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Abstract

This paper reports the result of a brief effort to construct
a simple linear model for the allocation of Air Force resources
to the assessment of weapons system nuclear effect vulnerability.
The model was used to investigate four questions, as examples:
1. What are the consequences for optimal allocation of Air Force
SV assessment resources of building and using a particular effect
simulator? 2. What is the effect of optimism on optimal
allocation of resources? 3, How might the size of the total
resource pool affect optimal allocation of resources? 4. How
might the choice of standards for valuing returns from a test
affect optimal allocation of resources?




Summary and Conclusions

This is an informal report on a two-week, part time
effort by the author and one programmer. The purpose of
the effort was to produce data which would, hopefully,
provide some indication whether applying decision analysis
to allocation of SV resources could be a profitable in-
vestment for the Air Force.

Since only one decision analysis technique (viz.,
linear programming) was examined, and that only cursorily,
no pretense is made that the subject of applying decision
analysis to Air Force SV is exhausted. However, further
pursuit of the topic, should this be deemed wise, must be
left to professional operations researchers who have time
for it, It is recommended that such further pursuit be
continued "in-house'". '
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Introduction

The "Air Force system" discussed in this note is a set of
bolas. A bola is a weapon consisting of, for example, three cords
each a few feet long tied together at one end, with a rock tied
to each at its other end. The bola is thrown at an animal to
entangle it. The set of bolas is intended here to serve as a
model for any weapons system of interest. This particular weapon
will perform poorly if stress on the cords, prior to or in use,
causes them to stretch or break either in flight or after contact
with the target. Bola vulnerability to cord stress is intended
to serve as a model for any threat to a weapons system, for
example EMP (electromagnetic pulse) or other nuclear effects.

The calculations reported in this note were originally
performed for a specific Air Force weapons system, nuclear effect
threat, and set of vulnerability testing programs. Some of the
assumptions of the model were then found to be questionable for
that particular system, so the report was rewritten in terms
of the bola system to virtually preclude any possibility that
the reader might draw some conclusion which could be erroneous
in the special case of a particular real system.




Part A. Construction of the Linear Model.

To construct the linear model we accept at the outset
that certain axioms realistically represent the Bola cord
stress vulnerability assessment situation. The axioms we used
for this sample model are:

1. From 1972 to 1978, inclusive, some amount of
money will be made available with which to assess
Bola cord stress vulnerability. (Let C,g Tepresent
this amount.)

2. The sum of all expenditures during the assessment
may not exceed C28’

3. The amount of time available for the assessment

is limited. (Let C represent this limit.)
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4. The assessment is done by testing. Tests are
performed by, for example, using simulators1 (or,
for some kinds of tests, sets of simulators). The
amount of time required for a single test of fixed
kind, multiplied by the number of tests of that
kind performed, divided by the number of simulators
(or simulator sets) of that kind built (which are
used to test different bolas or bola throwers
simultaneously), may not exceed C31.

5. The number of bolas or bola throwers available for any
one kind of test is bounded by the arsenal size.

(Let C,, represent this bound.)
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6. There are six kinds of tests which one could per-

form, viz.,

a. CLM (cord length measurement) tests,

1. In this note the terms "simulator'" and "instrument" will
be used interchangeably.




b. KRC (knot and rock count) tests,

c. EPA (exhaustive performance analysis) tests,

d. FTT (field throw test),

e. TA (trajectory alteration in fllght) tests,
and

f. CSE (analysis of Cord Stretch Effect on
accuracy) tests.

7. TFor each kind of test, except CSE, there is an
RED (research and development) cost of the
required instrument (set), a production cost
for each instrument (set) actually built, and
a cost to actually perform the test on one
bola or bola thrower with the instrument. For
CSE there is a cost to withdraw from the arsenal,
test, and return to the arsenal a bola bombardier.

8. The objective of a test is an increase in the
arsenal reliability in which one may have a
reasonable confidence. We seek to maximize
the sum of these returns over all kinds of
tests. (Let Z represent this sum. This
objective function will receive further
attention below.)

(Note: Units of money will be cents. Units of time will be
minutes.)

A more realistic, for example a more complete, set of axioms

could of course be devised. For instance, cord modeling

is wholly ignored. We wanted, however, to define a problem we
could solve in a short time, without interfering significantly
with our other responsibilities. We will be satisfied that we
have done something worthwhile if the reader, detecting places
where realism could be improved, proceeds to solve the.

more realistic problem himself. Our simplified model is
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intended only to furnish a guide as to how the reader might
go about this.

The next step is to reduce the above axioms to mathematical
expressions, linear ones if possible.

Consider first axiom 7. This axiom tells us that for CLM

testing (see axiom 6a) we will have to spend (c1+c6x1+c11x6)

altogether, where
= RED cost of CLM instrument set,

Cg = production cost per CLM instrument set,

Xy = number of CLM instrument sets built,
cq1 = cost to test one bola in CLM, and
Xg = number of bolas tested in CLM.

(Please bear with the scattered choices of subscript values.
To a large degree the reason for this will appear below.)
There will be a similar three part term for the total cost of
KRC, EPA, FTT, and TA testing, and a one part term for CSE
testing. By axiom 2, therefore,

(cy*egXy*eyXe) * (CpreyXpteyox,) + (CgtcgXate gXg) +

<
* (cy*egXyreygXg) *+ (CgreygXgHCygXyg) *+ €9X13 = Cog o
where the x's and the c's are defined in the dictionary formed
by Tables I and II. We refer to this kind of mathematical

expression as a constraint. By axiom 5, another constraint
is

<
X6 - C32 .

