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ABSTRACT

An efficient algorithm for the analysis of unreliable networks is
presented. The efficiency of the algorithm is estimated to be four to
eleven times as great as that of the most efficient algorithm previously
reported. The algorithm herein simultaneously solves for the symbolic
expression of both terminal reliability and unreliability. These expressions

“may subsequently be numerically evaluated for any desired set of node proba-

bilities. ,

The dual to the algorithm is proposed as a means for achieving tighter
upper bounds on the solutions for networks in which it is not practical to
run the algorithm to termination.

Network reliability algorithms have wide applications in many areas.
The most pertinent are situations in which reliability data on total net-
works (systems) is not directly available; but reliability data on the nodes
(subsystems) is available.
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AN EFFICIENT ALGORITHM FOR THE

SYMBOLIC SOLUTION OF NETWORK RELIABILITY

I. INTRODUCTION

We will répresent a network by an oriented graph with weighted nodes
and unweighted arcs. The arcs represent such things as a pair'of wires or a
line of sight radio transmission path assumed to be completely reliable. The
weighted nodes represent such things as an electrical system with some associ-
ated failure rate, a disturbance on a transmission path or a trénsient.upset
in a piece of equipment with some associated rate of occurrence. The weight
assigned to each node is ité probability‘of existence and is subscripted with
the node label. We make the usuai assumption that‘node failures are uncorrélated.
This kind of probabilistic graph can be made quite general by use of the symbols
shown in Table I. ‘ | ‘ ‘

The potential applications for algorithms which analyze the reliability
of networks are manifold both for commercial and military systems. Consider
for example thé analysis of a long-distance HF radio network in which iono-
spheric disturbances are possible; or the radio‘stationé themselves are subject
to failure. Or consider a microwave link neﬁwork in whiéh the propagation loss
on some paths is unacceptably high due to a storm or a temperature inversion.
Still another example would be a switched network in which the switches are
subject to failure. One final example would be the use of such'algorithms to
determine the existence probability of a node by representing the internal
subsystems of that node as a probabilistic graph; i.g., the subsystems’of

of-a missile, an aircraft, or a microwave communications facility.




I1. APPROACH

The approach used in the proposed algorithm is best illuminated
by means of an exampie. We shall use the example shown in’Figure 1 which
is similar to the illustrative example of refereﬁce [1] by‘the,symbol con-
ventions of our Table I, Th; objective now is to find the symbolic expression
for the terminal reliability, i.e., the probability‘that connectivity exists
from Node 1 to Node 7. o |

We use a sﬁecial form of‘a Veitch diagram [2] to find the required
reliability expression. Veitch diégrams’permit a 1abelling of every elemenfary
event pertaining to the network. Now if we define

K : Number of weiéhted nodes in the network - (1)
then the number of elementary events in the Veitch diagraﬁ is:
E = 2K R _ - : 3 (2)

The special form of the Veitch diagram used here is simply a row Qectdr with
E elements. The diagram for the example of Figure 1 is shown in Figure 2,
The labelling of the diagram is accomplished in tefms 6f the subscripts of each
weighted node in the network. The labelling procedure can be accomplished
correctly in many ways, however, there is one procedure which is particularly
convenient and Vhich forms the basis for the proposed algorithm. We shall
return to this poiht after completing the example in a more traditional manner.

Io perform the labelling correctly, it is only required that each node
subscribt cover exactly E/2 elements in the diagram énd that no two subscripts
cover the same space. The probability of occurrence of any elementary event

in the diagram can now be formed by proper interpretation of the labels covering

‘that element. For example, the left most element inkFigure 2 implies that the

probability of occurrence of the event (Nodes 2, 3, 4, 5, and 6 exist) is:
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Fig. 2. Veitchpiagram for the Network of Fig. 1.




