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The equation of motion of a classical charged particle is obtained by 

equating the rate of change of momentum acquired, plus the rate of change 

of momentum lost by radiation, to the applied force.  This leads to a non-

linear equation with solutions that are consistent with the conservation of 

energy and the maintenance of causality, two essential requirements   

which are conspicuously absent in both the classical equations of motion 

derived according to Abraham- Lorentz and later by Dirac. The equation is 

first derived non-relativistically and later is expressed in the four-vector 

notation of special relativity.  The addition of one additional assumption 

based on the observation of stationary states and the imposition of certain 

symmetry conditions leads to solutions consistent with quantum 

mechanics.  In particular, consistent models of the electron, the positron 

and the photon are produced.  The energy levels of the hydrogen atom and  

the zero point energy for the harmonic oscillator are also generated.  It is 

shown that the Dirac relativistic quantum mechanical equation for the 

electron leads to a similar model of the electron. A consequence of 

incorporating the new model of the electron into the model of the hydrogen 

atom together with the imposition of certain symmetry conditions leads to 

an implicit formula for the fine structure constant. It is not suggested or 

intended that the above models in any way replace the standard approach 

of quantum mechanics, but merely show that classical physics is not as far 

removed from quantum mechanics as usually appears. 
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I.  INTRODUCTION 

 

1.1   This investigation is concerned with the equation of motion of a classical 

charged particle in which the radiation due to the acceleration is properly accounted 

for.  Previous attempts
[1]

 appear to have lost their way by attempting to produce a 

linear equation, resulting in a third degree differential equation.  This not only means 

that three initial or two initial and a final condition are required, but that we must have 

the particle moving before the force is applied, or we must know the future behaviour 

of the particle.  In addition we have solutions that suggest that particles in zero field 

accelerate to infinity, and even solutions that have the initial appearance of reasonable 

behaviour are found to violate the conservation of energy and the conservation of 

momentum. 

1.2   Classical physics is a set of laws based on observation combined with the 

principles of causality, ie the cause precedes, or is at least concurrent with the effect, 

the conservation of energy, mass-energy in the case of relativistic physics, the 

conservation of momentum, and the conservation of angular momentum.  In addition 

relativity gives a limiting velocity, that of em radiation in free space.  Any derivation 

of equations attempting to account for observations or predict as yet unobserved 

effects must be consistent with these principles, and when velocities are encountered 

that approach the velocity of light, the equations must be formulated in the four vector 

notation of special relativity, and the resulting equations must be consistent with this 

limiting velocity. Any violation of these principles means that the equation is wrong.  

It is argued that the pre-acceleration
[2]

 appearing in the solutions of earlier proposed 

equations of motion occurred over very small time scales, typically of order 10
-24

 

seconds and indicated the breakdown of classical physics.  Classical physics knows 

nothing of quantum limitations, so why should it be inconsistent?  It is true that it may 

give predictions that are in error compared to observation, and that accurate 

predictions are made by quantum mechanics, but this is irrelevant.  The only 

breakdown that is demonstrated by the erroneous solutions is in the logic of the 

derivation of the equation. 

 

1.3   A lengthy discussion of the Abraham-Lorentz equation and an attempt to justify 

the solutions is provided by J. D. Jackson
[3]

, and philosophical implications are 

additionally discussed by J. L. Jimenez and I. Campus
[4]

.  In Diracs
[5]

 contribution it is 

suggested that the pre-acceleration can be accounted for by the finite size of the 

electron, the equation of motion being concerned with the centre of mass.  However 

this leads to the prediction that radiation travels through the electron at superluminal 

velocities!  There are further problems that arise if an attempt is made to remove the 

difficulties by considering a finite distribution of charge from the beginning.  Apart 

from the almost prohibitive complexity of the equations that have now to take into 

account internal stresses, some essentially unobservable charge distribution has to be 

assumed, and assumptions have to be made about the elastic nature or otherwise of the 

finite electron. A heroic effort in this direction was made by A Yaghjian
[6]

 .  To obtain 

a solution further assumptions have to be made.  While this process undoubtedly leads 

to the solution for a macroscopic charged particle with prescribed real properties and 

of sufficient size to allow the continuum approximation to apply, it can only be 

applied to an electron by selecting charge and mass distributions and specifying elastic 

properties. 

1.4 The non-relativistic Abraham -Lorentz equation can be written
[1][3] 

                                                         f)vv( =− &&& τm                                                    (1.1) 
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where  

              
mc6π

q
3

0

2

ε
=τ                                                      (1.2) 

and  τ = 6.2664218.10
-24

 seconds.  Notice that the second term can be positive or 

negative, implying that the radiation of energy can, for a given positive acceleration of 

the charge augment or detract from the applied force.  The radiated energy actually 

depends on the square of the acceleration, and so we should expect that the radiation 

will always detract from the applied force.  The rate of change of acceleration in 

general is not parallel to the velocity and it will be shown that the deceleration effect 

of the radiation is parallel. 

  

1.5 We can see how the N-R A-L equation was obtained by writing 

                                                     radffv +=&m                                                       (1.3) 

                                             ∫ ∫−= dtmτ v.v.vfrad &&dt                                                  (1.4) 

frad being the radiation reaction on the charge.  Integrating the rhs side by parts over 

the time during which the charge is accelerated, we find 

                                                 ∫ ∫= dtmτdt .vv.vfrad &&                                                (1.5) 

The argument is that this suggests that  

                                                          vfrad &&mτ=                                                        (1.6) 

 
1.6   We can proceed differently by multiplying the integrand by unity in the form  

giving 

                                                             
2v.v/v                                                         (1.7) 

                                                              

                                                          v.v.vfrad 2

2

v

v
mτ

&
=                                           (1.8) 

The equation of motion can then be written 

                                                        m/
v

v
τ

2

2

fvv =+
&

&                                              (1.9) 

which is the equation to be developed in the next section by a different route.  This 

equation was in fact developed by Planck
[7]

 and discarded as being too complex. 

 

1.7 All later studies appear to start with the Abraham-Lorentz equation, putting a 

great deal of effort into explaining away the clearly erroneous solutions.  Professor 

Erber
[1]

 proved that the A_L equation only applied to quasi periodical motion, and 

suspected that ‘we may be missing something dynamically important in averaging’. 