By axiom 4, another constraint is

<
€16%¢ - ©31%1 °
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Table I: Definitions of Variables.

Number of CLM (cord length measurement) instruments (sets) built.

"

"

”

"

[4]

”

"

7"

"

"”"

1"

1"

KRC (knot and rock count) " " "
EPA (exhaustive performance analysis) instruments (sets) built.
FTT (field throw test) " " "
TA (trajectory alteration) " " "
bolas tested in CLM.

" " " KRC.

" " '  EPA.

" " " FTT.
bolas tested under in-flight conditions.

bola bombardiers tested by CSE (analysis of Cort Stretch Effect
on accuracy).
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Table II:

Definitions of Constants.

(This Table is in three pages, of which this is the first.)

R§D (fesearch and development) cost of CLM simulator (set).

1"

"

1"

"

"

e

"

"

Production cost

Cost to

"

"

"

"

1"

"

"

"

to build one

1"

"

"

"

"

1"

test one bola in CLM.

KRC.

"

"

CLM simulator

KRC

EPA

FTT

TA

"

1"

"

"

KRC
EPA
FTT

TA

” 1"

" "

"
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Table is in three pages, of which this is the second.)

Table II:

Definitions of'Constants.

nn>

”"

Cost to test one bola in EPA.

"

"

Cost

1"

1"t

”"

"

1)

1"

1"

1"

”

"

"

"

" FI‘T.

under in-flight conditions.

in CLM.
" KRC.
" EPA.
" FTT.

under in—flight conditions.

bombardier by CSE.

Amount learned per bola tested in CLM.

”"

11

KRC.

11 11 EPA.

N’
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Table II: Definitions of Constants.

(This Table is in three pages, of which this is the third.)

€25

ne>

4]

144

"

"

Amount learned per bola tested in FTT.
" " " " n  under in-flight conditions.
" " " " bombardier tested by CSE.

Total resources (budget) available for bola cord stress vulnerability
testing from 1972 to 1978, inclusive.

Lower bound on interval of validity of linear approximation of amount
learned per test for "large' number of tests (CLM, KRC, EPA, CSE).

Upper bound on number of bolas tested in FTT.

Total time available for tests.

Upper bound on number of CLM, KRC, EPA, and CSE tests, i.e., number of
bolas in the arsenal.

Lower bound on number of bolas tested in FTT,.

" " " interval of validity of linear approximation of
amount learned per test for '"small" number of tests (TA).

Upper bound on interval of validity of linear approximation of amount
learned per test for '"small" number of tests (TA).




where ¢, is defined in the dictionary.

Using such mathematical expressions as the foregoing
we can represent all of the first seven axioms. Representing
the last axiom requires a little more work.

First we describe reliability as a function of the number
of tests conducted. Equations for doing this are derived in
other papersz. These equations provide reliability (R) as an
implicit function not only of the number tested (L), but also
of the number which failed the test (M, or L-M if you prefer
to count successes instead of failures)'and the confidence
(C) which one is justified in having in a reliability in
view of the test results. For this study we decided to fix
C = 90% and try to increase R. (It would of course be easy
enough to have fixed R and worked at increasing C, if that
seemed more desirable. In fact, given the confidence
equations at hand, that would have been easier. Also, one
could study the effect on optimal resource allocation of
varying the confidence one demands.) To investigate question
2 (see the Abstract), we calculated optimal allocation for
a failure rate of 0% (i.e., M = 0) and then repeated the
calculations for a failure rate of 10% (i.e., M = L/10). The
two graphs in Figures I and II describe reliability as a
function of the number of tests conducted for these two degrees
of optimism. (Of course, the effect of even greater pessimism
could be investigated, say by using a graph for which the
failure rate is 30%. We didn't have time to do this. Also,
to save time and because arsenal size is large, we set up graphs

2. Confidence and Reliability in a Finite Population, 18
February 1971 (AFWL EMP System Design and Assessment Notes,
Note 2), and Confidence and Reliability in an Infinite
Population, 7 October 1971 (AFWL EMP System Design and
Assessment Notes, Note 3), both by Chris Ashley.

-12-
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using only the infinite population equations. We believe the
realism sacrificed by this approximation is not significant.)

Second, we overlay linear fits on the relatively straight
portions of these reliability graphs. Using these fits, in-
stead of the curves themselves, we can write linear approxi-
mations of the reliability function. In doing this we incur
responsibility for restricting use of the fits to regions
where they are reasonably valid. Such restrictions provide
new constraints. In general it would be possible that a
constraint of this kind could make the model which we are
building unrealistic. For example, what if a good linear fit
could only be made for domain values greater than one million,
so that the consequence for our model was that we had to put
in a constraint that the number of bolas tested in the in-
flight mode was at least one million? Not only would such a
constraint be unrealistic, it would contradict our axiom 5,
leaving us with no feasible region at all.

