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Abstract

Quarternions (and biquaternions) are a classical subject. Here 2 X 2 dyadics are used as quaternion units o
avoid hypercomplex numbers, and the usual matrix properties apply. The combined ficld with separation index
g = +1 is formulated in quaternion form yielding two equally valid forms which are used together.
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1. Iniroduction

The lLiterature concerning quatermions is quite large. One can find a review in [4 (appendix IV)], and
another set of references in a recent paper [3]. Some details of the application to the Maxwell equations are found in

[2].

In [1. 5] the combined electric and magnetic ficld has been formulated with a separation index g = +1,
giving two equally valid formulations, from which the separate fields, carrents, potentials, etc. can be reconstructed.
(See Appendix A.) Note that in the frequency domain the electromagnetic fields, etc., are complex, in which case
one does not separate by real and imaginary parts. However, by using ¢ = +1 and g = -1, and {aking sums and
differences the parameters are still separated.

In [5} the 4-vector, 4 X 4 dvadic form of the Maxwell equations has been formulated by introducing an
additional separation index p = +1 corresponding to the two possible signs on the time variable in the 4-dimensional
Minkowski space. This is summarized in Appendix B. Here we have found new forms of the field dyadic with
special properties involving symmetries and the indices p and g combined as pg.

In the present paper the combined field with separation index g is formulated in quaternion (or, as some call
biquaternion) form. This gives, as one should expect, two possible definitions, and both are carried thronghout.
Instead of the bicomplex form we use only one complex variable, /, and use 2 X 2 dyadics for the four coordinate
units. These dyadics are related to the spin matrices and obey the mmltiplication mules of the “hypercomplex”
numbers. The spatial quaternion wnits needed for cross product and curl are discussed in Appendix C. The main
development in Section 2 is devoted to the choice of the temporal unit fiq . (Note the use of A above a quantity to
denote a quaternion,) This is followed by the development of the Maxwell equations (fields, currents, potential(s))
in this combined quaternion form. Many of the details concerning multiplication and operators are relegated to
Appendix D where we find that both g and —g are used.



2. The Electromagnetic Field in Quaternion Form

Begin from the combined field discussed in Appendix A
single 3-vector first-order partial differential equation

g —
[Vx —ji%}ﬁq(‘?,t} = jqZJ(7F,D
C

In quaternion form the 3-vectors (Appendix C) are

Substituting in (2.1) we have

A A S A gan AO)
VeEg +[Ve Egll - j=—Eq =jgZlyg

c Of
A P qa/\ AN /\(O)
V e Eq — j——Eq = —[V - Eq]l + ]qZJq

c Ot
()
N N
=295+ ez,
&

In a source frec region we have

AA A A
g 0
VeFEg — j5— = 0
4 jcé‘t 4

which is suggestive of how 1o define a quaternion operator.

Writing a general quaternion as

é:{Qs: Qx stQz} - {Q&w av}

FAN ~ A A
:Qslq+Qx1x+Qy1y+Qzlz

The Maxwell equations take on the form of a
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we need to find an optimal definition of /l\q (the rest being treated in Appendix C). For convenience we define

T = ¢t = time in spatial units (2.6)
Let us try

Pl A

lg = jgl ‘ (2.7)

(2.8)
N A P A 8 A ]
ﬁ—lq— + lx— + ].y——— + lz———
ar dx gy
then we have in a source free region
A A A
Dq cEq =0 | - 2.9)
provided
A AA
I, zV—lqgw{ aT,V}
(2.10)
/l\ (1 0
g = Jq 0 1

One could also choose the negative of the above. Compare this to the two choices for such a separation index as + 1
in the case of the 4-vector, 4 X 4-tensor formulation (Appendix B). We still retain q as a separation index = + 1,
from which one can reconstruct the usual (uncombined) electromagnetic parameters by sum and difference. This

shows that there are two acceptable ways to construct quaternions (or biguaternions if one prefers). Note now that

A2 AA A Al A /\T
1q:1q 'lq '—‘-1, 1q =“1q=1q (211)

so that it is also a square root of the negative identity, like the spatial umits.