 

1.8 Apart from the demonstration of the failure of the solutions of the A-L 

equation, it is easy to demonstrate the mathematical error in the derivation.  As shown 

above, the derivation transforms a definite integral by integration by parts, and then 

equates integrands, which in general is not allowed.  If we imagine a force that leads 

to a velocity given by 

                                                     )λtλt(12 0 −= vv                                                 (1.10) 

and carry out the required differentiations, the two integrands become respectively 

proportional to 
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[ ]λt1tλ8v

 t2λ1λ4v

32

0

222

0

−−

−
      }                                   (1.11)  

 

1.9 The equation to be developed in this study will assume a point particle, and we 

immediately have a problem in that relativity theory will not allow this.  In particular 

if the density of a massive particle exceeds a critical value, its radius falls below the 

Schwarzschild radius and forms a black hole.  If this occurs, a black hole will 

evaporate via the Hawking radiation.  The mass of the electron is such that it would 

evaporate extremely rapidly and so we are faced with the necessity of considering a 

finite electron with a radius greater than the Schwarzschild radius.  Fortunately the 

Schwarzschild radius for an electron is of order 10
-57

 m and is some 42 orders of 

magnitude less than the classical electron radius.  The electron is well approximated as 

a point particle provided electrons approaching to distances of order 10
-15

m are not 

considered.   

 

1.10 The effective radius of the electron is discussed in a later section where support 

for the electron radius to be 1.5 times the classical radius is obtained independently 

from the mass/energy consideration. 

 

2 NON-RELATIVISTIC MOTION 

 

2.1 The Equation of Motion  
2.1.1    Consider a charged particle released in a force field.  The force causes the 

particle to move with a resultant change of momentum.  In the absence of radiation the 

equation is 

                                                             f
p

=
dt

d
                                                          (2.1)                         

To find how to modify this equation to take into account the fact that accelerating 

charges radiate, write for the kinetic energy of a particle 

                                                  
m2

1
m

2

1
E kin

p.p
v.v ==                                            (2.2) 

Differentiating  

                                                      θ= cos
p

p.
dt

d

m

1

dt

dEkin                                          (2.3) 

However, if the change in momentum is entirely due to a loss of kinetic energy, and 

not to some force that does no work,  

                                                               cosθ=1                                                        (2.4) 

In other words it is only the component of the change in momentum that is parallel to 

the momentum that can cause a loss of kinetic energy.  A loss of kinetic energy 

implies a change of momentum parallel to the momentum. 

 

2.1.2 Denoting the loss of kinetic energy due to radiation as Erad,  write 

                                              
dt

d

m

1

dt

dE rad p
p=                                                            (2.5)  

and accordingly the magnitude of the momentum not acquired by the charge is given 

by 
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dt

dp

p

m

dt

dp radrad =                                                 (2.6) 

This loss of momentum is in the direction of the momentum, and thus  

                                                      
pdt

dE

p

m

dt

d radrad pp
=                                               (2.7) 

Summing the rate at which the charge is acquiring momentum and the rate of loss of 

momentum due to radiation, and equating this to the applied force, the equation of 

motion becomes 

                                                      fp
p

=+
dt

dE

p

m

dt

d rad

2
                                            (2.8) 

The rate of loss of energy from an accelerating charged particle is 

                                                          2rad vmτ
dt

dE
&=                                                   (2.9) 

Substituting this expression in the momentum equation and expressing the result in 

terms of velocity, the non-relativistic equation of motion for a radiating charged 

particle becomes 

                                                          
mv

v
τ

2

2 f
vv =+

&
&                                               (2.10) 

 

2.1.3 Note that setting τ = 0, ie no radiation occurring, the equation reduces to the 

Newtonian form.  Inclusion of the radiation term leads to non-linear term as expected, 

and the equation remains of second order, ie first order in velocity.  If the scalar 

product of this equation with velocity is formed, 

                                                         
dt

dW

dt

dE

dt

dE radkin =+                                       (2.11) 

where dW/dt is the rate at which work is being done by the force. 

 
2.1.4 Consider the equation of motion with zero applied force, and make the 

assumption that the acceleration is non-zero,  

                                                                0
v

v
τ

2

2

=+ vv
&

&                                           (2.12) 

This implies that the acceleration is parallel to the velocity, and so the equation 

reduces to the scalar equation 

                                                                  0
v

v
τ1 =+
&

                                             (2.13) 

which has a solution, which is the only solution 

                                                                    λ

t

0evv
−

=                                             (2.14) 

This states that any velocity will decrease rapidly to zero in the absence of an applied 

force.  This non-physical result implies that the initial assumptions are false.  

Specifically, if the applied force is zero, the acceleration cannot be non-zero! 

 

2.1.5 It has now been demonstrated that this equation preserves causality and 

conserves energy, two of the fundamental requirements for a classical equation of 

motion. 
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2.2 Rectilinear Motion 
2.2.1 For linear motion the three vectors in the equation of motion become co-linear, 

and the equation reduces to the scalar equation 

                                                           
m

f

v

v
τv

2

=+
&

&                                                 (2.15) 

 

Treating this equation as a quadratic in the acceleration  

 

                                      (2.16) 

 

 

Inspection shows that the negative sign must be taken, a positive sign giving  negative 

acceleration for positive forces.  The equation to be solved then becomes 

            







−+= 1

mv

f 4
1

2τ

v
v

τ
&                                              (2.17)

     

2.2.2 Now consider a constant force. Rearranging the above and integrating 

                                                     ∫ =









−+

v

0
2τ

t

1
mv

f 4
1v

dv

τ
                                     (2.18) 

Observing that  

                                                                   
dx

dv
vv =&                                                (2.19) 

                                                      ∫ =









−+

2τ

x

1
mv

f 4τ
1

dv
                                       (2.20) 

The integrands in these two equations are reduced to rational algebraic functions by 

the substitution 

                                                        
mv

f 4τ
1w +=                                                  (2.21) 

yielding 

                                                              
( )( ) 4τ

t

1w1w

wdw
2

−
=

−+∫                                             (2.22) 

                                                    
( ) ( )∫ −=

−+ f16τ

mx

1w1w

wdw
232

                               (2.23) 

 Carrying out the indicated integrations and reverting to the original variables 

                                            



















−+

++
+












−+

=

1
v

v
1

1
v

v
1

ln

1
v

v
1

2

τ

t

0

0

0

                         (2.24) 









+±−=

mv

4f
11

2τ

v
v

τ
&
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

















−+

++
−












−+

+

+

=

1
v

v
1

1
v

v
1

ln

1
v

v
1

2

v

v
1

2

fτ

mx

0

0

2

0
0

2
                  (2.25) 

where  

                                                             0v
m

4f
=

τ
                                                     (2.26) 

Introducing the dimension-less variable 

                                                            
τ

=
t

T                                                            (2.27) 

the graph obtained for the velocity is presented in Fig1.  

