
1 

Physics Notes

      Note 21

    3 June 2013

Extending Classical Physics into the Quantum Domain 

I L Gallon 
41, St Katherine’s Avenue, Bridport, Dorset, DT6 3DE, UK 

E-mail: ilandpamgallon@tiscali.co.uk 

Abstract: An equation of motion of point charged particles including radiation is developed.  It is first applied to the electron and 

shown that the solutions conserve energy and causality. The addition of one hypothesis allows the extension of classical physics into 

the quantum domain.. The modified equation is applied to the  electron, resulting in a model of the spinning electron.  This model is 

then applied to the hydrogen atom, the results agreeing with the standard approach. The principal result is a formula for the fine 

structure constant, giving a value  within 1 σ of the latest QED calculations. 
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Extending Classical Physics into the Quantum Domain 
 

1. Introduction. 
1.1  The starting point for the derivation of a theory extending classical physics into the quantum domain is the 

equation of motion of a classical charged particle.  The presently accepted equation is that of Abraham and Lorentz 

[1][2][3][4][5], a third order linear differential equation. This is presented as the inevitable result of classical physics 

despite violating the conservation laws and causality.  The conclusion is that classical physics is inconsistent or that the 

equation is incorrect.  It is assumed here that the A-L equation is incorrect. 

1.2 An equation of motion is developed that is consistent with the conservation laws and causality.  It transpires 

that the resulting equation, a version of which was originally found by Planck[5], is a non-linear second order equation, 

which makes for difficulties.  However some analytical solutions are available and even the relativistic version has an 

important analytic solution as well as yielding readily obtained approximations. 

1.3 Having established that the new equation of motion at least conforms to the requirements of classical physics, 

it is then necessary to introduce the concept of a stationary state into electron physics, a concept well understood in 

circuit theory.  This allows a modification of the equation of motion to develop a model of a rotating electron and the 

hydrogen atom.   

1.4 The singularity of the point charge is removed by assuming a radius consistent with the observed mass of the 

electron. This introduces the necessity of considering the internal stresses so as to obtain covariant relativistic 

equations[7].  The assumption made here is that the effect of these stresses is ignorable in the first approximation.   

1.5 Applied to the hydrogen atom, the formula for the energy levels are obtained, the Zeeman splitting of the 

levels is demonstrated and the transition radiation is shown to occur in two stages, a relatively slow move from one 

level to the next, radiating a small amount of energy, followed by a rapid radiation of the remaining energy on entering 

the lower energy level.   

1.6 The determination of the energy levels requires a certain function of the fine structure constant and the electron 

–proton mass ratio to be equal to a prime number.  Using current values of α gives a prime number plus a small excess.  

Introducing a relativistic correction the discrepancy is greatly reduced. Accepting the correct number to be the prime, 

inversion of the function gives a new value of α which is ~σ/4 below the latest QED calculation, which means that the 

calculated value agrees with the QED calculation to 11 places of decimals.  The success of the proposed equation 

together with the stationary state hypothesis in reproducing quantum mechanical results and providing the first accurate 

theoretical formula for evaluating the fine structure constant justifies the assumption of §1.4 and gives credibility to the 

correctness of the equation. 

2. The Proposed Equation for Non-relativistic Motion 

2.1 The required equation of motion of a charged particle is obtained by equating the rate of change of momentum 

acquired plus the rate of change of momentum lost by radiation, to the applied force. This results in non-linear second 

order differential equations for both the non-relativistic and the special relativistic forms.  Planck obtained such an 

equation for the harmonic oscillator, but thought it too complicated[5]. 

2.2. Carrying out the above scheme, the rate of loss of energy by radiation from an accelerating charge is 
2m v&τ [8] 

where 
3

0
23

00
2 cm3/e2cm6/q =πε=τ . Multiplying by unity in the form 

2v/v.v  the rate that energy is being 

radiated can be expressed as 

                                                          v.v
v

.vFrad 












=

2

2

v
 mτ
&

                                                                   (2.1)                                                

Frad may then be defined as 

v
v

Frad 












τ=

2

2

v
m

&

                                                                     (2.2) 

The equation of motion can then be written 
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which is the equation which was to be developed. Note that this reduces to the Newtonian form for uncharged particles. 