Fas
See Appendix I» for more concerning this quaternion operator [[q . There we also have the quaternion

coordinate

A A -5
T =Tq ={T, x, y, 2} ={T,r} (2.12)

We can now regard our quaternions as functions of this quaternion variable, ie.

— 3 AA
Eq(r ,t) — Eq(Tq)

(0 A,
Tqg ) > Jg Ty

(2.13)

etc., and need not explicitly exhibit this dependence.

Now let us redefine the quaternion current so that

A A A AD A
Jg =Jg + jqcpql =Jg + cpqlq
_}
={epg, Tuy s Iy, T2y} = dongs Tg (2.14)

A A A

Dq » Eq = jgZJq (Maxwell equations)

So here we have constructed a form of the Maxwell equations with one separation index, instead of the two in 4-

vector form (Appendix B).
From (D.9)
A A A2 A
g e e =0 2.15)
2 .
.2 _ & & & _2 &

Then from (I2.12) we operate on the quaternion current o find



Ay oA A A
D2Eq = quD—q * Jq

—
Bl ep, o aJ -
:jqzqu[[a_T‘f] + V. qu|, iq a—Tq + V[cpq] + VxJg (2.16)
57 =
=jgZi0 ., jg ~é—Ti + V[cpq] + VxJg
owing to the equation of continity
8 ep, -
<P LV e Tg =0 2.17)
6T .

"Thus, as we expect, only the vector part of the quaternions appear in (2.16) with separate (decoupled) equations for

each vector component in the wave equation.

Extending to the potentials we begin with

- ; -
Eq(7.5) = ~VO,(F,0) + jqc[Vx + ﬂ%}Aq(?,t)
c

SN L5 (2.18)
V. Aq(_"},f) + —Zﬁqu(—r},r) = 0 (Lorentz gange condition)
C
Defining
AN - 1 ¥
Ag =-Dq, 4 (2.19)
4 ‘
we have
A A
D_q « dqg
> e
- A
= Jql—mi+V-Aq , gL + —V®, | + Vxdq
c 8T c



-
84 >
=40, jg %-T—M%Vcbq + VxAg

(2.20)
A A A
Eq = jqcl—_—l_vq . Ag
agreeing with (2.13)
Substituting from (2.20) in (2.14) gives
As A A
([ 44 = uJq .21

as the wave equation for the quaternion poiential. Note the separation of the four components from each other.

Trom (A.5) we can then write

AA,
- g
Vag|P-7 | (2.22)
Ay

A, AN -
7

[r—rlelr —71=—]| —?"32/1\ (2.23)



3. Concluding Remarks

MNow we have placed the combined field i quaternion form, complementing the previous results im
d-vector, 4 x 4 dyvadic form. Here we have a single separation index, ¢ = +1. Both choices are equally valid, and

hoth forms are used in conpumction with cach other,



Appendix A, The Combined Field

Suminarizing fioimn [1, 51, we have the combined field

— — -
Eg(F.0 = EGF.0 + jgZ H(F 1)
g = *+1

Z:F—
&

separation index

(real) permeability  and permitiivity =
. —1/2 . . . + .
c = luel Y2 2 yave propagation speed in medium (Jight speed in free space)

The combined corrent densily is

- - -
Jq Pty = J(F0 + j—g—Jm(?,t)

—%
i =

¥

magnetic-curent density, in generat fictitious, bt useful in various cases

The combined Maxwell equations then are writien as

al 2 4
[Vz ~jqﬁ‘] Eq{?,f) = jqz "’q(—"?s‘*
c

4

The combined charge density is

pq(rar) = P(f";t} + J pm(r»t,}
Zy
z > R
Voo Eq(r.0) = =pg(r,h
-2 2> 3] — L .
Voo Jg(r.n = ~s:~f—§7 = Eg(r.f) = ——n:;p‘,;{r,é‘) {continnity eguation}
e s

This is extended 1o the potentials

—

—> —>
Aq(F. = A0 + jgZ Am(7 1)
B (7.1 = ®F.N + gD, (7.0

1/2
} = wave impedance of uniform isotropic medinm characterized by frequency-independent

(A

(A2)

(A3}

(A.4)
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Eg(r.n

q(?,l‘)

.