 

2.3 Discontinuous Motion 
2.3.1 A problem arises when a retarding force acting on the charge is considered.  

Writing 

                                                    ff −→                                                         (2.28) 

                                              








−−= 1
mv

4f
1

2τ

v
v

τ
&                                              (2.29) 

For  

                                                             
m

f 4τ
v <                                                      (2.30) 

this expression becomes complex, and so for a real solution, there is a minimum 

positive velocity given by  

                                                          
m

4f
vm

τ
=                                                       (2.31) 

v/v0 vs T

0
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Fig1 

2.3.2 To sketch the phase plane of the motion it is to be observed that 

                                                      

 

                                                                                                                                                                                                                                                                    

                                                                                                                                                                                          

                                                                                                                                                                                                                                                                                                           

                                                                                                                                                                           

                                                                                                                                                                           −∞→−∞→
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m

m

vv0v

vvv

v0v

dv

vd

dv

vd

m

2f
v        

m

f
v

m

f
v              0v

&&

&&

&&

)31.2(



 
 −11−

In addition for a positive force   

 

 

                                           (2.32) 

 

2.3.3 The discontinuous nature of the solution as zero velocity is approached in 

either direction is to be noted.  Such behaviour is typical of the solutions to non-linear 

equations, and may be interpreted as the radiation reaction becoming impulsive.  To 

see this, write 

                                                  ( )
m

f
atAδv =−+&                                                  (2.33) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

where a is the time to vm.   Integrating from a-ε to a and proceeding to the limit 

                                          { } ( ) 0atuA
2

1
v

2

1
m =−+                                            (2.34) 

                                                       
m

f 4τ
A −=                                                        (2.35) 

The radiated energy is then 

                                             ∫ ==
m

τ8f
dtvmτE

22
2

rad
&                                             (2.36) 

The kinetic energy lost by the electron is 

                                             
m

τ8f
mv

2

1
E

22
2

mkin ==                                                (2.37) 

2.4 Total Radiation During Linear Acceleration 
2.4.1 The standard approach to calculating the energy radiated by an accelerating 

electron is to calculate the motion ignoring the radiation and to follow this by 

integrating the radiation loss over the acceleration history.  If this process is carried 

out for linear motion, ignoring radiation, 

                                                            
m

ft
v =                                                           (2.38) 

where a constant force has been assumed and the initial velocity was taken to be zero.  

The kinetic energy of the electron is then 

m

2f
v

mvv =−→&

Sketch of Phase Plane Motion of Electron Under a Constant Force 

Fig 2 
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2

2

kin
m

ft

2

m
mv

2

1
E 







==                                        (2.39) 

The radiation rate is 

                                                 

2

2rad

m

f
mτvmτ

dt

dE







== &                                        (2.40) 

Integrating 

                                                    t
m

f
mτE

2

rad 






=                                                  (2.41) 

The fractional loss of energy is then 

                                                    
t

2τ

E

E

stkin

rad =







                                                     (2.42) 

To compare this result with deductions based on the new equation of motion, it is 

necessary to obtain an approximate explicit solution for the velocity.  With the 

assumption 

                                                       1
v

v0 <<                                                             (2.43) 

the time taken to attain a given velocity is 

                                              

mv

f

fτ

mv
1n

mv

fτ
1

t





 ++
=

l

                                             (2.44) 

Solving for v 

                                               






 ++
=

fτ

mv
1n

mv

fτ
1

m

ft

v

l

                                           (2.45) 

The first iterative solution is obtained by noting that  

                                                        
m

ft
v ≈                                                               (2.46) 

yielding 

 

                                      

                                              (2.47)   

Substitution into the kinetic energy and making use of the binomial theorem 

                                      














 +−






=
τ

t
1

t

2τ
1

m

ft

2

m
E

2

kin nl                                     (2.48) 

The logarithmic term represents the radiated energy.  Comparing the two calculations 

                                                 






 +=
τ

t
1

E

E

radst

rad nl                                                    (2.49) 

For a rectangular pulse lasting 50 ns, the ratio is 36.6! 

 

 

 


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ft
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3 THE RELATIVISTIC EQUATION OF MOTION 
 

3.1 The relativistic equation of motion is now derived in the covariant 4-vector 

notation of relativity.  Ensuring that the terms of the equation are 4-vectors guarantees 

that the equation is invariant under a Lorentz transformation.  All 4-vectors are 

denoted by bold face capitals, and 3-vectors by bold face lower case as before.  

Introducing T as the proper time, the equation of motion for a non-radiating particle is 

                                                              F
dP

=
dT

                                                 (3.1) 

where P is the 4-momentum and F the 4-force, and this may be written displaying the 

space-like and time-like components 

                            ( ) 















−=

−

f.vfp
c

i
,

c

v
1imc,

dT

d
1/2

2

2

                               (3.2) 

where p is the 3-momentum 

                                             

2

2

0

c

v
1

m
m

−

==
v

vp                                                   (3.3) 

and it is to be noted that the time-like component of the 4-force is the rate at which 

work is being done by the force on the particle.  To modify the equation of motion a 4-

vector is introduced that represents the momentum not acquired by the particle by 

virtue of the particle radiating, 

                                                    F
PP

=+
dT

d

dT

d rad                                                 (3.4) 

The relativistic equation for the rate of loss of energy by an accelerating particle is 

                             
( )

































−

+









−

=
3/2

2

2
2

2

2

2

2

0
rad

c

v
1c

c

v
1

τm
E

.vv
v.v

&
&&&                                    (3.5) 

 

3.2   To relate this loss to the components of prad the energy is written as 

                                                      

2

2

2

0

c

v
1

cm
E

−

=                                                  (3.6) 

Differentiating with respect to t 

                                                   
3/2

2

2

0

c

v
1

vvm
E









−

=
&

&                                                  (3.7) 

The rate of energy loss by radiation may then be written  

                                                  
3/2

2

2

rad0
rad

c

v
1

vvm
E









−

=
&

&                                               (3.8) 

where radv& is the rate of change of velocity due to the radiation of energy.  This 

radiation is acting to retard the particle and so the rate of change of momentum due to 

the radiation emission is in the direction of the momentum.  Accordingly an 
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expression must be obtained for the rate of change of momentum due to the radiation 

under the condition that the direction of the particle does not change, that is 
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where the notation has been borrowed from thermodynamics.  To obtain this 

derivative the momentum is written in the form 
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making the unit vector in the direction of the momentum explicit.  Carrying out the 

differentiation 
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This becomes, on introducing the radiation rate 
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the rate of change of mass is 

                                            
23/2

2

2

0

c

vv

c

v
1

m
m

&
&









−

=                                               (3.14) 

and similarly 
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3.3 With these results the equation of motion becomes 
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Separating this equation into its space-like and time-like components  
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The time-like component is just a statement of the conservation of energy.  

Substituting for radE& in the space-like component, the three-vector equation of motion 

becomes 
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It is to be observed that this is the result that can be obtained directly from the non-

relativistic equation by replacing both the momentum and the radiation loss by their 

relativistic forms. 