2.3. Consider the equation of motion with zero applied force, and make the assumption that the acceleration is non-zero,  

                                                                0vvτ( 22 =+ v)/v &&                                                                     (2.4) 

This implies that the acceleration is parallel to the velocity, and so the equation reduces to the  

scalar equation                                                           

        0/v)vτ(1 =+ &                                                                        (2.5)     

which has a solution, which is the only solution 

)exp(-t/vv 0 τ=                                                                      (2.6) 

This non-physical result implies that the initial assumptions are false.  Specifically, if the applied force is zero, the 

acceleration cannot be non-zero 
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3.  Linear Motion under a Constant Force 
3.1. Analytical solutions can be found for a few problems, in particular for rectilinear motion. For linear motion the 

three vectors in the equation of motion become co-linear, and the equation reduces to the scalar equation 
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Treating this equation as a quadratic in the acceleration and noting that positive forces give positive acceleration  
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3.2  Consider a constant force. Rearranging the above and integrating 
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The integrands in these two equations are reduced to rational algebraic functions by the substitution 
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 Carrying out the indicated integrations and reverting to the original variables 
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where  

0v/m4F =τ                                                                        (3.7) 

Introducing the dimension-less variables F/mxX,/tT 2τ=τ=  the graph obtained is presented in Fig2.  
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4 The Relativistic Equation of Motion 

4.1. The relativistic equation of motion is now derived in the covariant 4-tensor notation of relativity.  Ensuring that the 

terms of the equation are 4-tensors guarantees that the equation is invariant under a Lorentz transformation.  All 4-

tensors are denoted by capitals, and 3-vectors now by bold face lower case letters.  Introducing T as the proper time, the 

equation of motion for a non-radiating particle is 

                                      µFdT/dPµ =                                                                        (4.1) 

where P
µ
 is the 4-momentum and F

µ
 the 4-force, and this may be written displaying the space-like and time-like 

components 
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where p is the 3-momentum 

                                             vvp 0mm γ==                                                                (4.3) 

Figure 1    Displacement vs time 



 4 

and it is to be noted that the time-like component of the 4-force is the rate at which work is being done by the force on 

the particle.  To modify the equation of motion a 4-vector is introduced that represents the momentum not acquired by 

the particle by virtue of the particle radiating, 

µµ =+ FdTdPdTdP rad
µ //                                                         (4.4) 

Note that the 4-velocity and 4-acceleration are given by 
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The magnitude of the squared acceleration is 
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The 3-force then becomes  
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The 4-force is 
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Extracting the space-like components and making the velocity explicit 
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5  The Stationary State Hypothesis 
5.1 The classical equations of motion for charged particles imply that all accelerated motion results in 

radiation and steady states can only be maintained by an input of energy, stationary states cannot exist.  But classical 

physics has examples of stationary states, the iconic model being the L-C circuit.  The relevant parameter in this case is 

imaginary, and this suggests that introduction of the imaginary unit into the equation of motion for a charged particle 

will result in stationary state solutions.  This is the Stationary State Hypothesis, and the idea is now pursued with some 

interesting results. 

6  The N-R Stationary State Equation of Motion 
6.1  The stationary state equation is  
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The simplest stationary state is that of the electron with no forces acting, and accordingly we look for solutions to 
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The simplest form of this equation is for rectilinear motion, when it reduces to 
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and the solution is 
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A complex solution to a 1-D problem indicates a 2-D motion, and in this case it is motion in a circle.  The Stationary 

State Hypothesis has led to a model of a rotating electron! Note that this is in contrast to the standard model that insists 

that the angular momentum of an electron is a ‘purely quantum effect’. 

6.2 To confirm this really is the case we now consider two-dimensional motion and we write 

iyxz +=                                                                      (6.5) 

Substituting in the equation of motion, the solution ultimately reduces to 
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The motion is circular with constant speed v0 and radius v0τ, and we observe that this motion is consistent with the 

‘zitterbewegung’ of quantum mechanics.  If this solution is to represent an electron, the associated parameters must 

agree, and so we attempt to match the angular momentum 
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Assuming m0 to be the rest mass of the electron, the velocity is 
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and we see that a relativistic treatment is necessary. 

7  The Relativistic Rotating Electron 
7.1 The electron is now seen, on this model, as a point charge moving at relativistic speeds.  Accordingly the 

observed rest mass must be written as 
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where mi is an intrinsic mass, assumed to be made up of a mechanical mass mm, together with an electromagnetic mass, 

mem.  Heitler [2] discusses the need to consider mechanical mass for an electron, ‘we must ---attribute to the electron a 

mechanical inert mass----’.  