—
V. dgl

—>

-~

—V(I)q(?,t) + [jchx -—

o}
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......>
Aq(7 1)

- -
~V<Dq(7,t) + jqc[Vx + ﬁE:IAq(';},t}
¢

-+

= | 77
Jgl|l ¥ f——
4 c
dv’
’uj 4 S ad
v zwlr—v |
- =
rd | r=—7 |
pq b ¢
ij‘ v
£ —
[ dxivr—vr

of
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(A.5)

(A.6)



Appendix B. Four-Vectors and Dyadics

Also sumumarizing from [5] we have the reformulation of the uswval four-vectors and dyadics using the
combined field, leading to interesting simplifications. For this purpose the position vector for four-dimensional
Minkowski space takes the form (with an overbar indicating a four-vector)

_ —
rp = (P:Tp) = (xsysz!Tp)

:xTx+y“1“y+sz+TpT;p (B.1)
Ty = jper, p = %1

giving two choices for the new index on the time coordinate (imaginary). The del operator and Laplacian become

d 1 & (B.2)
2 2
O =[5 =V 5=V -5
&y ol 5

We also have

Then various electromagnetic quantities take the forms

_ - _ N ‘

Jp.qFp) = (Jq(#.0), jpep,(r 1)) (4-current density)

— _ — a > o

Dp *pgPp) =0 =V . Jq(7,t) +E/?qp(r,x)) (continuity)

Ay @) = | AguD, 720 (1) | (@-potential s

pqTp) = | Aq(7.0). I q¢7 1) | (4-potential) (B.4)

- -2 5 1 8 -
Dp « Ay o) =0 =V o dg(r.t) + ?é?@q(r,t) (Lorentz, gauge)
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[+ ApgGp) =~ Tpg®)

— -7 (F") p —n ! . -3 ,,,,,:,r
J%H®Q=AJ—“%%£:rﬂ’a?p:(?umW4V—VU)
dm| v — 7 |

V

The combined Maxwell equations are now written as

0 “Ezq Eyq - pquq
Epg@p) = EEZq EO ?q —pq?q ®-5)
Vg Xy P Zg
PgEx, PaEy, —pPaE;, 0

- _F pg (Fp) (skew symmetric)

This 4 x 4. dadic is much more symmetric (involving basically only three vector components) than the traditionat
field tensor(s). This is also self dual in the sense discussed in [5] and can be derived from y) p.q using D » and the

dual operator.

Note also that the field tensor has an inverse as

-1

ey —> =

ELlF) = {Eq(?,t) . fq(?,r)} E () B.6)
Py g

so that, except for a constant multiplier, it is its own inverse. While a vector does not have an inverse, the

electromagnetic field in the above form does have an inverse provided

—3 -
Eq(F.1) « Eq(7.0)
- - - - - —
= BP0« ECF0 - ZZHF. » HE0 + j2qEF D « HF 1) B.7)

=0

Note for a plane wave that this is zero, and the inverse does not exist.

i2



Appendix C. The Spatial Quaternion Units

Quaternions have taken various forms, depending on the various authors. Here we ireal quaternions as
complex 2 X 2 dyadics, rather than as hypercomplex numbers. In this form the usual rules of mairix algebra apply.

Let us use an overhead * to symbolize such a quaternion for which we immediately write

|
i

1 oy ,
(0 J = identity quaternion

=
I

A o0
[0 0} = Zgro quaternion (C.D)

We write the four quaternion units as

lg, 1z, 1y, 1z (C.2)

The first is time- and scalar-like while the remaining three are space- and vector-like. In this form we can write a

general quaternion as

_..>

A A A A A
Q=0slg + Qv lx +Qy1y +Qlz = {Qs: Ox Qy= Qz} :{Qs» Qv} (€C3)

Here we concentrate on the second through fourth units, leaving the first for the main text,

Mimicing the cross product

- - —> —> 4
1x)< 1};: 123—1yx lx
— - - b d —
1y>< lz= 1x=—'lz>< ].y (C4)
- —> —» — -
lzX l_x= 1y="1x>< Iz

we have the usual form of the corresponding quaternion units, replacing cross products by dot products, as

13



FAN FAS A AN N

lx . ly = }.z = —].y . ].x

Fa A N AN A

1y hd lz = 1x = "“12 - 1y (C.S)
A A FAN AN Fa

lz . lx = ].y = ""]_x - ].z

If we enforce
N A A A
Ig =171 =-1, £=xp7 (C.6)

analogous to the square root of -1, then the right sides of (C.6) (anticommuting) arc immediately derivable from the
left sides. We also have

A A A A

Ix = 1y « 1; = —1 (and all cyclic permutations)

N A A A

Iz » 1y « 1x = +1 (and all cyclic permutations)

Al s .

