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1. Introduction 

 

 In representing the solution to electromagnetic problems (e.g., radiation, scattering, propagation) in various 

media, there are various possible approaches.  One can solve differential equations appropriate to special geometries 

(e.g., waveguides, cavities).  One can formulate integral equations over antennas and scatterers using appropriate 

Green functions, usually of the free-space variety.  One can discretize the Maxwell equations in frequency and time 

domains for a numerical (computer) solution to geometries and media with intractable analytic solutions.  

Symmetries can also be used to reduce the solution difficulty [16].  The above can be elaborated in various ways 

using various mathematical techniques [3-5, 7, 12, 15]. 

 

 Another potential approach involves the path integral introduced by Feynman [6, 11].  This has been 

introduced into electromagnetics (e.g., [8, 9]).  Intuitively, the path integral represents the electromagnetic fields at 

some point in space by integrals over other portions of space along all possible paths between each coordinate, r
→
′ , 

to the position, r→ , of interest.  Of course, causality can be invoked to limit the paths of integration to previous 

times, and to regions of space where there are nonzero fields and sources within a transit time on a path from r
→
′  to 

r→ . 
 
 Given that there are established valid representations of electromagnetic fields, it is the purpose of this 

paper to clarify the path integral representation in terms of these other representations. 
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2. Green Function Representation for Uniform Isotropic Media 

 

 2.1 Spatially dependent constitutive parameters 

 

  Start with the Maxwell equations and constitutive relations as 

 

 

( , )( , ) ( , )

( , )( , ) ( , )

( , ) ( ) ( , )

( , ) ( ) ( , )

h

e

B r tE r t J r t
t

D r tH r t J r t
t

D r t r E r t

B r t r H r t

ε

μ

→ →→ →→ →

→ →→ →→ →

↔ →↔→ → →

→← ↔→ → →

∂
∇ × = − −

∂

∂
∇ × = − +

∂

=

=

i

i

 (2.1) 

 

Here we have taken ε
↔

 and μ
↔

 as functions of space, but not of frequency.  The medium conductivity (if any) can 

be handled by the transformation 

 

 ( , ) ( , )( ) ( , ) ( )D r t E r tr E r t r
t t

σ ε
→ →→ →→↔ ↔→ → →∂ ∂

= +
∂ ∂

i i  (2.2) 

 

One can include σ
↔

 in a frequency-dependent ε
↔

.  It can also be included in the source term eJ
→

.  For symmetry 

one could also include a magnetic conductivity, or lump it in hJ
→

.  This leaves eJ
→

 and hJ
→

 as source terms. 

 

 2.2 Uniform isotropic media 

 

  Specialize now to the case of uniform isotropic media given by 

 

 ( ) 1 , ( ) 1r rε ε μ μ
↔ ↔↔ ↔→ →

= =  

        
1 0 0

1 1 1 1 1 1 1 0 1 0
0 0 1

x x y y z z
↔ → → → → → →

⎛ ⎞
⎜ ⎟= + + = ≡⎜ ⎟
⎜ ⎟
⎝ ⎠

 identity 3 x 3 dyadic (2.3) 

 

Now the Maxwell equations take the form 
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( , )( , ) ( , )

( , )( , ) ( , )

h

e

H r tE r t J r t
t

E r tH r t J r t
t

μ

ε

→ →→ →→ →

→ →→ →→ →

∂
∇ × = − −

∂

∂
∇ × = −

∂

 (2.4) 

 

This can be cast in 6 x 6 matrix form as 

 

 
1 1

1 1
( , ) 0 ( , ) ( , )

0( , ) ( , ) ( , )

e

h

E r t Z E r t J r t
t ZZ H r t Z H r t Z J r t

ε

μ

→ → →→ → →− −

→ − − → →→ → →

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∇×⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ − ∇×⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

                       Z ≡  convenient scaling constant with dimensions of impedance  (2.5) 

 

  If now we choose 

 

 
1/ 2

Z μ
ε
⎡ ⎤≡ ≡⎢ ⎥⎣ ⎦

 wave impedance of medium (2.6) 

 

the Maxwell equations can be reduced to a single 3 x 3 matrix equation for the combined field with 