7.2 The SS equation of motion with zero applied force is  
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Assuming a circular motion as indicated by the non-relativistic solution, the equation reduces to  
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Making the replacement r z→  the equation has the solution 





















−−









−

=
i

2/3

2

2

0

2/3

2

2

0

i0

τ

t

c

v
1i

c

v
1

τiv
z exp

                                                 (7.4) 





















−−=

i

2/3

2

2

0

0
τ

t

c

v
1ivz exp&                                                       (7.5) 

and so 
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8  The Electron Rotational  Velocity 

8.1 The angular momentum of the electron is 
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Equating the magnitude to the known value of the electron angular momentum 
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on noting that 00ii
τmτm = .  Introducing the fine structure constant 
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Solving the quadratic for v0, for v0<c  
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where α has been taken as given by α-1
=137.035999070=1/7.297352570.10

-3 
[5]

    

9. The Electron Angular Velocity 

9.1 The electron angular velocity is given by 
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From 8.5 
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The quantum mechanical result for the frequency of the ‘Zitterbewegung’ is 
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implying that the Dirac equation assumes that the mass of the electron is all electromagnetic. 

10  The Electron Rotation Radius 
10.1 The rotation radius for the electron is given by 
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This reduces to 
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Introducing the Compton Wavelength via the relation 
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the radius is given by 
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This result is consistent with the uncertainty principle, the uncertainty of the momentum being ωmr2  and the 

uncertainty in position r2  giving 
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11  The Electron Magnetic Moment 
11.1  The magnetic moment is the turning force per unit magnetic flux density 

B
µn̂rvµ ==×=
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the Bohr Magneton. 

12 The Electric Circuit Analogue 

12.1 The Steady State hypothesis was supported by the analogy with an LC circuit. If we consider a capacitor 

discharging into a parallel LR circuit, the voltage across the inductor has a time constant                                                                                                                                      
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Allowing the resistance to go to ∞ reduces this to 
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which is saying that in the stationary state radiation is inhibited.  The analogy can be pursued further by analysing the 

current in a single turn loop and taking for the capacitance the only possibility, the capacitance of the electron 

considered as a sphere of radius κ.re, where κ is a constant to be determined.  We have [3] 
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where a is the loop radius and b the conductor radius, here taken to be the electron radius.  The capacitance is taken to 

be 
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where a0 is the Bohr radius and cηe  is the electron velocity.  Equating the two expressions for the angular frequency 
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Squaring, inverting and cancelling common factors 
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where 

                                                                                   95189560380
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A numerical solution gives 

125570591.2=κ                                                          (12.8) 

where the value of α is as given in §8. 

13 The Steady State Hypothesis Applied to the Hydrogen Atom                                                                      
13.1 The velocity of electrons within atoms is of order αc suggesting that a non-relativistic treatment would be 

adequate.  However the precision of the prediction of physical constants involved requires a relativistic treatment. The 

complexity of the relativistic equation of motion is such that an approximate procedure is necessary.  This can be 

achieved in two ways: a non-relativistic solution can be corrected for relativistic effects and the relativistic equation can 

be simplified by introducing the non-relativistic solution.  Both procedures are presented below to show consistency 

between the two approaches. 

14.  The Non-Relativistic Stationary State Equation 

14.1 The non-relativistic stationary state vector equation of motion for an electron in the field of a proton is 
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Looking for a circular orbit, put 
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where l is an integer.  Setting l =1 and substituting into 2.1 
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The discriminant is<0 and so the equation has three real roots.  Noting that the constant is <<1 and setting r=sxa0, a0 

being the Bohr radius, we have an approximate solution 
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where α is the fine structure constant and s is a constant.  Discarding the –1 solution, this gives 
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 An improved approximation can be obtained by putting δωω 0 +=  into 2.3 retaining only first order terms in δ, the 
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 This then gives for the ground state 
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and the orbital speed is 
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Imposing the requirement that the orbital angular momentum of the ground state is h  

h=






 α

±
α −

−

3

s
1c

a
s.asm

32/3

0

2/32
0

2
0                                              (14.9) 

which reduces to 

1
3

s
1s

32/3
2/1 =







 α

±
−

                                                       (14.10) 