As it turns out, for this model no such dilemmas arise:
a linear fit is available for each interval of numbers tested
for which we need one. For example, in real life the number
of in-flight tests is only a few. So, to stay in the region of
realism, we need to fit the curves for numbers of tests
from zero to, say, 4. In this interval the curves are steeply
rising, yet have not reached their bend-over elbow. Examin-
ation of Figure I, the curve for a 0% failure rate, will show
that the slope of the curve in this interval is, to a first
order approximation, constant at about .53/4 = ,1325, for
0 <L <4, Sowe can use .13 as the pay-off per in-flight
test (assuming no failures) as long as the number of in-
flight tests is not permitted to exceed 4.

Similarly, in real life the numbers of different kinds of
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in-hand tests being considered are in general 18 or more.

But fits are available which have a region of validity from
about 8 or 10 on up. It is true that for the "pessimistic'
case (Figure II, 10% failure rate) a better fit could be

had by constraining the number of tests to exceed 20. But we
felt having the same constraints on both the optimistic and
pessimistic runs, and having a better fit at lower values
(since we suspected that's where the answers were going to
be), was worth having a slightly poorer fit at high values

of number tested.

~ So we have generated an objective function satisfying

axiom 8, viz.,
C22%6*C23%7* 24X * 25X C26%10% 27%11 T %

where these c's are defined in Table II. Now, since Xy, is
the number of in-flight tests conducted, the foregoing
discussion might lead one to expect that c,¢ would be assigned
the value .13 in this equation provided the additional con-
straint were imposed that '

<
Czq € X309 = C35 »

where cq, and Cgg aTe assigned values like 0 and 4. Such
additional constraints as this are indeed imposed, for the
reasons laid out above, but further consideration of the
problem results in not‘assigning t26 the value .13. These
considerations are as follows.

To begin, we discovered that in order for many of the
coefficients to have values of about 1 or greater, it was con-
venient to change systems of units. Therefore all slopes of
linear fits were multiplied by one million. That is, instead
of letting Cr = .13 units, we moved in the direction of

-16 -
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letting C26 = 130,000 microunits. Then, in the interest of
realism, we decided that it was not inconvenient to take

account of the fact that, after all, one should learn much

more from an EPA on a bola than from a CLM on that same

bola. For after all, if the CLM is performed on L bolas and
significant variation from the standard is detected in L/2 of
them, then what one has learned is not that he may have 50%
confidence in 50% arsenal reliability, but rather that he may
have 50% confidence that not more than 50% of the arsenal

is significantly different from the standard. If the '"standard"
bola happens to be excessively '"stretchy'", then one has achieved
50% confidence that at least P% of the bolas will survive

cord stretch in hand, where P is notably less than 50. In short,
learning that bola susceptibilities to stress aren't varying
much is weaker than learning that bolas are stress-proof.

There are several ways of weighting the amounts learned
from different kinds of tests. We chose two, to compare them.
No doubt more sophisticated schemes for assigning values to
Cosp through Cozp (see Table II) could be devised, but we had
to choose two we could implement quickly. So we chose simple
ones. The first simply makes the amount learned from a test
to be directly proportional to the amount of time spent performing
the test. In implementing this scheme we normalized time so
the weighting given EPA is unity. Since (according to one
source of information) an EPA on a bola takes on the order of
24 minutes and an in-flight test of a bola takes on the
order of 18 minutes, therefore the amount learned from an
in-flight test is weighted by the value .75. Consequently
.75 * 130,000 = 97,500.

€26
In the second scheme for deciding the amount learned in
favor of arsenal reliability, per test, we kept all the previous
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conventions and added one new one. We decided that bola cord
stress vulnerability in hand could reasonably be argued to be
different than that in flight by a factor equal to the ratio

of the probabilities of sustaining a stress in hand as opposed
to in flight. (Note that we are assuming, implicitly, that

all stresses are alike, whether sustained in hand or in flight.
A study could easily have been included of the effect on
optimal resource allocation of different assumptions about
kinds of stresses, e.g., local differences in likely peak

time domain amplitude). We took the ratio of these proba-
bilities of incidence to be simply the ratio of times which
the bola spends in the two states. Allowing for the fact

that bolas could be held in hand for periods up to minutes,
because of delays to determine what target to throw at or to
set up fusillades of throws at one minute intervals, whereas the
in-flight phase lasts only on the order of 3 seconds,

we decided to use for a ratio of times the number 25. That is,
we decided to investigate the effects on optimal resource
allocation of the assumption that the typical bola is 25

times as likely to sustain a stress on a cord in hand as it

is in flight because the typical bola spends 25 times as much
time (after hostilities begin) in hand as it does in flight.

To do this we simply repeated all the runs but with €26 and

Cyy set to values 1/25 as great as in the earlier set of runs.

Note in passing that in this simple study we made no
effort to take into account the effects of multiple stresses
(and the probability thereof) nor of synergism between cord
stress and other forms of bola degradation.

One criticism which can be leveled against this cursory
study, against which we have no defense, is that axiom 8 is
set up in terms of the sum represented in the objective

-18-




equation above, whereas it is by no means obvious that the
returns from different kinds of tests are simply additive.
Maybe they are additive, but we haven't shown that they are.
Our response is that we hope the reader will try to run the
problem with the more defensible objective function which he
has in mind. 1In any case, Z, the "total amount learned in
favor of arsenal reliability acceptable at the 90% confidence
level™, is rather difficult to interpret physically even

if it is simple and cheap to maximize. It is not even

easy to say what its units are. Despite this the values of Z
resulting from optimal allocation, divided by one million

and rounded to the nearest tenth, are included in the table
of results (to be discussed later) for the reader who might
want this information as an aid in improving the choice of
objective function.