Table I, Symbois

———— . UNWEIGHTED ARC
0O . UNWEIGHTED NODE
O . WEIGHTED UNDIRECTED NODE
D WEIGHTED DIRECTED NODE
] : SOURCE OR TERMINAL NODE,
" UNWEIGHTED
NOTE. A WEIGHTED ARC CAN BE DRAWN AS:
—O— . UNDIRECTED
—— . DIRECTED




{23456} => PyP3P,PsPy
Similarly, the right most element in Figure 2 implies that the probability of
occurrence of the event (Nodes 2, 3, 4, 5, and 6 do not exist) is:

{23%5%} => qzq'3q4q5q6

The probability of non—elementary’events in the diagram can likewise be found
from the labelling. For example, the probability of ﬁhe event (Node 2 exists,
corresponding to the first 16 elementary events) is simply:

{2} = P,
Similarly, the probability of the event (Nodes 2 and 3 exist, corresponding to
the first 8 elementary events) is juét: |

231 = pp, |
It remains to find the terminal reliability of the network from Node 1 to die 7.
This is accomplished by summing the probabilities‘of all events in the Veitch
diagram which are favorable to connectivity. The favorable events are denoted
by placing a "1" in the appropriate elementary event location of the Veitch
diagram.

We now return to the comment made earlier concerning our particular labelling
procedure. SinCe how one begins labelling the Veitch diagram is arbitrary as long
as the rules for correct labelling are observed, we postulate the existence of an
algorithm which will:

a) discover the label for a single favorable event (hopefully
non-elementary) on the Veitch diagram.
b) saig label will cover the largest possible number of
elementary events.
Such an algorithm is nothing more thaﬁ one which discovers the shortest path

through a network. For the purpose of future reference, we shall call this

algorithm PATH.

O




Applying PATH to the example of Figure 1, the non-elementary event
{2 3}is found to be a short path and, therefbre, favorable to connectivity.,
Hence the probability of connectivity from Node 1 to Node 7 is:
P); 2 PP (3)
'Now we imagine the construction of a Veitch diagram, with E elementary events,
wherein tﬁe 1ébelliﬁg is begun with the event discovered by PATH, namely {2 3}.
The construétion\is shown in Figure 3.
We now obsérve that the remainder of the Veitch diagram is described
by the events: _
(71,027}
Now if we apply PATH to the network of Figure 1 subject to the event { 2 }
the event { 5 6 } is discovered to be favorable to connectivity. Hence,
equation 3 becomes:
P17 2 PaP3 + 4yp5pg | | (4)
The event { 5 6 } discovered in the network of Figure 1 subject to the event
{2 } implieé»a second intermediate Veitch diagram as shown in Figure 4. The

remainder of this diagram is described by the events:
{25} ,{25%}
Repeatiﬁg the process for the network of Figure 1 subject to the event { 2 3 }
we find tﬁe favorable event { 5 6 }. As before this implies that equation 4
- becomes:
P17 2 pypy + q,Pepc + Pya4p.0, (5)
The remainder cof this third intermediate Veitch diagram is described by the

events:

'{2'3"57},'{235'6‘}
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for the Network of Fig. 1.
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At this point we have (equafion 5) a iower bound for P, ; as well as fouf
"areas" of the complete Veitch diagram yet to be explofed. ’These "areas" aré:

{25} ,{256},{2335},{235%}

Continuing as before} the first of these, { 2 5 }, when explored by PATH
results in the discovery thét no path exists, hence, we have :

U-7 299 | | e ()
The second '"area', { 256}, rééults in the eventv{ 324‘5 }. Heﬁce,

P1-7 2 PyPy + qypP5Pe * p2“3"5?6 *4P3ppsly (7
and the still remaining "areas" to be explored in this intermediate Veitch
diagram are: | ‘

{235%6},{23%5%}

Exploring { 2 §'§f} resﬁlts in the event { 2 4 6 }.
Hence:

P _> +qpp + + 4.pup. DD,
P17 Z Pypy+ AP P+ PaP P+ dyPaP, PSRy

T Pp43P495P6 _ ' (8)
and the remaining "areas" to be éxplore& in this intermediate Véitch diagram are:
(2375} ,(2345%)
Exploring the aréav{’2 3 56 } results in the discovery that no path exists.
Therefore, |
Qq_; 2 dyd5 + PydgPsdy (9)

Summarizing the remaining areas to be explored, they are:

{2356} ,{23%45%}), {23345} ,{2345%}
Exploring each of the abqve.ateas results in the discbvery’that no path exists
in each of them.
Therefore:
Q_72 dy4g +’p2q3p5p6 + 4,3,P59, + 4,P49, P,
-+ Py439495 + Pya3P, 959 ‘ (10)

11
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Since all labels have been explored without generating any new labels, it

follows that the entire Veitch diagram has been completely expléred. Therefore,

equations 8 énd 10 are both exact equalities.

Two observations must be made:

a) Once a favorable event was found in a network (or sub-network) the

remaining "areas" on the intermediate Veitch diagram for that
network (or sub-network) was described in such a manner as to
guarantee disjointness from the favorable event and from each
other. It follows that any subsequently discovered favorable

event in a remaining area is necessarily disjoint from any prior

favorable event since the area in which it was found is caused

to be a part of the event description.

b) The algorithm may be terminated at any point in its operation and
still yield realistic upper and lower bounds for the terminal
reliability since both P and Q are found,siﬁultaneOusly.

What remains is to formalize the procedure éxposed in thekpreceding

example in terms of a workable algorithm. In so doing we note that the PATH .

algorithm was applied to many '"sub-networks" in an attempt to find a favorable

event in each.

event which occurred in a sub-network disjoint from all other sub-networks.

Each sub-network was generated from a preceding favorable

At this point we need to introduce some notational devices.

Let:

ith disjoint sub-network;

an N vectbr,containing a description of the state

of each interesting node (weighted nodes, as well

as source and terminal nodes) in the network. The

description of each node will be coded as follows:

12
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O_ : The state of the nth node is irrelevant v (12)

+ln ¢ The nth node exists (13)

fln : The nth node does not exist (14)

For example, the first disjoint sub-network is Di» and N vector described

by:
D = {0, 0, 05 + -+ 0} | (15)
Now let:
L : The short path description (if one exists) in 21. (16)
This will be an N vector containing a description
of the state of each interesting node in the network
in order for a path to exist. The description of
each node is coded as follows:
On : The state of the nth node is irrelevant ' (17)
1, : The nth node exists (18)
M ¢ The N Qector describing the nodes appearing in'E with a (19)
"1" specification and 1in D, with a "o" specificafion.
'The node description is coded as: |
1, : nth node satisfies (19) ' ~ (20)
0, : n™ node does not satisfy (19) B (21)
Now suppose that no path exists in Ei'
Then let:
C = 21 Tﬁe description of a disjoint sub-network in which (22)

no path exists. An N vector containing a description
of each interesting node in the network coded as in

(12), (13), and (14).

13
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. Furthermore, we

On the other hand, suppose that a path does exist in‘gi

have M.
Let:
th
mn be the n element of M

then let:

N v ,
s= ] m | (23)
n=1 ~
Now, if:
S = 0, then let:
F = Ei ¢ the description of a disjoint sub-network which (24)
explicitly contains a‘path. An N vecfor containing
a description of each interesting node in the
network coded.as in (12), (13), and (14).
Or if:

S > 0, then let:
F=D +M . ~ (25)
The + symbol when used with an equality means the following:

Let Z represent an ordered set of elements, zj, then if:

Z=X+Y , , h (26)
define:

z, = x, + ; (27)

h| J % :

It would be well to observe at this point that Eﬁand F correspond
to labelsb(unfavorable event and favorable event, respectively) on the
complete Veitch diagram. Now in the case of (25), we observe that the
label E'does not cover the entire intermediate Veitch diagram, i.e., the
Veitch diagram cf the network given the occurrence of Qi' We further

observe that M always specifies nodes as in (19) and (20). Hence that

14
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region of the intermediate Veitch diagram (given L&) not covered by the

label M is covered by the label:

4

For example,

If we write the N vector M in terms of only those nodes which have

a "1" code in

==

In general, 1

Using the pre

SR tRytt R

suppose that the N vector M is:

=00 0 13 0 15 14
=> Bi + R, + Ry ”wﬁere'

=0, 0, -3 0, 05 O
=0, 0, 14 94 “1s O
=0, 0, 1, o 15 -l

07], then

their location as an event, for our previous example:

= {356}, and

=> {3} +{35}+{35%6}

fg={12~34m},§=>{'1'}+{1§}

+{123}+{123%}+ "

ceding then, that region of the intermediate Veitch diagram

not covered by the 1abe1 § is covered by:

Ik+l = Ei ~L

T2 T2 R

=D +R

Ek+S ~i ~§

where k is the number of previously found I vectors in the same

major cycle of the algorithm to be presented.

15
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ITI. THE ALGORITHM

The notation presented in Section II now allows a compact presentation
of the algorithm shown in Figure 5. One new sub-routine appears in the figure.
NETMAT is an algorithm which operates on the original conneétivity matrix of
the graph, according to Ef to generate a connectivity matrix in which the
row(s) and colqmn(s), corresponding to nodes in‘E which have a -1 code, are

zeroed out. This is equivalent to removing those nodes from the graph. The

resulting degraded connectivity matrix is passed to PATH to determine the shortest'

path through the resulting graph if one exists.

The algorithm, as presented in the Figure 5, will terminate only when
the terminal reliability (and unreliability) expression is complete. There
are several options for terminating the algorithm with an approximate solution.
One such.option is to add a set of instructions such that termination occurs after
a certain number of F vectors have been accumulated. Another option would be
to terminate after a certain number of C vectors have been accumulated. Spill
another option is to skip to the B loop, in Figufe 3, fromvthe'a loop if a
specified upper bound on the number of I'Qectors is about to be exceeded. Of
course, any combination of the options can be exercised quite easily.

In any event, the algorithm is designed‘so that it provides both a
terminal reliability and terminal unreliability expression in symbolic form.
The sum of the implied probabilities of all F vectors can subsequently be
numerically evaluated for the terminal reliability as can the sum of the implied
probabilities of all C vectors for the terminal unreliability. Thus, if the
algorithm is not allowed to terminate with a complete solution, it provides both

upper and lower bounds which are realistic.

16
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Fig. 5. Flow Chart for the Algorithﬁ




Some remarks concerning duality of the algorithm are in order at this
point. In one sense the algorithm is its own dual since itksimﬁltanéoﬁéiy
discovers both simple paths and cutsets in the network. However, these are
discovered directly in terms of their disjoint implicants rather than their
prime sets which musf be operated on to form the disjoint implicants. Therefore,
the application of other algorithms to the sets {C,;} and {F;} would be required
to determine the prime set of simple paths and the prime set of cuts. In the
sense of the basic operating mode of the algorithm, however, its dual certalnly
is not embodied in itseif. Recall that the algorithm operates by finding a
single short path through a degraded network. Its dual then would operate by
finding a single minimal cut in a degraded network. The dual algorithm has not
been written as of the submission date of this paper but it would only involve
a straightforward extension of the same concepts as exposed herein.

The usefulness of the dual algorithm becomes apparent in considering the
problem of finding the terminal reliability between arbitrary source and terminal
nodes in a network. This problem is easily solved for the case of a complete
network since the topology is completely symmetric. Hence the solution for
any source-terminal pair is the solution for all source-terminal pairs. The
complete network can then be made identical to any network of the same or lower
order by removing appropriate nodes. (The order of a network, as used here, is
the number of unweighted nodes, not courting source and terminai.) Likewise,
the solution for the complete network can be used to find the solution to the
lower order network by setting p = O for those nodes removed. The thrust of
the argument is simply that in compietely connected networks which are too large

to be s%lved exactly, the upper bound solution can be found more efficiently by

18




the dual algorithm. Combining this with the lower bound solution from the

algorithm presented here, very tight bounds could be found efficiently even

for networks with nqde‘probabilities ~0.1.