 

 ( , ) ( , ) ( , )qE r t E r t q j Z H r t
→ → →→ → →

= + ≡ combined field 

 ( , ) ( , ) ( , )q e h
q jJ r t J r t J r t
Z

→ → →→ → →
= + ≡  combined current density  (2.7) 

 1q = ± ≡ separation index 

 

giving 
 

 ( , ) ( , )q q
q j E r t q j Z J r t
c

→ →→ →−⎡ ⎤∇× =⎢ ⎥⎣ ⎦
 

 [ ] 1/ 2c μ ε −≡ ≡  speed of light in medium  (2.8) 

 

for the combined Maxwell equation. 

 

 2.3 Green functions 

 
  Now we can exhibit appropriate well-known Green functions for uniform isotropic media.  First we 

have the scalar form 
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| |

0( , )
4 || ||

r reG r r s
r r

γ

π

→→ ′− −→→

→→
′− =

′−

�  

 s
c

γ ≡ ≡  propagation constant 

 s jω= Ω + ≡  Laplace-tranform variable or complex frequency 

 ~ ≡  Laplace-transform (two sided) over time, t  (2.9) 

 

in frequency-domain form.  In this form, Z and c can be frequency dependent.  In turn, this can be used to calculate 

vector and scalar potentials (Lorentz gauge) as 

 

 

0

0

0

0

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

e e
V

e e
V

h h
V

e h
V

A r s G r r s J r s dV

r s G r r s r s dV

A r s G r r s J r s dV

r s G r r s r s dV

ρ

ρ

→ →→ →→ →

→ → →→ →

→ →→ →→ →

→ →→ →

′ ′ ′= −

′ ′ ′Φ = −

′ ′ ′= −

′ ′ ′Φ = −

∫

∫

∫

∫

�

�

�

�

� �

�

�� �

 

 0 ( , ) ( , )e eJ r s s r sρ
→ → →

= ∇ +
�

�i  (electric current continuity) (2.10) 

 0 ( , ) ( , )h hJ r s s r sρ
→ → →

= ∇ +
�

�i  (magnetic current continuity) 

 

In time domain we have 
 

 0
1 | |( , )

4 | |

r rG r r t t t t
c

r r
δ

π

→→
→→

→→

⎛ ⎞
′−⎜ ⎟′ ′ ′− − = − −⎜ ⎟

⎜ ⎟′− ⎝ ⎠

 (2.11) 

 
The potentials are easily given time-domain form by noting that convolution with a delta function is merely a time 

shift (delay, enforcing causality). 

 
  The fields are now calculable from 
 

 

1( , ) ( , ) ( , ) ( , )

1( , ) ( , ) ( , ) ( , )

e he

e hh

E r t r t A r t A r t
t

H r t A r t r t A r t
t

ε

μ

→ → →→ → → →

→ → →→ → → →

∂
= −∇Φ − − ∇×

∂

∂
= ∇× −∇Φ −

∂

 (2.12) 
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In combined form we have 

 

 

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

q e h

q e h

q q qq

A r t A r t jqZ A r t

r t r t jqZ r t

E r t r t A r t jqc A r t
t

→ → →→ → →

→ → →

→ → →→ → → →

= +

Φ = Φ + Φ

∂
= −∇Φ − + ∇×

∂

 (2.13) 

 

Additional details can be found in [16]. 

 

 2.4 Dyadic Green functions 

 

  One can go directly from the currents to the fields via the dyadic Green functions [2, 7].  These are 

constructed as 

 

2
2 1

0

3 2 3 2 1
0

( , ) 1
4

( ; ) 2 2 1 1 1 1 1
4

1 ( ) 1
3

R

R R R R

G r r s e

G r r s e

r r

ζ

ζ

γ ζ ζ
π

γ ζ ζ ζ ζ ζ
π

δ
γ

→→→ − − −

↔ ↔→ → → →→→ − − − − − −

↔→→

⎡ ⎤′∇ − = − −⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤′− = − − + + + −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

′+ −

�

�

 (2.14) 

 

where the last term corresponds to a principal-value integral using a spherical small volume centered on 0r r
→→ ′− = .  