The foregoing discussion results in mathematical expression
of the eight axioms as shown in Table IIT,.

Table IV is the same as Table ITI, except rewritten into
matrix notation. We used the CDC 6600 linear programming
code OPTIMA to find the optimal solutions under the different
conditions indicated by the four questions we undertook to
look at, and rewriting the constraints as in Table IV was
a convenience in preparing the data for input to OPTIMA.
OPTIMA then solved the problems using the product form of
the revised simplex method.

One final comment must be made about the construction of
our model. Many of the quantities of interest must, in
real life, have integer values only. Therefore the problem
which we tackled is properly an integer programming problem,
not just a linear programming problem. To solve an integer
programming problem with only linear programming techniques
can produce answers in the optimal solution set which are in

-19-




Table ITII: Constraints.

1. (cy*cgXy+eyXg) + (Cy*c Xo%cy,Xg) + (CgtCaXqtcy Xg) +
* (cg*rcgX tey xg) + (CgreygXg*CigXyg) * Cp1Xpq = Cpg

2. ng < x6 < CSZ

3. Crg £ X7 < €2
4, Cyg S Xg = Cgy
5. C33 5 X9 s Cg
6. c34 < Xp05 C35
7. Cp9 SX75 €3
8. c16% = ©31%1

9. Ci17X7 = C31X,

10. C1gXg = C31%X3
11.

12. ¢3p%19 S C31%s

13. Xy 2

14. X, 2 1

15. x5 2 1

16. x, > 1 (for odd numbered runs)
X, = 0 (for even numbered runs)

17. xg 2 1

18. CyyXg * Cy3Xy + CoyuXg + CheXg + CreXgg * C27%11 7 Z .

Maximize Z,
" Table III.
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Table IV: Constraints.

(Where matrix shows no entry, read 0.)

[C6 <7 <5 9 10 €11 €12 13 14 €15 Cp1] s
14 “15 €21
1 2
1 <
1 2
1 <
1 Fil“ 2
1 x <
1 xz 2
1 xi <
>
o = |
1] ° x: 2
1 xg <
-C3q 16 Xg <0
“C31 €17 X10 =0
-Cq4 g x| s 0
-cq clq ] <0
€31 €20 =9
1 > 1
1 > 1
1 2 1
1 : 1%
1 > 1
L €22 ©23 “24 ©25 26 27| | = * —
Maximize Z. oy e e S ins.
Table IV,
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error by as much as a factor of 2. Not having the time to
set up cutting planes, or to find some other way around

this difficulty, we elected to simply solve the problem by
linear programming and hope the answers came out integers,

or at least close enough to integers so the error induced .
by rounding would not be significant compared to the error
induced by errors in estimates of the costs to build
instruments, etc. This full-steam-ahead-and-damn-the-torpedos
attitude has, in this effort, one other fact to excuse it.
Both the presently most widespread techniques for solving
integer programming problems (vix., the Method of Integer
Forms developed by Gomory and the more recent alternative
approach of Land and Doig) begin by obtaining an optimal
continuous solution by the simplex method. Consequently,

the reader who is concerned about this defect in our work

can use the data in this report as a necessary first step

in obtaining a more rigorous solution. For the majority of
readers who are puzzled at how one should respond to an
optimal solution which requires construction of 27.93 CLM
instrument sets, the answer is to construct 28 and round down
somewhere else to free the funds to complete that last one:
such fine adjustment of the optimal solution set is not going
to be noticeable beside the effects of budget uncertainty.

-22-
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Part B. Some Results Using this Linear Model.

As mentioned in the Abstract of this paper, the
model developed in Part A was used to investigate the
effects on optimal resource allocation of four decisions,

viz.,

1.

2.

whether or not to develop and use the FTT stress
simulator;

whether or not to be exceedingly optimistic
about the outcome of system tests, as to whether
they will or will not indicate stress vulnerability;

whether a large or a small resource pool is
allocated to bola cord stress vulnerability testing;
and

whether to use one or another of two standards
for valuing returns from any specific kind of
bola cord stress test.

These questions were chosen because something could be done

on them in an extremely short time. With a little more time

these questions could be investigated more thoroughly,

variations on these questions could be addressed, and other

questions could be answered. Some variations on these questions

which could have been addressed in no more than an additional

week or two are the effects on optimal allocation of resources

of:

having different confidence requirements than
the 90% which was used throughout this effort;

making fixed reliability a requirement, instead
of confidence, and making the objective to in-
crease confidence instead of to increase
reliability;

-23-




c. different sizes of resource pools besides the
~ two, '"large" and "small", which we looked at; and

d. other standards of valuing returns from different
kinds of tests than the two we looked at.

Within the scope of the task which we undertook, then,
we made 16 computer runs. Half these runs allowed the FIT stress
simulator to be developed and used, and half allowed neither.
Half the runs assumed testing would return uniformly successful
reports of stress immunity, i.e., a 0% failure rate from all tests;
and half assumed that 10% of all kinds of tests would in-
dicate vulnerability. Half the runs assumed a seven year
Air Force resource pool for all bola cord stress testing (in-
cluding government administering agencies and testing contractors)
of 400,000¢, and half the runs assumed only 175,000¢. Finally,
half the runs weighted the amount learned from a test by a
factor proportional to the time spent testing, and half weighted
the amount learned by an additional factor proportional to the
probability that the bola will be in the testing state (in-hand
or in-flight) at the time it sustains the stress. (That last
factor is discussed in more detail in Part A.)