 

3.4 One dimensional motion can be studied as in the non-relativistic case, similar 

results being obtained concerning the discrepancy in radiated energy.  Motion in a 

magnetic field is as in the standard approach with the addition of a low amplitude 

modulation at a frequency ω2τ.  The study of oscillatory motion leads to the 

interesting observation that strictly harmonic oscillation is not possible, a certain drift 

velocity being required to remove the need for infinite forces.  In addition it can be 

shown that it is only possible to give finite energy to an electron, the radiated energy 

increasing at a more rapid rate than the increase in kinetic energy. Intrinsically 

interesting as these effects may be, their development is delayed, being considered in 

Section 15.  Rather we wish to pursue the consequences of imposing a further 

observation on electron motion, that of the existence of stationary states. 

 

4.  THE STATIONARY STATE HYPOTHESIS 

 

4.1 The Hypothesis  
 

A number of results were obtained for various forces acting on an electron, and as is to 

be expected the radiation term leads to decay of the motion. It can be shown that only 

a finite amount of energy can be imparted to an electron either impulsively or by 

sinusoidal fields. The unexpected result of discontinuous motion in the case of 

electron-electron bremsstrahlung suggested that this equation might be closer to 

describing the quantum world than previous formulations of the electron equation of 

motion.  The problem that then presents itself is what minimum assumption needs to 

be added to classical physics to obtain results consistent with quantum mechanics.  
The simplest hypothesis is that for stationary states the radiation time constant 

becomes imaginary. 

 

4.2 A Heuristic Solution 
 

 A heuristic justification for this hypothesis is that changing the coefficient of a 

dissipatory term from real to imaginary will turn the solutions that decay into solutions 
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that oscillate.  Making the analogy with an LC circuit connected to an antenna which 

presents a radiation resistance R, the solution is a decaying oscillation with parameter  
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If the radiation resistance is increased to infinity, leaving the inductance and 

capacitance the same, the parameter becomes 
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i
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The increase of a real parameter to infinity is more appealing than the switching of a 

parameter from real to imaginary! ‘Elementary’ inductance and capacitance can be 

identified by adopting the approach of Hallen
[8]

, writing 
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We then have 
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This analogy will be pursued in a later section with interesting results. 

 

4.3 The following sections are concerned with applying the above hypothesis to an 

assumed point electron in zero external field.  In so doing a model of the electron 

emerges that can not only be visualised, but is also consistent with the known 

properties of the electron. In addition a limiting process shows that the model is 

consistent with neutrinos and photons.  A reinterpretation of Dirac’s relativistic 

quantum mechanical equation for the electron gives rise to essentially the same 

electron model. 

 

5 THE STATIONARY STATE EQUATION 

 

5.1 Rectilinear Motion 
 

We consider first rectilinear motion.  The non-relativistic equation for linear motion is 
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Making the replacement 

                                                      ττ i→                                                (5.2) 
the equation becomes, on setting f to zero and cancelling out the acceleration now 

assumed not to be zero 

                                                      
τ
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v
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and this has solution 

                                                 τ

−it
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We assumed linear motion and have obtained a complex solution.  The imaginary part 

of the solution is not to be discarded- it means that motion also occurs in a direction 
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orthogonal to the one chosen, that is we have two-dimensional motion and in 

particular we have motion in a circle.  We have arrived at a model of a spinning 

electron!  

  

5.2 Two Dimensional Motion 
 

To confirm that this really is the case we now consider two-dimensional motion, and 

we write  

                                                       iy  +  x  =  z                                   (5.5) 
The equation for stationary states becomes 
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Reducing to its simplest terms 
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Taking the complex conjugate 

                                                            
τ
i

 - = 
z

z

&

&&
                                                          (5.8) 

Integrating, the solution becomes 
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Integrating again 
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The motion is circular with radius v0τ and constant speed v0, and we observe that this 

motion is consistent with the 'zitterbewegung
'[5]

 of quantum mechanics.  If this 

spinning charge is to represent the observed electron, the associated parameters must 

agree, and so we attempt to match the angular momentum 

                                             
2

  =  vm
2
00

h
τ                                                 (5.11) 

Assuming m0 is the observed rest mass of the electron, we obtain for the velocity 
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and so we see that a relativistic treatment is necessary. 

 

6 THE RELATIVISTIC SPINNING ELECTRON 

 

6.1 The Relativistic Equation  
 

The relativistic equation of motion is, for zero applied force, 
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We have previously considered the electron to have a rest mass m0, but on this model 

the electron is taken to be moving at speeds close to c, and it will be the spinning 

electron that will have an apparent rest mass m0.  The postulated particle will have an 

intrinsic mass mi, assumed to be non-electromagnetic, such that the relativistic speed 
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gives the observed rest mass.  We observe that the radiation time constant depends on 

m, and so we write 
                                               ττ 00ii m  =  m                                               (6.2) 

Heitler
[9]

discusses the need to consider mechanical mass for an electron ‘we must---

attribute to the electron a mechanical inert mass-----’.  Classically internal stresses 

have to be taken into account for the electron to have the right relativistic 

transformation properties.  Quantum mechanics shows that the internal stresses vanish 

for an electron at rest.  Detailed analysis of the relativistic motion of a finite charged 

sphere is carried out in [6] 

 

6.2   We now make the assumption of circular motion at constant speed as indicated 

in the non-relativistic solution.  We then have 
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Making the replacements 

                                             ττ i          zr →→                                                (6.6) 

the equation becomes 
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Simplifying 
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Taking the complex conjugate 
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and the solution is 
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Integrating again 
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and the radius of the circle is 
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7. THE ELECTRON SPIN 

 

7.1 The Electron Spin Velocity 
 

The angular momentum is 
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Equating the magnitude to the known value of the electron spin 
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Introducing α, the fine structure constant 
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we have 
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Rearranging we obtain a quadratic for v/c 
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Taking the upper sign 
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We must take the positive sign for v <c, with the result that 
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7.2 The Electron Intrinsic Mass 
 

The intrinsic mass of the electron is then given by 
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7.3 Angular Velocity 
 

The angular velocity of the charge is 
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From the solution for the spin velocity 
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and so the angular velocity on the present theory is  
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The quantum mechanical result for the 'zitterbewegung' gives the frequency 

                                  
3τ

4αcm22E 2
0

=    =    =    
hh

ω                                                (7.13) 

Comparison of the two results shows that the present model agrees with the Dirac 

equation on setting the intrinsic mass to zero, ie v=c.   

The spin radius of the circle is 
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This reduces to 
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Introducing the Compton wavelength via the relation 

                                              
2α

3cτ
  =  cD                                                  (7.16) 

the expression becomes      
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i.e. the spin circle diameter is just over a Compton wavelength. 