IV.  RESULTS

In this section we indicate the input-output operations of the algorithm

through a number of examples. In figure 6 the graph of a completely connected

network of order 3 is shown. The'algdrithm,requires the following inputs:

a.

b.

Source ﬁode label.

Terminal node label,

Total number of nodes. This is the number of weighted nodes‘+2
(source and terminal nodes).

Maximum allowable number'ofvzivectors in memory at any one time
(see page 13). This is fo avoid memory overflow for very large
networks.

Maximum allowable number of E‘vectors (see page 13).

Maximum allowable number of C vectors (see page 13).

The connectivity matrix for the network. The matrix for Figure 6

is shown in Table II.

The terminal reliability expression for the network of Figure 6 is shown

in Table III. The terminal unreliability expression is shown in Table 1v,

A complete network of order 4 is shown in Figure 7. The terminal relia-

bility expression is given in Table V, the terminal unreliability expression

in Table VI,

The foregoing examples should give an adequate feel for the manner in

which the algorithm operates. Accordingly, in our final Tables VII and VIII

we give summary results for the indicated problems. The problem entries in

19
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Fig. 6. A Completely Connected Network of Order 3.

Table II. Connectivity Matrix for the Network of Fig. 6.

NODES s s
Lo 1 1 |
211 0 1 1 o
31 1 o0 0 1
4|1 1 0 o
511 0 1 o

20



TABLE III

~ TERMINAL RELIABILITY EXPRESSION FOR THE

NETWORK OF FIGURE 6

NODES

12345

10000
-11100

Reads: Pyog = pp + 41PyP5

TABLE IV

TERMINAL UNRELIABILITY EXPRESSION FOR

" THE NETWORK OF FIGURE 6

NODES

12345

-1-1 000
-11-100

: = +
Reads: Q, 5= 49,9, * 4P a4,

21




Fig. 7. A Completely Connected Network of Order 4. -
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TABLE V

TERMINAL RELIABILITY EXPRESSION FOR THE

NETWORK OF FIGURE 7

NODES

1 2 3 4 5 6 7 8
1 0 0

o
o
o
o
o

11100000
-1-1 01100 0
-1 1-1 1100 0
“1-1 1 1-1 10 0

-1 1-1-1 11 0 0

Reads: P7—8 =p; + q1p2p3 + 979,P,P5 + 41P243P,Pg

+ qlq2p3p4q5P6 + qlP2q3qAP5P6

23




- TABLE VI

TERMINAL UNRELIABILITY EXPRESSION FOR THE

NETWORK OF FIGURE 7 "

NODES

1 2 3 4 5 6 7 8

-1 1-1-1 1-1 0 0

+ 4195P3P49596 + 43P2939495

+ Q1P2q3Q4P5q6

24




TABLE VII

"SUMMARY RESULTS

PROBLEM/ NR. OF ’NR. OF EXACT/ SOLUTION IF NODE THEN TERM,
NR. OF ,E i3 BOUNDED TIME PROBABILITY RELIABILITY IS:
WEIGHTED NODES VECTORS | VECTORS SOLUTION (sec) IS: ‘ UPPER/LOWER
Figure 6/3 2 2 Exact : 1 0.9 .981000/
: ' .981000
Figure 1/5 5 6 Exact 1 0.9 .978480/
.978480
Figure 7/6 6 6 - Exact 1 0.9 : .997848/
: .997848
Figure 8/10 29 | 26 Exact 1 0.9 .999795/
; ’ .999795
(:) *Figure 10/12 79 148 Exact 5 0.9 .975116/
: , ' , .975116
*Figure 11/21 | 924 | 1821 Exact 36 0.9 .994076/
' .994076
**Figure 9/26 100 1 Bounded 17 0.9 ‘ .999900/
. .997669
1200 3 Bounded 32 0.9 .999857/
' ‘ .999051
300 6 | Bounded 48 0.9 .999844/
: .999515
8192 | 2752 | Bounded ... 1008 0.9 | .999797/
GO B P |- T 599797

*For the purpose of comparison with reference [1l], the problems for Fig. 10 and 11 were
also solved for the case of node (link) probability = 0.9 applying before series parallel
reduction as in the reference. 1In this case, for Fig. 10, terminal reliability = .912914;
for Fig. 11, terminal reliability = .,997186.