Here we have 

 

 
| | , 1

| |
R

r rR r r
r r

Rζ γ

→→→→→

→→

′−′= − =
′−

=

 (2.15) 

 

We also have 

 

 00( , ) ( , )G r r s G r r s
↔→ →→ →′ ′∇ − × = ∇× −
�

� i  (2.16) 

 

In combined form we have 
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 0 0( , ) 1 ( , ; )q
qjG r r s G r r s
γ

↔ ↔ ↔→ →→ →⎡ ⎤
′ ′− = − ∇×⎢ ⎥

⎢ ⎥⎣ ⎦

� �
i  (2.17) 

 

  The fields are then found from 

 

 

0

0

0

0

0

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

qq q
V

e
V

h
V

e
V

h
V

E r s s G r r s J r s dV

E r s s G r r s J r s dV

G r r s J r s dV

H r s G r r s J r s dV

s G r r s J r s dV

μ

μ

ε

→ ↔ →→ →→ →

→ ↔ →→ →→ →

→→ →→

→ ↔ →→ →→ →

↔ →→ →→

′ ′ ′= − −

′ ′ ′= − −

′ ′ ′− ∇ − ×

′ ′ ′= ∇ − ×

′ ′ ′− −

∫

∫

∫

∫

∫

� � �

� � �

�

� � �

� �

i

i

�

i

 (2.18) 

 

  Like (2.11) the dyadic Green functions can also be placed in time domain to give a convolution 

integral over the currents in (2.18).  However, noting that 1s−  corresponds to a temporal integral (in addition to the 

convolution and time differentiation) the resulting expressions, while straightforward, are more elaborate. 



8 

3. Maxwell Equations in Inhomogeneous, Anisotropic Media 

 

 The Maxwell Equations (2.1) now become 

 

 
( , ) ( ) ( , ) ( , )

( , ) ( ) ( , ) ( , )

h

e

E r t r H r t J r t
t

H r t r E r t J r t
t

μ

ε

→ → →→ → → →↔

→ → →→ → → →↔

∂
∇× = − −

∂

∂
∇ × = +

∂

i

i

 (3.1) 

 

This can be cast into a single 6 x 6 matrix equation as 

 

 

( )

1 11

1 1

,

( , ) 0 ( ) ( , ) ( ) ( , )

( , ) ( , )( ) 0 ( ) ( , )

0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0

e

h

n m

E r t Z r E r t r J r t
t

Z H r t Z H r tZ r Z r J r t

ε ε

μ μ

→ ↔ → →− −→ → → → →↔ ↔−

→ → →↔ →− −→ → →↔ ↔

↔

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟∇×⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠− ∇×⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛
⎜ ⎟ ⎜ ⎟⎜= = =⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜
⎝ ⎠ ⎝ ⎠⎝

i i
:

i i

     (zero  dyadic)
⎞
⎟
⎟
⎟
⎠

 (3.2) 

 

where Z is a normalizing impedance which we can choose at our convenience.  This is already in a form which looks 

like a product integral [13], except that the matrix to be integrated is a differential operator (with respect to space).  

Conductivities (electric and Magnetic) can also be included. 

 

 Attempting to find a combined-field form as in (2.7) we can write 

 

 ( , ) ( , )( , ) ( ) ( ) ( , )q q
H r t E r tE r t r qjZ r qjZ J r t

t t
μ ε

→ →→ → →→ → → → →↔ ↔∂ ∂
∇× + − =

∂ ∂
i i  (3.3) 

 

This does not combine as neatly as before.  However, let us try to make this equation only involve qE
→

 and qJ
→

.  

So we set 

 

 2

1 1 2

( ) ( , ) ( ) ( , ) ( ) ( , )

( ) ( , ) ( ) ( , )

( ) ( ) ( ) ( ) 1

qr H r t qjZ r E r t qjZ r E r t

r H r t Z r H r t

r r r r Z

μ ε ε

μ ε

μ ε ε μ

→ → →↔ ↔ ↔→ → → → → →

→ →↔ ↔→ → → →

↔− −↔ ↔ ↔ ↔→ → → →

− = −

=

= =

i i i

i i

i i

 (3.4) 
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This is an isoimpedance medium with wave impedance Z which is position independent.  This is contrasted to the 

usual isorefractive medium for which the product με  (or square of the refractive index) is position independent. 