 

8. THE QUANTUM MECHANICAL ‘ZITTERBEWEGUNG’ 

 

8.1 Solution to Dirac’s Equation 
 

It can be shown
[10]

 that Dirac’s relativistic equation for the electron, using the 

Heisenberg representation, gives 
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and in general 
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 For an electron with no classical momentum it can be shown that 
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and we have 
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A measurement of x& then gives 
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where E0 is the rest mass energy. In explanation of the ‘Zitterbewegung’ the imaginary 

part is ignored
[10]

, and the rapid oscillation of the real part is taken and it is shown that 

the velocity of this motion is c.  However the imaginary part should not be ignored.  

Obtaining a complex solution to a 1-dimensional problem indicates that the solution is 

2-dimensional.  Accordingly we  write   
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Z being used to avoid confusion with the z-axis. Rotating the x-axis to correspond to 

the instantaneous position of r 
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Equating the two forms for Z&  
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Observing that 

                                                 
( ) t

iE2

0

0tx
x

0

e
E2

i
h

&h −
=α

=α                                            (8.12)          

we obtain 
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a measurement of r then yielding 
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and so 
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This shows that the proper interpretation of ‘Zitterbewegung’ is that a ‘stationary’ 

electron is in fact moving around a circle of diameter D at a velocity of c.  Notice that 

E0 is the rest mass energy, and that this is entirely associated with the spin.  
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8.2 The Angular Momentum 
 

The angular momentum is 
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8.3 Zero Intrinsic Mass 
 

The intrinsic mass model that has been developed is consistent with this result if mi=0 

while still retaining a charge, the radius and the frequency depending directly on c/v. 

A difficulty is that the limiting processes indicate that the charge vanishes with mass, 

as is shown in §10 and electromagnetic fields are not known to transport charge. 

 

9.  THE ELECTRON MAGNETIC MOMENT 

 
9.1 The magnetic moment is the turning force per unit magnetic flux density, 
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that is the magnetic moment is the Bohr Magneton. 

 

10. THE NEUTRINO AND THE PHOTON 
 
10.1 The equation of motion is not restricted to electrons and we are at liberty to 

consider other parameters. We write for an arbitrary spin half particle 
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If we consider the possibility of mi→0 we must expect v→c in such a way that 
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where E is the energy of the particle.  Inserting this result 
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For this limit to exist, we must have τi→0 as v→c in such a way that 
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Note that as τi = 0, we have q = 0 and so we observe that charge and mass are tied 

together, suggesting that they are aspects of the same reality. In particular this result 
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strongly suggests that the electron must have intrinsic mass.  The radius of rotation is 

given by 
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The spin diameter is then seen to be the Compton wavelength of a massless neutrino.              

 

10.2 Considering a particle with spin 1, i.e. a photon, and writing 

                                                            νE h=                                                          (10.6) 

we have 
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The stationary state equation is then consistent with the existence of photons. 

 

10.3 Summary and Discussion 
 

The relativistic equation of motion supplemented by the stationary state hypothesis has 

resulted in a visualizable model of a spinning electron, that is a point charge rotating 

around a centre with a velocity close to c, the motion being such that the observed mass 

is given by the relativistic increase in an intrinsic mass mi ~ m0 /3.  The rotation 

diameter is just greater than the Compton wavelength of the electron and the angular 

frequency is slightly less than the quantum mechanical result for 'Zitterbewegung', this 

being attributable to a non-zero intrinsic mass on this model.  Further analysis of the 

‘Zitterbewegung’ shows that the circular motion solution is consistent with Dirac’s 

theory of the electron. The magnetic moment of the electron on this model is one Bohr 

magneton.  A mathematical limiting process leads to a model of the neutrino.  It 

appears to follow from the equations that mass and charge vanish together, suggesting 

that they are different aspects of the same reality.  However the principle results, the 

radius of rotation and the circular frequency, are directly dependent on the ratio v/c.  

Setting v=c is equivalent to setting mi=0, and the results agree with quantum 

mechanics. 

 

10.4 The results appear to be deterministic, but this is illusory as we cannot know 

the initial conditions.  The results simply tell us how the electron moves, not what its 

speed or position is at any particular time.  The results of any measurement of position 

will be uncertain by ∆x=r, while the uncertainty in momentum will be ∆p=m0v, and 

from the appropriate equations 

                                                
2

px
h

=∆∆ ....                                                (10.8) 

and the result is seen to be consistent with the uncertainty principle. 

 

10.5 The essential point that has been made is that classical physics supplemented 

by the stationary state hypothesis is surprisingly consistent with quantum mechanics, at 

least insofar as the electron is concerned.  
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11      THE HARMONIC OSCILLATOR 
 

11.1 The Stationary State Equation 
 

The τ→iτ hypothesis is now applied to the equation of motion for an electron subject 

to a returning force.  The non-relativistic 1-d equation of motion is 
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Making the replacements 
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The trial solution 

                                                         er  =  z tiω                                                      (10.12) 

leads to the cubic equation 
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An approximate solution is 

                                                          0ω±ω    ~                                                      (10.14) 

leading to a second approximation 
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The effect of the radiation term is to split the fundamental resonance into two close 

frequencies. 

 

11.2 Quantisation of the Energy Levels 
 

The energy associated with the frequency ω is  
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1
ω2 =   E                                                (11.1) 

So far we have ignored the spin of the electron, but if we now take this partially into 

account we see that for different orbits in the complex plane to be distinct it is 

necessary for there to be a minimum radius of 2rs , the radius increasing in odd integral 

multiples of this initial radius.  That is we have 
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We also observe that symmetry on the x-axis requires an odd number of revolutions in 

a half  period 
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Replacing one of the terms in ω
2
, the energy becomes 
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Substituting for ωe  
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where 
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and replacing the fine structure constant by 
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we find that 
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2
1
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and we have the quantum mechanical result for the energy levels of the harmonic 

oscillator, including the zero point energy. 

 

12. THE HYDROGEN ATOM 
 

12.1   The Stationary State hypothesis τ→iτ having been used successfully to obtain 

the quantum properties of the electron and the quantisation of the harmonic oscillator 

it is now applied to the hydrogen atom.  The motion of the point charge on the 

assumed model presented above will be highly complex, and a relativistic treatment is 

strictly necessary.  Here we make the simplifying assumption that the motion of the 

centre of mass may be determined by assuming a point charge with mass m0, that is, 

initially we are going to ignore the spin motion of the intrinsic mass.  The velocity of 

electrons within atoms is known to be low enough for realistic calculations with non-

relativistic mathematics. The complexity and high degree of non-linearity of the 

relativistic equation when applied to the present electron model will contain many 

features and fine detail of the potential motions that will be lost in the simplified 

approach, but despite this we will find that the simplified approach with the addition 

of an obvious and reasonable assumption will result in a model of the hydrogen atom 

in close agreement in many aspects with the quantum mechanical model. 

 

12.2 The Stationary State Equation for the Hydrogen Atom 
 

The non-relativistic vector equation of motion is 

                                           
r

1
k  =  

m

f
  =  

v
   + .