This has the approximate solution 








 α
±≅

3

2
1s

3

                                                               (14.11) 

The velocity in the ground state is then, retaining terms to α
3
 in the individual expansions 

cc
3

1
3

1
3

3

2
1

1c
3

2
1v

33

3

2/3
2/3

2/1
3

α±≅α






 α
+







 α
−±≅
























α







 α
±

±α






 α

±±=

−

−

            (14.12) 

and the angular frequency is 

0

orb
a

cα
≅ω                                                                           (14.13) 

14.2    For a true stationary state the trajectory should be stationary, and this requires that the relative rotation period 

should be commensurate with the orbital period, that is, there should be an integral number of revolutions in a period of 

the orbit. Imposing this condition on the non-relativistic approximation gives 

106834031.2562
α

2η

αη

2η

cη

a

αa

c2η

ω

ω
N

2

2
e

orb

2
e

orb

0

0

2
e

orb

e ====













==                                (14.14) 

14.3    The orbital speed will modify the rotation velocity, the two needing to be combined relativistically.  The sum is 

given by [2]  



 9 









+

+
=⊕=

21

1

c
1β

β

21

121
21

.vv

v.vΦ
vvw

                                                          (14.15) 

where Φ is the dyadic 

( )
vvIΦ

2
v

1β −
+=                                                       (14.16) 

The change to the spin period will be given by the ϕ̂  component, and so we put 

 

φ̂αcsinφφ̂cη 2e1 == vv                                              (14.17) 

 

The rotation velocity and frequency are given by  

α

3

1
α

3
1

c

v
e

e

−+

==η                    
0

2
e

0
2

2
0

e
αa

2cη

3τ

4α

c

v
ω ==                              (14.18) 

and we have on making use of the above dyadic 

sinφαη1

sinφ
η

α
1

η

η'

e

e

e

e

−

−

=                                                                  (14.19) 

 

This correction varies as the electron rotates, and so an average is taken.  

,20: π→φ                                                                (14.20) 

   
( )∫ −









−

=
′

π

φ
φη

φ
η

πη

η
2

0 e

ee d
sinα1

sin
α

1

2

1

e

                                                          (14.21) 

We have chosen to subtract the orbital velocity.  However the integral depends only on the even powers of the 

expansion and the same even powers are obtained for the sum of the velocities.  The result to 4
th

 order in α is                                                  

( )

























−−−=

′
2

2
2
e

2
e

4

3
11

2

α
1

ee η

α
η

η

η
                                                       (14.22) 

 

Conservation of angular velocity requires that the rotation radius be increased by the same factor. 

14.4 Imposing the stationary state condition 

       

3

e

e

2

2
e

3

e

e

orb

2
e

orb

e

η

η

α

2η

η

η

αη

2η

ω

ω
N













 ′
=







 ′
==                                               (14.23) 

i.e. 

   ( )
3

2

2
22

2

2

orb

e

4

3
11

2

1
1

2

ω

ω
N


























−−−==

e

e
e

η

α
ηα

α

η
                                          (14.24) 

Evaluating using α=7.297352570.10
-3

 [4], N=34031.000823.  

14.5  The calculations have so far ignored the magnetic fields of the electron and proton spins.  The energy of the 

electron due to the magnetic field of the proton is 

E
a2

U
3
0

0pe
δ=

π

µµµ
−=                                                              (14.25) 

where µe , µp are the magnetic moments of the electron and proton respectively. Dividing by the energy of the ground 

state and simplifying 

8

p

e2 10.90015941.2
m

m

E

E −=α=
δ

                                                  (14.26) 

It is readily shown that the fractional reduction in orbit radius is equal to δE/E, resulting in an increased orbital angular 

velocity, the increase being given by 1+δE/E.  The formula for N is now 

( )












−

























−−−==

p

e

e

e
e

m

m2

3

2

2
22

2

2

orb

e 1
4

3
11

2

1
1

2

ω

ω
N α

η

α
ηα

α

η
                        (14.27) 

 The corrected value for N is then 



 10 

00016.034031)10.90015941.21(000823.34031N 8 −=−= −x                            (14.28) 

It seems reasonable to accept this as an integer and we note that it is a prime.  In general where the orbit radius is 0rl  

34031N 3/2
ll =                                                                 (14.29) 

We have that p0 is an integer and so l must be a perfect square and moreover it must also be an integer, say n
2
, as 

fractional values would require 34031 to have factors. 