The 16 computer runs which we made to exercise the linear
model are summarized in Table V. Actually we made 22 runs
altogether, needing a few to get a feel for the task. The
"wasted" runs are not discussed in detail in this note.)

Of all the runs we made, the most expensive required less
than 6 seconds of CDC 6600 CP (central processor) time. So
the entire study used up less than 3 minutes of CP time. We
estimate the cost of the study was, very roughly, as follows:
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Table V: Definitions of Runs.
Anticipated Resource Exposure time
Run FTT stress failure limit taken into account
Number ~ simulator " fraction (cents) in valuing?

1 In 0 400,000 No

2 Out 0 400,000 No

3 In 0 175,000 No

4 Out 0 175,000 No

5 In 10% 400,000 No

6 Out 10% 400,000 No

7 In 10% 175,000 No

8 Out 10% 175,000 No

9 In 0 400,000 Yes
10 Out 0 400,000 Yes

11 In 0 175,000 Yes
12 Out 0 175,000 Yes
13 In 10% 400,000 Yes

14 Out 10% 400,000 Yes

15 In 10% 175,000 Yes

16 Out 10% 175,000 Yes

Table V.
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("
$340. salary to construct linear model

250. salary to set up runs for computer
task { (including finding and learning how to
costs use OPTIMA)

30. computer costs

-

(~ 360. salary to write this report of study
100. salary for typing

documentation 4

costs 100. reproduction

120. postage and handling

\. + 60. overhead (offices, furnishings, utilities)

$1360. Total

One conclusion which might be drawn from this study, therefore,
is that the cost of decision analysis is insignificant com-
pared to the cost of one of any kind of Air Force weapons
system nuclear effect vulnerability test. The expenses of
optimizing resource allocation would be even less noticeable

in the context of all active weapons systems and all (nuclear
effects) threats.

The values which we assigned to the constants (defined
in Table II) which appear in the constraints of our linear
model (presented in Tables III and IV) are given in Table VI.
This table is quite large, being 35 constants down by 16
runs across, and the layout required to fit it on standard
sized sheets of typing paper will require a few moments of
study to understand. Basically it is laid out in four sets
of three pages each.

Most of the constants were assigned values which were unchanged
for all runs. For example, the cost of building one trajectory
alteration in flight simulator (set), after R&D is complete, is not
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Table VI: Values of Constants,

(This Table is in twelve pages, of which this is the first.)

Run Number: 1 2 3 4
<y 50 50 50 50

-3

® c, 4,000 4,000 4,000 4,000

(-

o

< cs 500 500 500 500

| ] .

™ <y 2,000 0 2,000 0

[ H

H

o+ cs 2,000 2,000 2,000 2,000

(o]

o < 50 50 50 50

>

s c, 2,100 2,100 2,100 2,100

[¢]

8 cg 0 0 0 0

[1)2]

[¢']

§’L cq 8,000 0 8,000 0
10 5,000 5,000 5,000 5,000
c1q 1,200 1,200 1,200 1,200

231 231 ' 231 231
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Table VI: Values of Constants.

(This Table is in twelve pages, of which this is the second.)

Run number: 1 2 3 4
c13 13,900 13,900 13,900 13,900
C14 269 0 269 0
cqs 10,000 10,000 10,000 10,000
c16 3 3 3 3
c17 1.4 1.4 1.4 1.4
c1g 24 24 - 24 24
Cyg 1 0 .1 0
cyg 18 | 18 18 18
cy1 300 300 300 300
cy) 500 500 500 500
cy3 233.5 233.5 - 233,5 233.5
co4 4,000 4,000 4,000 4,000
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Table VI: Values of Constants,

(This Table is in twelve pages, of which this is the third.)

Run number: 1 2 3 4
Cye 16.68 0 16.68 0
-3
e, 26 90,000 90,000 90,000 90,000
® | |
4 4 4 4
< €27
Eg Cyg 400,000 400,000 175,000 175,000
e
o]
o Cy9 8 8 8 8
"
2 csp 1,000 0 1,000 0
(o)
< €31 84 84 84 84
S cs, 1,000 1,000 1,000 1,000
2
< Css 8 0 8 0
Cs4 0 0 0 0
4 4 4 4
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Table VI: Values of Constants.

(This Table is in twelve pages, of which this is the fourth.)

Run number: 5 6 7 8

¢y 50 50 50 50

g c, 4,000 4,000 4,000 4,000

-

® c 500 500 500 500

< 3

-

~ c 2,000 0 2,000 0

Hh 4

=1

5 o 2,000 2,000 2,000 2,000

=

o ce 50 50 50 50

ct .

3 c, 2,100 2,100 2,100 2,100

<

® c 0 0 0 0

- 8

0 .

° cq 8,000 0 8,000 0

) c10 5,000 5,000 5,000 5,000
11 1,200 1,200 1,200 1,200

231 231 231 231
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Table VI:

(This Table is in twelve pages, of which this is the fifth.)

Values of Constants.