 

 We can now write a first order (in time) 3 x 3 matrix differential equation as the combined Maxwell 

equation 

 

 ( , ) ( , )q qqjZ E r t qjZ J r t
t

ε
→ →→ →↔⎡ ⎤∂

∇× − =⎢ ⎥
∂⎢ ⎥⎣ ⎦
i  (3.5) 

 

In this special case of an isoimpedance medium the problem is reduced to 3 x 3 instead of 6 x 6.  Let us remember 

this in the development that follows.  At this point we can note that some cases of isoimpedance media ( /μ ε  

independent of position) have been encountered in examples of transient lenses [15]. 

 

 Rearranging (3.5) as 

 

 
1 11( , ) ( ) ( , ) ( ) ( , )q q qE r t qjZ r E r t r J r t

t
ε ε

→ → ↔− −→ → → → →↔ ↔−∂
= ∇ × −

∂
i i  (3.6) 

 

we have a 3 x 3 first-order differential equation in t, analogous to the 6 x 6 form in (3.2).  Both can be treated in the 

same general way. 
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4. Propagating Electromagnetic Fields 

 

 For notational convenience we first have 

 

 

C

0

C 0 C

0

T
z y

z x

y x

↔

↔ ↔

∇× =

∂ ∂⎛ ⎞−⎜ ⎟∂ ∂⎜ ⎟
⎜ ⎟∂ ∂

= − = −⎜ ⎟∂ ∂⎜ ⎟
∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

i

                       (skew symmetric) 

 
1 11 1

1 1

( ) ( ) C

( ) ( ) C

Z r Z r

Z r Z r

ε ε

μ μ

↔− −→ →↔ ↔− −

↔− −→ →↔ ↔

∇ × =

− ∇ × = −

i i i

i i i

 (4.1) 

 

This lets us write our operators in dot product (contraction) form.  For (3.2) we can then define 

 

 

11
,

1 ,

11
,,

1,

,

O ( )
( )

( ) O

O ( ) C
( ) ( )

( ) C O

( , )

( , )

n m

n m

Z r
r

Z r

Z r
r r

Z r

E r t
t

Z H r t

υ υ

υ υ
υ υ

υ

ε

μ

ε

μ

↔ − →↔− →

↔− ′→↔

↔ ↔− →↔−↔→ →
′

↔ ↔−′ →↔

→ → ↔

→ →

⎛ ⎞
⎛ ⎞⎜ ⎟ ⎛ ⎞∇× ⎜ ⎟⎜ ⎟ = Ξ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎜ ⎟− ∇×⎝ ⎠

⎛ ⎞
⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟Ξ ≡ Ξ ≡⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎜ ⎟−⎝ ⎠

⎛ ⎞
⎜ ⎟∂

= Ξ⎜ ⎟∂ ⎜ ⎟
⎝ ⎠

i
: :

i

i

i

1

1

( , ) ( ) ( , )
( )

( , ) ( ) ( , )

e

h

E r t r J r t
r

Z H r t Z r J r t

υ
ε

μ

→ →−→ → →↔
→

′
→ → →− → →↔

⎛ ⎞⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

i
:

i

 (4.2) 

 

giving a compact form for the first-order differential equation in time.  Similarly for the isoimpedance medium (3.6) 

becomes 

 

 

11

11

1

( ) ( )

( ) ( ) C

( , ) ( ) ( , ) ( ) ( , )

q

q

q q q q

qjZ r r

r qjZ r

E r t r E r t r J r t
t

ε

ε

ε

↔− → →↔−

↔ ↔−→ →↔−

→ ↔ → →−→ → → → →↔

∇× = Ξ

Ξ =

∂
= Ξ −

∂

i i

i

i i

 (4.3) 
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Now (4.2) and (4.3) have the same form except that the first is a supermatrix (6 x 6) equation while the second is a 

matrix (3 x 3) equation. 