2

2

∇τ v
v

v 
&

&                                              (12.1) 

where for the hydrogen atom we have put  
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                                   (12.2)                                  

 

 

Making the replacement 

                                                            ττ i→                                                          (12.3) 

the equation becomes 
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We now specialise to 2-d motion and make the replacements 
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with the result 

                                                 
][zz

kz -
  =  z

zz

zz
iτ  +  z

3/2∗∗

∗

&
&&

&&&&
&&                                           (12.6)                            

We now look for a circular orbit and set  
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and the equation becomes,  
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We then have immediately 
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Writing in dimensionless form by setting τωρ =  
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The discriminant is <0 and so the equation has three real roots.  Noting that the 

constant is <<1 and setting r0 equal to the s×Bohr radius,a0, we have an approximate 

solution,  
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where α is the fine structure constant, s is an arbitrary constant and in addition we 

have assumed an infinite mass for the nucleus.  Discarding the ρ=-1 solution, this then 

gives 
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and the orbital speed is  
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a further approximation for the angular frequency  may be obtained by iteration 
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2
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12.3 Quantised Orbits 
12.3.1  The approximation ignores the non-zero spin diameter, and, for a true 

steady state, the spin period should be commensurate with the orbit period; that is 

there should be an integral number of spin revolutions in the time for one orbit.  

Imposing this condition 
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where we have used the electron parameters. Substituting for ve it reduces to a function 

of α 
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For s=1 the numerical coefficient must be integer. This calculation has ignored the 

effect of the orbit velocity on the electron spin velocity and a correction can be 

obtained by combining the two velocities relativistically.  The relativistic correction to 

this estimate is very small because of the low orbital velocity, but only a small 

correction is required.  To obtain the necessary correction we find the spin velocity in 

the orbital frame of reference.  The relativistic sum of two velocities is given by
[11] 
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where  
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 and  
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This correction will vary as the electron spins, and so an average is taken.  The 

average is 
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the integrand being the relativistic sum of the spin velocity with the component of the 

orbital velocity in the direction of the spin velocity and we have put cve /=γ .  The 

result is 
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The conservation of angular velocity requires that the mean orbit radius be reduced by 

the same factor as the decrease in velocity with the result that the corrected value of p 

is given by 

( ) 23

3
22

2
2

2
3/2

12s34031.0008  = 
2

3
11

2
11-  

α

3
  +  1 

3α

s
2  =  p





















 γα
+γ−

α
−×








 (12.26) 



 
 −28−

where the accepted value of αααα (7.297352568.10-3) has been used.  The quoted standard 

error is 24×10
-11

.  

 

12.3.2  Accordingly it seems reasonable to accept the coefficient to be an 

integer, and we have s
-3/2

 p = 34031, which happens to be a prime number.  It follows 

that s must be a perfect square otherwise p would not be integral and moreover it must 

be an integer as fractional values would require 34031 to have factors.   Accordingly 

we put  

                                                             n  =  s 2                                                      (12.27) 

The orbital angular velocity is found to be 
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and the orbital velocity is 
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The total energy is then 

 

                                                 
2

2
0

2

tot
2n

cm α 
- =    E                                                  (12.30) 

which is the quantum mechanical result.  

 
 

12.4 Determination of the Fine Structure Constant 
 

The above success suggests that the formula for p is to be regarded as giving an 

implicit formula for α. To remove the decimal excess requires that α be increased by 

3.5 standard errors to 7.297352653×10
-3

. The relative error is~ 1.2×10
-8

.   

 

12.5 Comparison with the Dirac Equation Result 
 

Assuming the mass of the electron is all electromagnetic, the electrons spin angular 

velocity is 

                                                         
τ
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=ω
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4
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and the orbital velocity is as before 
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The ratio yields n=37557.731.  Even with the relativistic correction this is not close to 

an integer, never mind a prime.  The accurate calculation of αααα with the assumption of 

an intrinsic mass suggests that an intrinsic mass should be incorporated into the 

quantum mechanical approach. 

 

12.6 Orbital Angular Momentum 
 

Using these results to calculate the angular momentum due to motion in the lowest 

energy orbit, we have 

                                   h  =  αcam  ~ r mv  =  Ω 000 Borbit                                          (12.34)                    
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this being the result for the component measured normal to the electron orbit, Ωz, a0 

being the radius of the Bohr orbit. 

 

12.7 The Zeeman Effect 
 

Imposition of a weak magnetic field causes the energy levels to split into a number of 

discrete levels separated by µB.B, the scalar product of the Bohr magneton and the 

magnetic flux density.  The 2-D model demonstrates this splitting of the levels into 

two in the presence of a weak magnetic field. The equation of motion for a stationary 

state with an applied magnetic field becomes 
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For 2-D motion we may write 
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With this addition the equation becomes 
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We again have  
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and in addition 
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We may again make the approximation 
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and the equation becomes   

                                                      0p 2
0

2 ~ρ−ρ−ρ                                               (12.43) 

Solving this equation  
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For weak fields we may assume 
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Taking the modulus and replacing p and γ0 , 

                                                   
m2

qB
      =  ω

0

0 ±ω                                                  (12.47) 

This is the correct quantum mechanical result for the two new levels introduced by the 

magnetic field. 
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12.8 Perturbed Orbits 
 

We can consider more general orbits by allowing the radial coordinate to be a function 

of time.  We again set  

Differentiating                                                   
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Substituting into the stationary state equation of motion and separating real and 

imaginary parts we obtain the two equations 
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As a check on these equations we put 

                                                         r  =0=  r &&&                                                       (12.53) 

obtaining 

The second of these gives 

                                                          ωθ =  &                                                           (12.56)                 

and this is seen to be compatible with the previous results. If we now make the trial 

solution ωθ   =  &  and r remain time dependent, these equations reduce to 
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Eliminating τ, ensuring that the solution is compatible with both equations, the first of 

the pair of equations becomes 
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For a perturbation of the circular orbit we put 
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and this reduces to  
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This indicates that the motion for small disturbances is unstable.  However we note 

that there is a singular solution 0  =  δ  =  δ  =  δ &&& , and this is a point of equilibrium in 

the phase plane and is the stationary state and further, this solution exists for square 
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integral multiples of a0.  For non-zero values of δ the trajectory is outside the 

stationary state, and so the appropriate equation of motion is 
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Introducing polar coordinates as before, the equations become 
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Eliminating τ we obtain 
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We now look for decaying solutions of the form 
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Substituting this trial solution, there results 
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This has a solution 
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We may now consider a small positive radial displacement from a0 writing 
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Setting the radius to r0 and solving for tr, the time to return to the stationary state. 
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For a negative displacement, consider an infinitesimal displacement from the state 

with n=2.  We may then take rA=4a0, and determine the time to reach the ground state.  

Setting r=a0 we obtain 
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Solving for the time to return to the ground state, 
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where TB is the period and ωB the angular frequency of the Bohr orbit. 