14.6 In general 









−=

3

αn
1

an

αc
ω

33

0
3orb                                                           (14.30) 

The value of r0 is modified to maintain the angular momentum 
1

32/3

0
2

0
3

αs
1anr

−
−









−=                                                        (14.31) 

The orbital velocity is then 

n

αc
vorb =                                                                   (14.32) 

The potential energy is  









−−=

3

3

2

22
0

pot
3n

α
1

n

cαm
E                                                  (14.33) 

and the kinetic energy is 









+=−

−

=
2

2

2

22
02

0

2

2

2
0

kin
n

α

4

3
1

2n

αcm
cm

n

α
1

cm
E

                                 (14.34) 

To 4
th 

order in α, the total energy is 









−−=

2

2

2

22
0

tot
4n

3α
1

2n

αcm
E                                              (14.35) 

15  The Zeeman Effect  
15.1 The equation of motion for a stationary state with an applied magnetic field becomes 

Bvrvv ×
m

q
  +    

r

k
 -   =   

v

 v
iτ +  

0
32

2
&

&                                       15.1       

For 2-D circular motion we may write 
tωi

0er=r                                                                  15.2 

With this substitution the equation becomes 

 
r

k
  = ω

m

qB
  -    ωτω

3
00

2+                                                      15.3 

This reduces to 

ξ  = νξ  -  ξ  +  ξ
2

0

23
                                                             15.4 

where 

τωξ =           and             
0

0

m

qBτ
ν =                                                15.5 

We may again make the approximation 

0  ~ ξ3                                                                        15.6 

and the equation becomes 

0  ~  ξ  -  νξ  -  ξ
2

0

2
                                                             15.7 

Solving this equation  

2

4  +      
  =  

2
0

2 ξνν
ξ

±
                                                       15.8 

For weak fields we may assume 

ξ2  » ν
0

                                                                15.9 

and we have 

2

ν
  +  ξ    =  ξ 0±                                                         15.10 
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Taking the modulus and replacing ν  and 0ξ , 

    
0

0
2m

qB
    ω  =  ω ±                                                            15.11 

This is the correct quantum mechanical result for the two new levels introduced by the magnetic field. 

16. Perturbed Orbits 

16.1    More general orbits may be considered by allowing the radial component to be a function of time, 

{ }θiexpr=r                                                                   16.1 

Repeated differentiation then gives 

{ } θieθrir &&& +=r   ( ){ } iθ2 eθrθriθrr &&&&&&&&& ++−=r                                       16.2  

It is assumed that the perturbation removes the electron from the stationary state.  Inserting these results into the 

equation of motion   

( ) ( )
2

0

2
2

rm

e
)θrirA(τθr2θriθrr −=++++− &&&&&&&&&                                     16.3 

where 

( ) ( )[ ]
[ ]222

222

θrr

θrθrθrr
A

&&

&&&&&&&

+

++−
=                                                       16.4   

Separating the real and imaginary parts 

2
0

2
2

rm

e
rτAθrr −=+− &&&&                                                         16.5 

0θArτθrθr =+− &&&&&
                                                               16.6  

Eliminating τ 

2
0

2
2

rm

e
r

θr

θr2θr
θr-r −=

+
− &

&

&&&&
&&&                                                    16.7 

We now look for a decaying solution and put ( )θexprr a −= , where ra is an arbitrary initial radius, with the result that 

2/3

2

1
θ 








== θω e

r

a

a

o
o

&                                                       16.8 

and we ultimately have 
2/3

2/3

o
a

22

3ω
1rr























−= t

r

a

a

o                                                      16.9 

where 3
00

22
o r/meω = .   

16.2  If we now consider a small positive displacement from ra=ao we have  

( ) ( )
2/3

3/2
oo tδ1ω

22

3
1δ1ar 








+−+= −

                                      16.10 

The time to return to the stationary state is then 

0
g

ω

δ
2t ≈                                                                        16.11 

and the stationary state is stable to small positive displacements. 