 

 As has been observed [8, 14], one can approach the path integral by finding a propagator (which is different 

from a Green function).  For this purpose we have the general form of the homogeneous differential equation (no 

source currents) as 

 

 
, , ,

,

( , ; , ) ( ) ( , ; , )

( , ; , ) propagator

n m n m n m

n m

P r r t t Q r P r r t t
t

P r r t t

→ →→ → →

→→

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ′ ′ ′ ′=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

′ ′ ≡⎜ ⎟⎜ ⎟
⎝ ⎠

i

 (4.4) 

 

The matrix operator ( , ( )n mQ r→ ), can be interpreted as either the 6 x 6 form in (4.2), or the 3 x 3 form in (4.3).  For 

the solution of (4.4) we first observe that 

 

 [ ],( ( )) (0)
, ,( , ; , ) ( , )n mQ r t t

n m n mP r r t t e P r r
→→ →→ ′ →−⎛ ⎞ ⎛ ⎞

′ ′ ′=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i  (4.5) 

 

By differentiating this with respect to t we can see that (4.4) is reproduced. 

 

 To normalize this we enforce the identity for ,r r t t
→ →′ ′→ →  as 

 

 ( ) (0)
, , ,lim ( , ; , ) 1 ( ) ( )n m n m n m

t t
P r r t t r r P r rδ

→ → →→ → →

′→

⎛ ⎞ ⎛ ⎞
′ ′ ′ ′= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.6) 

 

giving 

 

 ,( ( ))[ ]
, ( , ; , ) ( )n mQ r t t

n mP r r t t e r rδ
→→ →→ ′ →−⎛ ⎞

′ ′ ′= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.7) 

 

as a solution for the propagator. 

 

 By taking a spatial Fourier transform of the delta function we have a representation as 
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[ ]

[ ]

3 [ ]

3 [ ]

( ) 2

2

1 1 1

j r r

V

j r r

V

x y zx y z

r r e dV

e dV

κ

κ

κ
κ

κ
κ

δ π

π

κ κ κ κ

→ →→

→ →→

→→ − ′−

− ′− −

→ → → →

′− =

=

≡ + +

∫

∫

i

i  (4.8) 

 ≡  spatial frequency 

 

The integral over Vκ  is over all possible real values of κ→ , i.e., a triple integral over −∞  to +∞ .  In this form we 

have 

 

 ,( ( ))[ ] [ ]
, ( , ; ) n mQ r t t j r r

n m
V

P r r t t e e dV
κ

κ
κ

→→ →→→→ ′− ′−⎛ ⎞
′ ′− =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ i  (4.9) 

 

While we may think that the exponentials can be combined since any matrix commutes with the identity matrix, the 

matrix operator involves spatial derivatives which do not commute with ,(1 ) [ ]n m j r rκ
→→→ ′−i . 

 

 One can write out the power series as 

 

 ( ),( ( ))[ ]
, ,

1

[ ]1 ( )
!

n m
ppQ r t t

n m n m
p

t te Q r
p

→ ∞′ →−

=

⎛ ⎞′−
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (4.10) 

 

Here ,( ( )) p
n mQ r

→  is not just the pth power, but a successive p-fold operation.  Note that 

 

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

j r r j r r
x

j r r j r r
y

j r r j r r
z

e j e
x

e j e
y

e j e
z

κ κ

κ κ

κ κ

κ

κ

κ

→ →→ → → →

→ →→ → → →

→ →→ → → →

′ ′− −

′ ′− −

′ ′− −

∂
=

∂

∂
=

∂

∂
=

∂

i i

i i

i i

 (4.11) 

 

This gives for the p = 1 term 
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[ ] [ ]

[ ] [ ]

11 [ ] 1

1 1[ ]

0

( ) C ( ) 0
0

0

( ) C ( ) 0
0

z y
j r r

z x

y x

z y
j r r

z x

y x

t t Z r e j t t Z r

t t Z r e j t t Z r

κ

κ

κ κ

ε ε κ κ
κ κ

κ κ

μ μ κ κ
κ κ

→ →→

→→→

↔ −↔ → →↔′− − −

↔− −↔ → →↔′−

−⎛ ⎞
⎜ ⎟

′ ′− = − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

−⎛ ⎞
⎜ ⎟

′ ′− = − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

i

i

i i

i i

 (4.12) 

 

For the p = 2 term we now have to include 
1
( )rε

− →↔  and 
1
( )rμ

− →↔  in the spatial derivatives as well as 
[ ]j r re κ

→→→ ′−i .  Going to the general pth term this becomes more and more complicated.  While the representation is 

valid, actual computations become more and more tedious. 
 