Run number: S5 6 7 8
i3 13,900 13,900 13,900 13,900
C14 269 0 269 0
15 10,000 10,000 10,000 10,000
16 3 3 3 3
cys 1.4 1.4 1 1.4
18 24 24 24 24
19 .1 .1 .1
50 18 18 18 18
C1 300 300 300 300
oy 161 161 161 161
Crz 75 75 75 75
oy 1,285 1,285 1,285 1,285
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Table VI:

Values of Constants.

(This Table is in twelve pages, of which this is the sixth.)

Run number : 5 6 7 8
c 5.36 0 5.36 0
25 : :
-3
[
= 26 67,500 67,500 67,500 67,500
o Cyg 1.285 1.285 1.285 1.285
Tn\'
. Cyg 400,000 400,000 175,000 175,000
5 8 8 8 8
o €29
)-b -
g c1p 1,000 0 1,000 0
(=
<
@ €31 84 84 84 84
d
® cs; 1,000 1,000 1,000 1,000
<
. Czz 8 0 8 0
Caq 0 0 0 0
Cqg 4 4 4 4
- »
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Table VI:

Values of Constants.

(This Table is in twelve pages, of which this is the seventh.)

Run number: 9 10 11 12
cq 50 50 50 50
3
4]
A c, 4,000 4,000 4,000 4,000
(0]
=S cs 500 500 500 500
§ cy 2,000 0 2,000 0
[¢]
o c 2,000 2,000 2,000 2,000
= 5
" c 50 50 50 50
6
2' .
s c, 2,100 2,100 2,100 2,100
<
(0]
o cg 0 0 0 0
© 8,000
@ cq , 0 8,000 0
10 5,000 5,000 5,000 5,000
c11 1,200 1,200 1,200 1,200
231 231 231 231




Table VI: Values of Constants.

(This Table is in twelve pages, of which this is the eighth.)

Run number: 9 10 11 12
cy3 13,900 13,900 13,900 13,900

S 269 0 269 0
C

% 14

< clc 10,000 10,000 10,000 10,000

o Ci6 3 3 3 '3

N 5
L 2 C17 1. 1. 1.4 1.4

A 24 24 24 24

" €18

ct

o 0

: c19 0 .1

o
c 18 18 18 18

4 20

o .

4 Cy1 300 300 300 300
Cyp 500 500 500 500
Cys 233, 233, 233.5 233.5
cy4 4,000 4,000 4,000 4,000
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Table VI:

Values of Constants.,

(This Table is in twelve pages, of which this is the ninth.)

Run number: 9 10 11 12
Cye 16 .68 0 16.68 0
—]
& 6 3,600 3,600 3,600 3,600
: .
< S .16 .16 .16 .16
’5 Cyg 400,000 400,000 175,000 175,000
=
ct
2 Cyg 8 8 8 8
(o]
H
o <o 1,000 0 1,000 0
=
o
= c 84 84 84 84
S 31
S Czy 1,000 1,000 1,000 1,000
oQ
o
Z Cqz 8 0 8 0
Cz4 0 0 0 0
4 4 4 4
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Table VI: Values of Constants.

(This Table is in twelve pages, of which this is the tenth.)

'Run number: 13 14 15 16
cq 50 50 50 50

—

% c, , 4,000 4,000 4,000 4,000

o

< c 500 500 500 500

= 3

E; ¢y 2,000 0 2,000 0

5 o 2,000 2,000 2,000 2,000

=Y

- C6 50 50 50 .50

a

g ¢, 2,100 2,100 2,100 2,100

b cg 0 0 0 0

[1)2]

o .

< cq 8,000 0 8,000 0
10 5,000 5,000 5,000 5,000
1 1,200 1,200 1,200 1,200
c12 231 231 231 231
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Table VI: Values of Constants.

(This Table is in twelve pages, of which this is the eleventh,)

Run number: 13 14 15 16

Cy3 13,900 13,900 13,900 13,900

~

& ciyq 269 0 269 0

[}

< cys 10,000 10,000 10,000 10,000

-t

& C16 3 3 3 3

<

s g 1.4 1.4 1.4 1.

(o]

=2

o cig 24 24 24 24

H

o c .1 .1 1

= 19

(=]

] 50 18 18 | 18 18

.-U .

s c 300 300 300 300

2 21

wn

g c,) 161 161 161 161
Cys 75 75 75 75
Co4 1,285

1,285 1,285 1,285
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Table VI: Values of'Constants.

(This Table is in twelve pages, of which this is the twelfth.)

Run number: 13 14 15 16

Cye 5.36 0 5.36 0

-3

% Cy6 2,700 2,700 2,700 2,700

S Cyq .0514 .0514 .0514 .0514

’:;f Cyg 400,000 400,000 175,000 175,000

N

tf; Cyg 8 8 8 8

*h C30 1,000 0 1,000 0

:E: sy 84 84 84 84

[¢)

o Csp 1,000 1,000 1,000 1,000

E: |

L(”i Csz 8 0 8 0

' Csq 0 0 0 0
Cxc 4 4 4 4




affected by whether the FTT sfress.simulator is pursued or not.
Referring to Tables V and IT, therefore, we would not expect to
see any change in the value of C;o between even numbered and odd
numbered runs. In fact, to answer the first of the four
questions it is necessary only to set c4,c9,c14,c25,c30, and

Czz to zero for the even numbered runs, leaving all other

values of constants unchanged from the preceding run. This

is what was done. |

Because of this, out of 35 constants 20 were assigned
values which were left unchanged through all 16 runs.
Consequently, the accuracy with which the value of any one
of these 20 constants was chosen affects the accuracy of
the conclusions of every one of the 16 runms. - Frequently in
decision analysis it is discovered that the most expensive
(time consuming) task is determining the values of the data
which go into the problem; given that data, calculating the
optimal values for the variables is quite straightforward.
One of the caveats which must be included in this report,
therefore, is that the brief time spent on the effort did
not permit a determination of indisputable values for all
the constants. Several of the values used for these example
runs, in fact, are no more than guesses made by relatively
informed people in a minute or so without reference to any
written costing data.