I = -1z (€7

det(fl\g) = +1 (determinant)

Let us adopt a convention for all £ (for symmetry)

det(i\g) = +1 (€3

which is one choice consistent with (C.6) (Note that minus-sign coefficients go to plus when taking the determinant
of an N X N matrix for N = even.)

A2 A
From (C.6) we have that the eigenvalues of 12 are both -1. Hence the eigenvalues of 14 are +/, For unit

determinant, then one eigenvalue is + 7 and the other -/, giving

tr(/l\g) = O (trace)

Ay (/l\g) = *j(eigenvalues) (C9
2

14



for all the spatial quaternion units. We can note that the (C.9) properties also apply to the transpose, adjoints, and

conjugates since

A AT AT PN AN BN

“l=1lg el =12 17 =17 = 17

One particular choice of these spatial quaternion units is

A 0 o 0 1 A 0 J
lx = J . 2 ].y - > lz = _ J
0 - -1 0 i 0

AN N
Xelg o X , {=xnz

Fal
also satisfies (C.5) through (C.8). If, in addition, X is unitary we have

Ao A

X =X (unitary)

Fat AN A ? N I\T N A A AT
s 1y e X =X evlpeX =-Xolg X

with the same property of inverse equals negative adjoint.

We can write these spatial quaternion units in dyadic form as

i)
)

where the eigenvectors are exhibited, including their normalizations, to give biorthonormal eigenvectors.
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The position vector takes the form

A A A A N

re=xly + yly +z1; = {0, F}
A A N A {C.15)
r-r:—[x2+y2+zz}l = —r?1

Note that if the quaternion umits are changed by a unitary transformation (C.13), this corresponds to a rotation of the
coordinate axes. An altemnate form for (C.15) has

N A
o= —r
(C.16)
3 A
AR B -

_>
for a “positive” result. (Note that » isreal.)

While vectors do not have inverses, quaternions (being 2 X 2 matrices) do, here for the vector part, in the

form

A Fal N
f e f=1
/\_1 A A A 3 —)A—l
f -f~f=f=—f-f}f (C17
-1 A
A f —3 e
7 = -3 for f« f =0
fr

One can interpret this as reversing the direction and taking one over the magnitnde. This is the negative of
~> - A
inversion. The above is fine for real f . For complex f one might prefer to use f , but this gives the

complicated form

AAt o oEA A * N
ST = F 8 VLN - L]
A Fa
F U Lfs - Sl 4 12 Sy - ] C.18)
— — 5 -
Sof =|fP =0 uness f =0
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while the complex magniiude is present, it i3 only one of the erng,

At this point we can congider the cross producis of space veciors in guatetnion form. Let

LM @ L3
S x5 =7 (€19

Then we have after some algebia

3 3
A A o AN A —>
VA S PR S PR PR (A
(C.20)
A L2y () 32,
=f «f —f «fF 1
showing the mixiure of the cross and dot products in quaternion form.
Consider the spatial part of & quaternion operaior
A A A a A
YV = }.15— + ].y-—' + lg""'“ = {O,V}
&
e
g=Vxf
A N A A
g=Vef+[Veill (C.21)
A R/ af}’ O &z A @fy O
g:lx—_———+lym—wzlzw_w
dy oz &z B o oy
—
= 0.8 = 0.V x /}
AN

Aswe can see V includes both divergence and curl,
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Appendix D. More Concerning Quaternions

Having established the first quaternion unit in (2.7) as

we can proceed to other aspects of our form of the quaternions. Write a general quaternion (notation) as