 For the simpler case of a uniform isotropic medium we have for the 6 x 6 case 

 

 
[ ]

1/ 2
1/ 2

( ) 1 , ( ) 1

, v

r r

Z

ε ε μ μ

μ με
ε

↔ ↔→ →↔ ↔

−

= =

⎡ ⎤= =⎢ ⎥⎣ ⎦

 (4.13) 

 

which now reduces yo the 3 x 3 case as in (3.6) in the simpler form 
 

 
1( , ) ( ) ( , ) ( )

( ) v C

q q q q

q

E r t r E r t J r
t

r qj

ε
→ ↔ → →→ → → →−

↔ ↔→

∂
= Ξ −

∂

Ξ =

i
 (4.14) 

 

In this case we have the propagator 
 

 

[ ]

( )[ ]

1

( )[ ] [ ]

[ ]1 ( )
!

( , ; )

0

( ) v 0
0

q

q

ppr t t
q

p

r t t j r rq
V

p
z yp

p
p z x

y x

t te r
p

P r r t t e e dV

r jq

κ

κ
κ

κ κ

κ κ
κ κ

↔ →

↔ ↔ →→ →

∞ ↔ →′Ξ −

=

↔ →→ ′Ξ − ′−

↔ →

′−
= + Ξ

′ ′− =

−⎛ ⎞
⎜ ⎟

Ξ = −⎜ ⎟
⎜ ⎟−⎝ ⎠

∑

∫ i  

 

0

v 0 [ ]
0

( , ; )

z y

z x

y x

jq t t

q
V

P r r t t e dV
κ

κ κ

κ κ
κ κ

κ

−⎛ ⎞
⎜ ⎟

′− −⎜ ⎟
⎜ ⎟↔ −→→ ⎝ ⎠′ ′− = ∫  (4.15) 
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In this case the exponential series sums in a simple form. 

 

 Letting ( , ( , )n mF r t→ ) represent a 6- or 3-component field vector as in (4.2) or (4.3) we have 

 

 , , ,( , ) ( , ; , ) ( , )
r

n m n m n m r
V

F r t P r r t t F r t dV
→ →→ →⎛ ⎞ ⎛ ⎞ ⎛ ⎞
′ ′ ′ ′=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ i  (4.16) 

 

which is a volume integral, now over space.  This is limited to regions without sources.  By enforcing causality one 

can ensure that the integrals are not extended over regions with sources. 
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5. Green Function 
 

 Rearrange the form of (4.2) and (4.3) as 

 

 , ( ) ( , ) ( , )n m n nQ r E r t J r t
t

→→ →⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ′ ′− =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
i  (5.1) 

 

where ( nE ) represents the 6 x 6 or 3 x 3 form of the fields and similarly ( nJ ) for the source currents.  We have the 

result for the propagator as 

 

 

( ) ( )

,

, , , ,

( ( ))[ ]
,

1 ( ) ( , ; , ) 0

( , ; , ) ( )n m

n m n m n m n m

Q r t t
n m

Q r P r r t t
t

P r r t t e r rδ
→

→→ →

→ →→ ′ →−

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ′ ′− =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
′ ′ ′= −⎜ ⎟⎜ ⎟

⎝ ⎠

i

 (5.2) 

 

 From this we can construct the Green function as [9, 14] 
 

 ( ), ,( , ; , ) ( , ; , )n m n mG r r t t P r r t t u t t
→ →→ →⎛ ⎞ ⎛ ⎞
′ ′ ′ ′ ′= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (5.3) 

 

which satisfies the equation 
 

 ( ) ( ), , , ,1 ( ) ( , ; , ) 1 ( ) ( )n m n m n m n mQ r G r r t t r r t t
t

δ δ
→ →→ → →⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ′ ′ ′ ′− = − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

i  (5.4) 