The conclusion one should draw from the foregoing is
that, before the calculated optimal values presented by
this report are given a great deal of weight, the reader
should carefully scrutinize the values used for input data
given in Table VI. In cases where he believes different
values would be more accurate, he should revise the input
table and rerun the problem to obtain a set of results
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compatible with his beliefs about costs and times. For
example, assumptions about times required to run different
kinds of tests were required to implement the valuing
schemes described earlier. Specifically, we assumed that

3 minutes were required to CLM a bola, and 1.4 minutes were
required to KRC a bola (cf. Table VI, 16
valuing algorithm therefore concluded that one learns about

and c17). The

twice as much from CLM, per bola, as from KRC. The reader
with more accurate data may dispute this, and any results
calculated from it. If so, he should run the problem again
using his more accurate data. Another example is the value
we chose for CSE tests.

With all these reservations we set up and made our runs
using the data in Table VI. The results are presented in
Table VII, which is to be interpreted using Table I.

The first thing to notice in Table VII is that X1p is
forced to 0 in the entire second half of the runs, viz.,
runs 9 through 16, inclusive. This result sheds much light
on the fourth question. In short, if it be assumed that
bolas are 25 times as likely to be subjected to cord stress
in hand as they are in flight, because they will in battle
probably spend 25 times as much time in hand as they will
in flight, and if it be assumed that therefore what is learned
from a trajectory alteration test has only 1/25 the value
it would otherwise have, then one can conclude (assuming
also our model is accurate) trajectory alteration tests are
so expensive none should be done.

Three comments must bé made about this conclusion. First,
if we had chosen a time factor different from 25 the results
might have come out differently. In fact, the first half
of the runs (runs 1 through 8, inclusive) essentially used
a factor of 1, and those runs in general tried to require as
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Table VII: Results of Runs.
(This Table is in four pages, of which this is the first.)

Run Number: 1 2 3 4
xq 1.0 1.0 1.0 1.0
X, 13.35 14.11 1.0 1.0
Xz 2.29 2.29 2.29 2.29
X, 1.0 0 1.0 0.
Xg 1.0 1.0 1.0 1.0
Xg 8.0 8.0 8.0 8.0
X, 800.93 846.62 8.0 8.0
Xg 8.0 8.0 8.0 8.0
Xg 8.0 0 8.0 0.
X10 4.0 4.0 2.41 3.63
X1 8.0 8.0 8.0 8.0
yA 58.3 59.4 25.5 36 .4
FTT Stress Simulator In Out ‘ In Out
Optimism High High High High
Resource limit 400,000 | 400,000 175,000 175,000
No

Time valued No No No
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Table VII: Results of Runs
(This Table is in four pages, of which this is the second.)

*(se8ed anojy o puodas) IIA 9Iqel

Run Number: 5 6 7 8
Xy 1.0 1.0 1.0 1.0
X, 13.35 14.11 1.0 1.0
Xz 2.29 2.29 2.29 2.29
Xy 1.0 0. 1.0 0.
X 1.0 1.0 1.0 1.0
Xg 8.0 8.0 8.0 8.0
X, 800.93 846.62 8.0 8.0
Xg 8.0 8.0 8.0 8.0
Xg 8.0 0. .0 0.
X10 - 4.0 4.0 2.41 3.63
Xqq 8.0 - 8.0 8.0 8.0
Z | 34.2 34.5 17.5 25.7
FTT Stress Simulator In Out In Out
Optimism Moderate Moderate Moderate Moderate
Resource limit 400,000 400,000 | 175,000 175,000
Time valued No No No No
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Table VII: Results of Runs
(This Table is in four pages, of which this is the third.)

Run Number: 9 10 11 12
Xq 1.0 1.0 1.0 1.0
X, 15.86 16 .62 1.76 2.52
X4 2.29 2.29 2.29 2.29
Xy 1.0 0. 1.0 0
Xg 1.0 1.0 1.0 1.0
Xg 8.0 8.0 8.0 8.0
Xy 951.31 996 .99 105.44 151.13
Xg 8.0 8.0 8.0 8.0
Xqg 8.0 0 8.0 0
X710 0. 0 0. 0
Xyq 8.0 8.0 8.0 8.0
Z 25.8 26 .9 6.1 7.1
FTT Stress Simulator In , Out In A Out
Optimism High High High High
Resource limit 400,000 400,000 175,000 175,000

Time valued Yes Yes Yes Yes
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Table VII: Results of Runs
(This Table is in four pages, of which this is the fourth.)