**Terminal nodes for the solutions pertinent to Fig. 9 are 1 and 28f

O
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TABLE VIII SUMMARY RESULTS

PROBLEM/ NR. OF NR. OF EXACT/ | SOLUTION IF NODE THEN TERM.

NR. OF E [ BOUNDED TIME PROBABILITY | RELIABILITY IS:
WEIGHTED NODES VECTORS | VECTORS SOLUTION ' (sec.) IS: . UPPER/LOWER (:)
Figure 9/26 300 6 Bounded 51 0.1 .343900/
‘ ’ - .005590
0.2 .590396/
.050194
0.3 .759851/
.168231
0.4 .870162/
.361452
0.5 .936890/
.591339
0.6 973454/
.797225
0.7 .991013/
.931371
0.8 .997971/
.987969
0.9 .999844/ (:)
: ; ; .999515
Figure 9/26 8192 . 2752 | Bounded - 1115 0.1 ‘ .163956/
c B .008827
0.2 | .379602/
.086618
0.3 .580863/
.280085
0.4 743828/
. 542600
0.5 .863822/
‘ .775591
0.6 | Lo41422/
918168
0.7 .981696/
' .978720
0.8 .996582/
’ .996472 (:)
0.9 .999797/
o .999797

26




Table VIII involved solving for bounded terminal reliability and terminal un-
reliability expressions for the network of Figure 9, then performing a numerical
evaluation of these expressions for the indicated node probabilities. We note

a time increase of éppfoximately three seconds and 107 seconds for the additional
numerical evaluations. The increase is probably not as much as indicated as all
times presented in Tables VII and VIII are taken from the day file and do not
represent a strict accounting of CP time devoted to the probiems presented.

One other point concerning the problem entries in Table VIII is worth
noting. Namely, the upper bounds on’terminal reliability are quite poor at
low values of node probability. This is one more indication of the potential
value of the dual\to the'algorithm presented here., Such a dual would provide
a tighter upper bound to terminal reliability,

V. CONCLUSIONS

In a previous publication [1] an efficient algorithm for the‘analysis of
unreliable communications networks was proposed. The paper then went on to
apply the proposed algorithm.to the problems shown in Figures 10 and 11. For
the problem of Figure 10, the algorithm ran to completion in 112 seconds on an
IBM 360/67 computer. For the problem of Figure 11, the algorithm terminated with
an approximate solution.(lower bound) after 10 minutes of computation time.

This paper reports on an even more efficient algorithm for the énalyéis of
unreliable communications networks. Specifically, the problem of Figure 10 was
completély solved in slightly less than 5 seconds on a CDC 6600 computer. The
problem of Figure 11 was completely solved in approximately 36 seconds. For CP
bound problems the CDC 6600 is from 2 to 5 times faster than the IBM 360/67.

We, therefore, estimate the relative efficiency of the algorithm herein to that

of reference [1] to be in the range 4 to 11. There is one further advantage to

27
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Fig. 8. A Completely Connected Network of Order 5.
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Fig. 10. ARPA Computer Network after
Series -~ Parallel Reduction
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Fig. 11. A More Connected Network
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the algorithm'proposed herein. Our algorithm simultaneously solves for the
probability of success and the probability of failure thereby yielding
realistic and very tight bounds (both’upper and lower) on extremely complicated

networks in which it is not practical to force'an.eXact,solution.‘
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