 

 Now we have the solution for the fields as 
 

 0

0

( , ) ( , ; , ) ( , )

( , ; , ) ( , )

t

n n
V t

V

E r t G r r t t J r t dt dV

G r r t t E r t dV

+ → →→ →

→ →→

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
′ ′ ′ ′ ′ ′=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
′ ′ ′ ′+ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫ ∫

∫

i

i

 (5.5) 

 

where boundary contributions are not included for present purposes.  Here 0t  is some initial time for which we have 

specified the spatial distribution of the fields.  This applies in both 6 x 6 and 3 x 3 cases by appropriate substitution 

of terms from (4.2) and (4.3). 
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6. Interpretation as Path Integral 

 

 To construct a path integral from (5.5), let the region near r
→
′  have no sources, so we can write 

 

 ( , ) ( , ; , ) ( , )n n n n
V

E r t G r r t t E r t dV
→ →→ →⎛ ⎞ ⎛ ⎞ ⎛ ⎞
′ ′ ′=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ i  (6.1) 

 

Where nt  is now our initial time for which the fields are specified.  This is a time-evolution equation for the fields 

for nt t> . 

 

 Let 0t t= , our initial time.  In this case (6.1) reduces to an identify 

 

 0 0( , ) ( , )n nE r t E r t→ →⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (6.2) 

 

Now consider some small time step tΔ  and define 

 

 0   for  1, 2,nt n t t n= Δ + = …  (6.3) 

 

At time 1t  we look out in space away from r→  to r
→
′  near r→  at a distance, given by the μ↔  and ε↔  of the medium, 

from which the fields can propagate from r
→
′  to r→ . 

 

 As in Fig. 6.1A consider some N space points “centered” on r→  (noting possible different propagation 

speeds in the various directions from r→ .  While Fig. 6.1 is illustrated on a planar surface, note that these N points 

are distributed around r→  in three dimensions. These N points are used to approximate the integral over r→  (using 

some appropriate domain surrounding each r
→
′  chosen).  This gives a sum of N terms to calculate the fields at r→ .  

Choose any one of these terms to travel from 1r r
→ →′ =  to r→ .  We have designated the path as 1P .  There are of 

course N possible choices for 1P . 

 

 Now repeat the process.  Take our initial time as 2t .  Start from one of the r
→
′  which we have taken as 1r→  

and calculate the fields here.  As in Fig. 6.1B again take a set of N points around 1r→  which are tΔ  away.  Consider  
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A.  First time/space step in paths 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.  Second time/space step in paths 

 

 

Fig. 6.1  Construction of Paths for Field Propagation 

 

N points 

nearby to r→  N points 

nearby to r→  

N points 

nearby to r→  

r→  

1r→  

1P  

r→  

1r→  
1P  

1P  

2r→  
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any one of these which we can call 2r→ .  The path from 2r→  to 1r→  can now be taken as part of 1P .  (Note that 

2r r→ →
=  is also one possible choice.)  There are N possible choices leading to 1r→ .  With the previous result there 

are now 2N  possible choices for 1P . 
 

 Extending this by induction to an initial time nt  we have nN  possible choices for 1P .  Increasing N to 

better approximate the integral, and taking tΔ  smaller, the number of paths approaches ∞ .  This then is an 

appropriate interpretation of a path integral for the Maxwell equations. 
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7. Equivalence Principle 

 

 Another well-known way to represent fields comes from the equivalence principle [1, 10].  Consider some 

volume eV  bounded by a closed surface eS , as in Fig. 7.1.  Suppose that we have some known solution to the 

Maxwell equations valid in some large portion (or all)) of three-dimensional space as 

 

 ( , ) and ( , )E r t H r t
→ →→ →  (7.1) 

 

There may be sources and the medium may be inhomogeneous/anisotropic. 