A A A —
0 =0 g + Qv = {Qs> Qv} = {5, Uy Qy:Qz}

-
Qv = {0, Qv} = {05 st an Qz}

as AN A
= Oy lx + Oy 1y + Oy 1z = vector part (D.2)
- — — -
Qy =0y 1x + @, 1y + @y 1z = associated vector
(), = scalar part

Two quaternions then multiply as
ALy A
Q L]
AL AQ)
Oy + Oy = -0 0P + o o + off o |
FAN FaN
+ [P0 - 0P |1 + [0M0® - oD@,

AN
+ 000 - 00?1
21 2 A~
i —!Qv ' Qv ]1
2 22 A 20 22| A >0 2 A
+|:QVXQV:I 1x+l:QVXQVjI 1y+{QVXQV} ].z
x ly z

) { o) ) o0 —>(2)}

) " ~2) Al A A
07 = -0P D145 000, +jga AP0, +0, + 0

A
1

.]q‘v'vﬂ VXV

A @
g -0 D.3)

(1) —=>(2) —(2) 1) (1)  -X2)
= {jq[Qg) 2 0.0, } J‘q[ O N } + 0y x Oy }

18



if we subscript by ¢ and —g so that

-

A A A

Qq = {Qs > Qv} = QS lq + QV

A > A A

Q—q = {_Qs s Qv} = -Qslg + QV
then we have

AD @

FAY
0y * g = O0P1 + 7000 - ja0

5 5

AD @ A A

e
Qq * Q—-—q = |:Q§ + Qv * Q\,r}-E = Q_q . Qq (CommutE)

this being valid for general complex components. Notationally we have

0, =0

i.e., a quaternion with first unit /l\q need not be subscripted by g.

We can now congider a quaternion inverse as

”1/\ A A

A
A A A | A
0, - [Qq - Q-q} 0.,
~1
2 - e Fal
= |:Qs + Qv ¢ Qv:| Q..q

N

valid for complex components, provided ¢ is not singular, i.c.,

2 2 2
OF +OF + 05 + 07 20

oMo -0,

D.4)

D.5)

D.6)

®.6)

D.7)



We can now define a quaternion coordinate as

N A - AN -
Tq =T ={T.7} , T—q ={T.7}

A I 2 9 A A A D3
Tq«T-q =|T2-r |1 =74 - 7q (independent of o)
which gives the usual light cone when set to zero. Similarly we have the quatcrnion operator
A AA AOA 3 A2 a2
M, o, =V~ 1lge|«|V+1g=|=V + ==
¢ [ ‘o } [ ! } or?
_{62 2 & az}fl\_ﬁ ﬁ
i3 T3 o2 Az Mgl
o At & & ;
Y D.9)
/\2 A
= D 1
2
N 62 32 52 2
|:| =—5 - Ty "3 " .3 (independent of q)
or o oy 574
which is the usual wave-equation operator.
A
Now we can regard our quaternions as functions of 7" instead of 7 and? separately. So we have
FAN — FASYA) N
Qr.n =0 =¢ D.10)

N
“The foregoing then gives the analytic properties of quaternion fanctions of the quaternion variable T .

AN
Operating on O we have

A N A
Dq . Q [ lq— + V} I: q + Qv:|
Fa A A -
Mlqﬂg{Qs lg + QV} Jq-—Q— = —Jqu—{Q QV}

or o7

A A A

V. {Qs 16}1\ = gV Qs = fQ{O:VQs}

AA = A -y A - A - A

V.sz—[V-Qv}l+[Vva:\lx+{VxQVj|1y+{Vvajilz
x y z

20



A
Using D_ q Ve have

It

A A A A A A
g0 {lq% + V} : [Qslq + Qv}

Now we can form

i
S,
]
1

—-)
A P : -
s + Voo Qv]= Jq Oy + VO, |+ V x Oy

A A — A
[, T =1ig4, 0p=-41

cortesponding to the 4-dimensional spacetime. For completeness one can note that

A

A Fal
]:[qu={qu,0}=—21

We can also note that
1_/\ A 1 A
7 L, +g|=Vv
1-/\ A 1 — 8
N Dq - D—q = _1‘1§

from which the foregoing can also be constructed.
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D.12)

(D.13)

(D.14)

D.15)
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