmission line producing a uniform field (first three derivatives zero) at the center
(e, (x, y)=(0,0) [1, 6).
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A. Aperture configuration

B. Reflector-IRA configuration

Fig. 4.1. Six-Plate Feed for an IRA; ¢g =7/3.

11




5. Concluding Remarks

This paper has begun some calculations for IRA feed plates on nonorthogonal planes. Since these are
based on conductors of small circular cross section they can only be applied in an approximate way to more realistic
configurations involving flat-plate feeds. Since there may be some benefits to choosing a more optimal angle

between the constant-¢ planes defining feed-conductor locations, more detailed calculations and canonical

experiments may be in order.

12

~

~—



References

1. C. E. Baum, Impedances and Field Distributions for Symmetrical Two Wire and Four Wire Transmission Line
Simulators, Sensor and Simulation Note 27, October 1966.

2. C.E. Baum, Configurations of TEM Feed for an IRA, Sensor and Simulation Note 327, April 1991,
3. C.E. Baum, Aperture Efficiencies for IRAs, Sensor and Simulation Note 328, June 1991.

4. E. G. Farr and C. E. Baum, Prepulse Associated with the TEM Feed of an Impulse Radiating Antenna, Sensor
and Simulation Note 337, March 1992.

5. D. V. Giri and C. E. Baum, Reflector IRA Design and Boresight Temporal Waveforms, Sensor and Simulation
Note 365, February 1994.

6. C. E. Baum, Two-Dimensional Coils for Low-Frequency Magnetic Illumination and Detection, Sensor and
Simulation Note 406, November 1996.

7. C. E. Baum and H. N. Kritikos, Symmetry in Electromagnetics, ch. 1, pp. 1-90, in C. E. Baum and N. H.
Kritikos (eds.), Electromagnetic Symmetry, Taylor & Francis, 1995.

13