 

 The tangential fields on eS  (coordinates er→ ) are given by 

 

 

( , ) 1 ( ) ( , )

( , ) 1 ( ) ( , )

1 ( ) 1 1 ( ) 1 ( )

t e S e e

t e S e e

S e S e S e

E r t r E r t

H r t r H r t

r r r

→ ↔ →→ → →

→ ↔ →→ → →

↔ ↔ ↔ ↔→ → →

=

=

= −

i

i  (7.2) 

 1 ( )S er
↔ →

≡  outward pointing unit vector normal to eS  

 

If we can impose these as boundary conditions on eS , then we can have the same fields as in (7.1) in eV  as in (7.1) 

with no fields or sources outside, but any previous sources inside.  Conversely we can remove fields and/or sources 

in eV  and (7.2) will give the fields in (7.1) outside eV  provided we retain any outside sources. 

 

 For this purpose we can construct equivalent electric ( )e esJ r
→ →  and magnetic ( )h esJ r

→ →  surface current 

density sources on eS .  The tangential components of the fields are discontinuous through the surface Σ  (Fig. 7.2) 

according to 

 

 

( ) ( )

( ) ( )

1

1

e

h

s

s

J H H

J E E

+ −→ → →→
Σ

+ −→ → →→
Σ

⎡ ⎤
⎢ ⎥= × −
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥= − × −
⎢ ⎥
⎣ ⎦

 

 1
→
Σ  = unit vector normal to Σ  pointing to + side (7.3) 
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Fig. 7.1  Field Equivalence Principle for Constructing Fields Either Inside or Outside a Volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.2  Boundary Conditions 
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So for sources in eV  (inside eS ) we have 

 

 
( , ) 1 ( ) ( , )

( , ) 1 ( ) ( , )

e

h

e S e es

e S e es

J r t r H r t

J r t r E r t

→ → →→ → →
+

→ → →→ → →
+

= ×

= − ×

 (7.4) 

 

Reproducing the external fields (with any exterior sources) with no inside fields or sources.  Similarly for no fields 

or sources outside eS  we have 

 

 
( , ) 1 ( , ) ( , )

( , ) 1 ( ) ( , )

e

h

e S e es

e S e es

J r t r t H r t

J r t r E r t

→ → →→ → →
−

→ → →→ → →
−

= − ×

= ×

 (7.5) 

 

 

for the external fields (including any exterior sources). 

 

 If the medium is uniform and isotropic (on the side of eS  of interest), then the Green functions as in 

Section 2 can be used to integrate over these equivalent sources.  Otherwise those in Section 5 can be used, provided 

one can calculate them, perhaps numerically. 

 

 Of course, one can apply the equivalence principle sequentially to a series of closed surfaces eS , 

successive ones being contained inside the previous (perhaps for incoming waves).  Alternately (perhaps for 

outgoing waves) successive eS s  can enclose the previous.  This gives a succession of surfaces, which might be 

considered as a one dimensional kind of path toward the field position of interest.  Compare this to the more 

elaborate path structure represented by the path integral. 
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8. Concluding Remarks 

 

 The intent of this paper has been to explore the path integral as an alternate representation of 

electromagnetic fields.  Besides the Maxwell equations there are various integral representations.  We have long 

been familiar with the use of Green functions to integrate over source currents to give the fields.  One can also 

integrate with free-space Green functions over conduction currents to account for various media 

inhomogeneities/anisotropies. 

 

 The path integral provides a way to integrate over fields from previous times (initial conditions) to find the 

fields at later times.  This can also include integrals over sources.  As the initial time tends to −∞ , the usual Green-

function integral over sources is left.  As an added benefit we have found (Section 3) a special form of 

inhomogeneous/anisotropic medium for which the problem reduces from 6 x 6 matrices to 3 x 3 matrices. 

 

 These representation can also be compared to that from the field equivalence theorem.  In this form the 

fields and sources in a volume can be replaced by equivalent electric and magnetic sheet currents on the boundary 

surface, or equivalently the tangential fields.  While the path integral is based on initial conditions, the equivalence 

principle is based on boundary conditions. 

 

 Which representation one uses is a matter of convenience for the particular problem at hand.  From a 

theoretical point of view, it is interesting that these various representations exist, all giving the correct result.  This 

paper does not consider the relative advantages of the various representations for numerical calculations. 

 

 I would like to thank Robert Nevels for discussions concerning this subject. 
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