 

12.9 Transition Radiation 
 

The rate of energy emission during the transition from n=2 to  n=1 is given by 
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Substituting from the previous solution and integrating 
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Carrying out the integration, 
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Comparing this with the difference in energy between the two levels, we have 
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This low value of the fraction of energy that is radiated in the transition from the n=2 

to n=1 state implies that the majority of the radiation occurs on entering the ground 

state. 

 

12.10   Discussion 
 

The stationary state hypothesis has now resulted in a model of the hydrogen atom that 

has many of the properties in agreement with quantum mechanical results, in 

particular the contribution of the orbit angular momentum, the magnetic moment of 

the orbit, and the quantised nature of the allowed energy levels. A significant omission 

so far is the lack of a prediction of degenerate states.  It is expected that there are sets 

of elliptical orbits having the same energy and so resulting in degeneracy.  The model 

indicates that a sudden transition is required on entering the ground state as the 

radiated energy during the motion to the ground state is only a small fraction of the 

energy to be lost. The nature of the forces involved in this transition could in principle 

be determined by matching the force to that required to produce the measured line 

widths. The Zeeman effect is accounted for in that the two extra levels are correctly 

predicted.  However, the most important result is the formula for the fine structure 

constant that can, in principle, be developed to any required accuracy.  The continued 

success with this approach suggests that Dirac’s equation should be modified to 

incorporate the intrinsic mass of the electron. 
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13 THE POSITRON 
 

13.1 Intrinsic Mass Derivation 
 

The derivation of the intrinsic mass for the electron failed to find all the solutions. The 

observed rest mass of an electron is given by 
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and so 
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Writing  
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and substituting in the spin equation 
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The solutions are 

                  

2121

11
3

3

2
iand11

3

3

2
k 

















++
α

α
±

















−+
α

α
±=                  (13.5)         

 

13.2 The Real Negative Solution 
 

Assuming the positive intrinsic mass is associated with the electron, we now associate 

the negative mass with the positron.  To maintain the positivity of the observed mass 

all that is required is to write 
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for both the electron and the positron.  As a consequence the intrinsic mass is not 

directly observable.  In a collision between an electron and a positron the total energy 

released is still twice the relativistic energy, the intrinsic mass energy cancelling along 

with the charge.  

 

13.3 Imaginary Mass 
 

To accept the concept of imaginary mass it is necessary to provide an interpretation, 

and a possible way, proposed by Dr Carl Baum
[12]

, is to consider the complex entity 
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Imaginary charges are equivalent to masses, and conversely imaginary masses can 

now be interpreted as charges 
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We can then write 
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This suggests the possibility of a particle with the above transformed mass and charge, 
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                                           q10336C10011q 2240

m
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which could be called the G-particle. Note that the fractional charge is not in conflict 

with observation as it is well below the limits of detection, and that the mass of the 

particle is enormous.  These particles would behave somewhat like super heavy 

neutrons and would be very difficult to detect.  Should a G and a G a n n i h i l a t e e a c ho t h e r t h e r e s u l t i n g 1 8 G e V - p l u s g a m m a r a y s w o u l d b e c o n t e n d e r s f o r t h eg a m m a b u r s t p h o t o n s t h a t h a v e b e e n d e t e c t e d .
 

14.   THE ELECTRON ANALOGUE 
 

14.1     In §4.2 the steady state hypothesis was supported by the analogy with an LC 

circuit.  With the model of an electron moving in a circle, the analogy is now extended 

to consider this model as such a circuit.  The exact inductance of a single turn loop
[8 ]
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Setting a to the spin radius, γα 2/0a  and b to the electron radius, this becomes 
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while the capacitance of the electron may be taken as 
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We then have 
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Evaluating this expression as ωan  and comparing with the qm and ss values 

 ωan=1.659815670×10
21

    ω0=1.552475633×10
21    

 ωss=1.406706306×10
21         

(14.5) 

 
The electron radius has been taken as the classical value.  It might be expected that the 

actual radius would lie between re and er38 / . Changing the radius to 1.166083275re 

reduces the analogue frequency to the quantum mechanical value, while changing the 

radius to 1.5508893re reduces it to the steady state solution. A factor of 3/2 can be 

introduced by considering the charge to be uniformly distributed throughout the 

electron or considering the electron to be a shell of charge with radius 1.5 times re. The 

result is 21
ss 1040924571 ×=ω . . The fact the analogy results in an estimate as close as 

it does is quite remarkable. 

. 
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15 NON-RELATIVISTIC MECHANICS 

 

15.1 General Approach 
It is difficult to extract solutions for the motion of electrons under prescribed forces 

due to the non-linearity of the equation of motion, so we invert the problem and 

determine the forces for a prescribed motion.  This will frequently give rise to the 

requirement for infinite forces or infinite strength impulses.  The motion is then 

modified when possible to remove the infinities resulting in a number of analytic 

solutions. 

 

15.2 Impulsive Motion 
15.2.1  The non-relativistic equation of linear motion is 

                                                 
m

f

v

v
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&                                                    (15.1)    

We impose an impulsive acceleration 

                                                       ( )tvv p0δ=&                                                  (15.2)                              

Substituting into the equation of motion 
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From Appendix A this can be written 
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and the equation of motion becomes 
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Integrating over a, the equation reduces to 

                                                         ∫ =
a

0
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2

Svdt
v

v&
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The energy radiated in the interval 0→a is Svm 2

0τ and as the two proto-delta functions 

tend to delta functions, the radiated energy tends to infinity while the kinetic energy of 

the electron remains at 2

0mv
2

1
. 

15.2.2    To estimate the impulse required to attain a given velocity we note that  

                                            ****
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1
S δ≈δ≈                                          (15.7)                    

Then 

                                                 

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
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and the effect is exceedingly small for any practical case. 

 

15.3 ‘Harmonic’ Motion 
15.3.1    We now consider a particle moving under a restoring force proportional to 

the displacement, obtaining the equation for rectilinear motion 
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Noting that the equation is homogeneous, a trial solution is 

                                                         t

0exx λ=                                                       (15.10)                           

and there results 

                                                    0232 =ω+τλ+λ                                               (15.11) 

This has one real root and two complex roots, which can be expressed approximately 

as 

 

                         (15.12) 

 

by expanding to second order in ωτ.  The real root is of no interest as the motion is 

damped out in times of order 10
-24

 seconds.  The complex roots represent 2-D motion, 

specifically positive or negative decaying spirals 
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15.3.2     It is clear on physical grounds that 1-D oscillatory solutions must exist, but 

as demonstrated in 2.3 there will be a discontinuity as zero velocity is approached.   