Run Number: 13

14 15 16
xq 1.0 1.0 1.0 1.0
X, 15.86 16 .62 1.76 2.52
Xg 2.29 2.29 2.29 2.29
X, 1.0 0. 1.0 0.
X¢ 1.0 1.0 1.0 1.0
Xg 8.0 8.0 8.0 8.0
X, 951.31 996 .99 105.44 151.13
Xg 8.0 8.0 8.0 8.0
Xg' 8.0 0. 8.0 0.
X10 0. 0. 0. 0.
Xqq 8.0 8.0 8.0 8.0
yA 8.3 8.6 1.95 2.3
FTT Stress Simulator In Out In Out
Optimism Moderate Moderate Moderate Moderate
Resource limit 400,000 400,000 175,000 175,000
Time valued Yes Yes Yes Yes




many trajectory alteration tests as possible. So somewhere
between the time (or, if you will, probability) factor of 1 and
the time factor of 25 there is a value where the optimum number of
trajectory alteration tests is forced to neither the maximum
possible nor the minimum possible. A few more computer runs would
suffice to find this equilibrium value. 1In any case it is

clear that our number 25 should be examined carefully before

the conclusion is accepted.

Second, other value weighting schemes might keep the
factor 25 but, because of other considerations introduced,
might not conclude trajectory alteration tests are economically
unfeasible. In particular, if consideration is given to the
thought that a bola would seem more vulnerable in flight,
after it has left the protection of its bombardier and when
stress removal increases CEP much more because the bola is in
motion, than it is in hand, then a value weighting scheme
might be preferred which attributed to trajectory alteration
tests greater value because of the more useful information
they would be expected to yield for stress immunization programs.

Third, the constraints allowed the number of in-flight
tests to be forced tb 0 but required nonetheless that x.,
the number of Trajectory Alteration simulators built, be at least
1. That is, the model didn't "know" that it could, by elimina-
ting trajectory alteration tests, save not only testing costs
but also additional stress simulator construction and R§D costs
(cf. Table III). (Had the model "known" this, it would have
eliminated trajectory alteration in-flight tests even more readily.
This third comment therefore suggests caution "'in the opposite
direction" from that suggested by the preceding two comments.)
“There are two corollaries to this comment. The first is that, in
light of the knowledge we have now available that the optimal

value of x is 0, runs 9 through 16, inclusive, should be

10
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repeated with constraint 17 replaced with constraint 17', viz.,
Xg = 0, which would result in distribution among the other
variables of the trajectory alteration simulator production and
R§D resources, to increase their optimal values. The values
assigned to these variables are not really optimal until this
has been done. The second corollary is that the next thing to
do in sophisticating the model, if not to install integer pro-
gramming, may well be to find and install some device for infor-

ming the model that x; < .5 => x; = 0 for 6 < i % 10.

The second thing to notice about Table VII is that the
even numbered runs invariably resulted in higher values of
Z than did the immediately preceding run, regardless of
which of the two valuing schemes was used, regardless of
the size of the resource pool used (400,000 cents or
175,000 cents), and regardless of the level of optimism
about the anticipated failure rate. This result suggests
that the FTT stress simulator might indeed be a poor investment.

The obvious comment is that it might be wise to check
this conclusion about field throw testing by building into the
test weighting a factor proportional to the peak time domain
stress used during the test (as a guard against the possibility
of non-linearity) and/or a factor proportinal to the fraction
of the bola stressed. Such additional factors could be in-
corporated and the runs repeated in no more than a few addition-
al days, and if despite this the same result persisted one
could be a good deal surer of the conclusion.

The third thing to notice about Table VII is that there
is absolutely no difference at all in optimal allocation of
resources regardless of whether a 0% or a 10% failure rate
is anticipated. The allocations entered on the first page
of the table are identical to those entered on the second,
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and those on the third page are identical to those on the
fourth.

Two comments arise here. First, if it is really thought,
as suggested for other reasons above, that the bola might
be more vulnerable in flight than in hand, then an additional
run might be advisable in which 10% failure is assumed for
trajectory alteration (and cord strefch effect) tests and
0% is assumed for in-hand tests. (After all, 6 seconds of CP
only costs 25¢, so what's to lose?) Secondly, one could investi-
gate the effects of downright pessimism, e.g., assuming, say,
a 40% failure rate.

The final (fourth) thing to notice about Table VII is the
interesting synergism which varying the resource pool has
with introducing time (probability) into the valuing of
different kinds of tests. When time (probability) valuing
is absent, decreasing the resource pool results stra1ght~
forwardly in cutting the number of KRC tests to the minimum
allowed by the model and then decreasing trajectory alteration
tests as necessary to balance the budget. EPA tests are not
affected, and all other kinds of tests are already minimal. On
the other hand, when time (probability) is introduced into
valuing, the reaction to shrinking resources is quite different.
EPA tests are still not affected, and CLM, FTT, and CSE tests
are still maintained at minimal numbers regardless. But KRC is
no longer forced to take the first brunt of economizing entirely
alone. Instead, trajectory alteration and KRC are reduced
together, neither one to the minimum permissible number of tests.
This suggests that the weighting factor value of 25 which we used
is in a range of values to which the effects of varying the
resource pool are rather sensitive. Close examination of
the factor 25 was suggested for other reasons above; it is
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now seen that such examination should be performed bearing
in mind also this interplay with the effects on optimal
resource allocation of the size of the resource pool.
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