16.3 For negative displacements, consider an infinitesimal displacement from the state with n=2.  We then have 

ra=4a0  which, substituting in 16.9 leads to 
3/2

g0tω
216

3
141









−=                                                           16.12 

Solving for the time to reach the ground state 

[ ] 0
0

2/3
g 1.05T

3ω

216
41t ≈−= −                                                               16.13 

16.4 The rate of energy emission during the transition from the n=2 state to the ground state is given by 

( ) ( )[ ]222
0 θr2θrrτmε &&&&&& +−=                                                      16.14 

Substituting from the above solution and integrating     

∫






 ++

=
gt

0

8/3

4/32/3

2

2
0

2
00 dt

u

u4u20

64

ωaτmε                                        16.15 
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where 









−= tω
216

3
1u 0                                                       16.16 

Carrying out the integration 

2
0

5
3
0

2
00 cm

15.83

α
ωaτ47.494mε ==                                     16.17 

Comparing this with the difference in energy between the levels 

93 10.70168.0 −≈=
∆

α
ε

E
                                               16.18 

This low value of the fraction of energy radiated during the transition indicates that the majority of the energy is 

radiated on entering the ground state.  If this energy is emitted as one photon, it would correspond to a frequency 

of~1.6.10
8
 Hz, or a wavelength of ~1.9 m.  This could be the basis of an experimental check on the theory. 

17.  The Relativistic Stationary State Equation 

17.1 The relativistic stationary state equation of motion for the electron under the central 

field of a proton is 

( )
3

0

2

2

2

2
2

2

2

2

2

0

1/2

2

2

0

rm

e

v

c

v
1c

c

v
1

iτm

c

v
1

m

dt

d rvvv.
v.v

v
−=

































−

+









−

+









−

&
&&                               17.1 

Inserting the trial solution for circular motion 

{ }tiωexpr0=r                                                                     17.2 

and setting r0=sa0 reduces the equation to 

3
0

3
0

2

2

2

22
0

2

3

1/2

2

22
0

2

2

asm

e

c

as
1

τω

c

as
1

=








 ω
−

+








 ω
−

ω

                                              17.3 

Multiplying by τ
2
 

( ) ( )
3

6

2/1

2

2
0

22

2

2

2

2
0

22

3

s9

4

c

as
1

c

as
1

α
=








 ω
−

ωτ
+








 ω
−

ωτ

                                             17.4 

This has the approximate solution 

( )
3

6

2/1

2

2
0

22

2

s9

4

c

as
1

α
=








 ω
−

ωτ

                                                          17.5 

yielding 

0
2/3

22

2/3

3
4/1

2

2
0

22

as

c

4

s
1

s3

2

c

as
1

α







 α
−±≅

τ

α







 ω
−±≅ω                                       17.6 

This in turn gives 

c
4

s
1sv

22
2/1 α







 α
−= −

                                                           17.7 

Noting that the orbital angular momentum is h  

h=






 α
−α

4

s
1cssam

22
1/2-

00                                                       17.8 

Noting that cam 00α=h  

2
1

4
1s

2
2

2 α
+≅







 α
−=

−

                                                       17.9 

The velocity is then 

                                                                       






 α
−α≅α







 α
+







 α
−=

16
1cc

4
1

4
1v

422

                                          17.10 
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agreeing to first order in α with the NR approximation.  Writing orbηv/c ′=  and evaluating, orbη′ =7.297352564.10
-3

.  

Replacing α by ηorb in the appropriate position in 14.22                                                

( )


























 ′′
+′−

′
−′=′

4

ηη3
1η1

2

η
1ηη

2
e

2
orb2

e

2
orb

ee                                              17.8 

where eη ′ is the relativistic average.  The formula for N is then 













−
′′

′
=

p

e2

orbe

3
e

m

m
α1

ηαη

η
2N  = 34031-0.00016                                       17.9 

as before,                                                

17.2    The agreement to 10 significant figures is indicative of a consistent approach to the problem.  Regarding the 

equation for N as an equation for α, given N=34031, leads to a value of α of 7.2973525528.10
-3

 from the NR 

calculation) with R correction, and 7.2973525529.10
-3

 from the approximate R calculation. The QED result being 

7.297352570(72) 10
-3

, with a  1-σ value of 7.2973525498.10
-3

, makes the above prediction ~σ from the Gabrielse result. 

17.3  The formula for α  implies that for it to have changed over the lifetime of the universe, the ratio of electron to 

proton mass would also have to have changed. 
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