Reformulating the problem as an integral allows such discontinuities and leads to an 

implicit solution.  Regarding the equation as a quadratic in acceleration, we obtain 
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We can then write 
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This solution must correspond to the radiationless case as τ→0, and this requires that 

we adopt the negative sign.  If we now consider an electron passing through x=0 with 

a velocity v0 at t=0, the radiation rate will be very small and an approximate solution 

will be 

 

 

Substituting these into the implicit solution, there results  
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Expanding to second order in τ this reduces to 
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Carrying out the integrations and simplifying 

                                    ( ) ( )[ ]{ }ωτ−ωτωτ−ω≈ tanexpcos tvv 0                              (15.20) 
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and we observe that this solution drops very rapidly to zero as ωt approaches π/2.  The 

limit of validity of the solution is somewhat less than π/2, the radical in the implicit 

solution implying that the maximum value of ωt is  

                                                ωτ−
π

≈ω 4
2

tmax                                                     (15.21) 

At this time the velocity jumps to zero and then increases in the negative direction.  

This will result in a delta-function pulse of energy 

                                                  2
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The following motion will be initially the same as acceleration under a constant force. 

 

15.4 Forced Oscillatory Motion 
15.4.1   To study forced oscillation we determine the force required to maintain 

sinusoidal motion by writing 
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The required force is then 

                                           [ ]t1tmvf 0 ωωτ+ω= cotcos                                       (15.24)            

A periodically infinite force is needed to maintain the motion, and it is readily seen 

that the impulse integral diverges.  As a consequence electrons cannot oscillate 

precisely with simple harmonic motion. 

 

15.4.6    Oscillatory motion can be obtained while avoiding the need for infinite 

forces by choosing a motion that has the velocity vanishing with the acceleration.  

Such a form is 

                                                           tvv 2

0 ω= sin                                             (15.24) 

yielding 

                                                          t2vv 0 ωω= sin&                                           (15.25) 

Substituting into the equation of motion, there results 

                                         [ ]tt2ttvm2f 0 ωω+ωωω= cossincos                          (15.26) 

Elementary trigonometry reduces this to 
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                                                       ωτ=φ −1tan                                                   (15.28)    

and the effect of the radiation term is seen to be a phase difference between the 

oscillations and the driving force, together with the need for a constant force. 

15.4.2     The energy radiated in one oscillation is given by 
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The velocity is always positive, and so the electron will have a mean drift velocity of 

                                             
2

v
tdtvv 0

0

2

0 =ω
π
ω

= ∫
ωπ

sin                                        (15.30)   

 15.4.3   The solution to the equation of motion can be simplified slightly by making 

the following changes. 
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and the solution becomes 
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15.4.4   The velocity is always positive and so the electron will have a mean drift 

velocity given by 

 

                          (15.36)                      

 

 
15.4.5 The radiated energy is 
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The constant force is the force required to maintain the sinusoidal oscillation.  The net 

distance moved in one cycle is 
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The work done by the constant force is then 

                                                    2
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15.4.6   The implication of this result is that if a sinusoidal force is applied, a drift 

velocity develops equal to the maximum velocity to be expected with no radiation.  

This conjecture needs to be verified by a numerical solution to the equation of motion 

with a sinusoidal force. 

 

15.5 Motion in a Magnetic Field 
15.5.1      The force on an electron in a uniform magnetic field is 

                                                              Bv×= qf                                                 (15.40) 

The equation of motion then becomes 
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Consider an electron injected into a field with its velocity vector perpendicular to the 

field.  Expressing the equation of motion in Cartesian coordinates 
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Separating the two component equations 
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Approximate solutions ignoring radiation are 

                                        xyyx v
m

qB
vv

m

qB
v −== &&                                         (15.44) 

Introducing these approximations into the radiation terms, the equations become 
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15.5.2      Eliminating the y-components 
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the initial motion is along the x-axis and it can be shown that the solution and a similar 

equation is obtained  for the y-components.  This is the equation for damped harmonic 

motion, and the combined motion is that of a decaying spiral.  Without loss of 

generality we can assumecan be expressed as 
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The standard approach gives just the exponential decay without the modulation. 

15.5.3  The radiation rate is given by 
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Integrating from zero to infinity, we obtain 
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the term in parentheses indicating the error made in the approximate solution. 

 

15.6 Motion under a General Force 
15.6.1  Non-relativistic linear motion was shown to be solutions of  
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where f was unspecified and so is applicable to arbitrary forces and we still have the 

lower velocity limit given by 
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the velocity then jumping to zero, while energy equal to this loss of kinetic energy is 

radiated.  The relativistic equation for linear motion is 
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and this leads to 
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and the same minimum velocity is obtained as for the non-relativistic case.  

15.6.2    The maximum value of the minimum positive velocity is c.  Solving for the 

force 
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If this force is due to the presence of an electron, we can write 
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Equating the two forces and solving for r we obtain the distance of closest approach of 

two electrons 
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where re is the classical electron radius and rm turns out to be the equivalent radius for 

the Thomson cross section.  This is not to be taken as necessarily indicative of any 

structure to the electron.  At this distance the radiation loss due to any virtual 

displacement is equal to the gain in potential energy. 

15.6.3    We may consider a spatial variation of the force by making the substitution  
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and the equation for linear motion becomes 
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We first obtain an approximate solution by ignoring the radiation term 
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Integrating from x=0,v=0 to x,v 
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The approximate equation is then 
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As an example, consider 
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16   CONCLUSIONS 
 

16.1     The derivation of an equation of motion for a charged particle in the point 

particle approximation, which conserves energy and causality, has resulted in two 

major predictions, that of the finite transfer of energy to electrons by infinite 

amplitude pulses, and the occurrence of a drift velocity when the driving force is 

sinusoidal.  It should be possible to test these predictions experimentally. 

16.2      The application of the steady state hypothesis resulting in a model of 

the spinning electron, the determination of the zero point energy for a harmonic 

oscillator, the energy levels of the hydrogen atom, the determination of the fine 
structure constant, and the derivation of the Thomson cross-section for the electron 

indicates that the hypothesis has some degree of validity and shows how close 

classical physics is to quantum mechanics.  This is further emphasised by the 

remarkably close agreement of the analogue electrical circuit of the rotating electron 

with the postulate of a uniform density of charge, leading to an electron radius one and 

a half times the classical radius. 

16.3        There are obvious possible extensions to the theory to account for the 

existence of degenerate states and the decay of excited states, and these are 

being actively pursued.  The degree of success also leads to the hope that a 

deeper connection between the stationary state hypothesis and quantum 

mechanics will be found. 
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17   APPENDIX 

A1.   Proto-step function 
A proto-step function may be defined as a continuous function satisfying the following 
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A2.   Proto-delta function 
A proto delta-function is then defined by 
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A3.   Delta-function Squared 
Consider the square of the proto-delta function 

 

 

Accordingly the squared proto-delta function is equivalent to a new proto-delta 

function of strength S 
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