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Abstract

The physical origin of the gauge invariance in Maxwell’s theory is rooted in quantum
physics and thus not accessible to classical electrodynamics. We provide an original and
fundamental description of gauge invariance in electrodynamics to bridge this gap. Then
we identify the dynamical components of the electromagnetic field, give an account of
the concept of gauge fixing, and discuss solutions of Maxwell’s equations in terms of
gauge potentials.



1 Introduction

‘The backbone of classical electrodynamics are Maxwell’s equations (see [1, 2], e.g.)

V.B=0, VxE+%tB—=O, (1)
V.-D=p, vXH-a_atQ=J. @)

They contain as sources the charge density p and current density J while the electro-
magnetic field itself is described by the field strengths E and B. The electric excitation
(“dielectric displacement”) D and magnetic excitation (“magnetic field”) H must be
linked to the electromagnetic field strengths in order to make Maxwell’s equations a de-
termined set of partial differential equations. This is accomplished by the introduction
of constitutive relations which are often assumed to be of the local and linear form

D =¢eeoFE and B = puuH . (3)

With the constitutive relations at hand it is straightforward to decouple the Maxwell
equations and to obtain wave equations for the field strengths. The result is (& :=
1/e€opupro)
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For the excitations analogous equations of motion are obtained with the aid of (3).

If we take the paragraph above for granted it seems as a mere mathematical con-
venience to introduce electromagnetic potentials ¢ and A in order to express the field
strengths as

E=—ch—%ti, B=VxA. (6)
It follows from this substitution that the homogeneous Maxwell equations (1) are auto-
matically fulfilled. Moreover, the inhomogeneous Maxwell equations (2), together with
(6), can be used to derive equations of motion for the electromagnetic potentials ¢, A.

This yields
o(V-4) 4

A‘P+T = T (7)
18A 10p\ _

While the field strengths E and B are uniquely determined by a given set of poten-
tials the converse is not true: Transforming the potentials according to

6€(p=¢'—(p=—-§£, 65A=A’—A=VG, (9)
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with an arbitrary function ¢ = ¢(r,t), leaves the field strengths and the Maxwell equa-
tions (1), (2) invariant, as is easily verified. This invariance is what is usually called
the gauge invariance of electrodynamics. The transformations (9) are the corresponding
gauge transformations.

The following questions arise naturally:

e What is the physical origin of the electromagnetic gauge invariance with respect
to the gauge transformations (9)?

e What field components of the set {¢, A} are truly physical, i.e., dynamically in-
dependent of the freedom to perform gauge transformations?

o What restrictions (= gauge fixing conditions) can be posed on the potentials in

order to eliminate the gauge freedom (and to possibly make practical calculations
easier)?

In most textbooks on electrodynamics these points are mentioned but not always clearly
spelled out and explained. This leaves a certain amount of insecurity about how to use
and deal with gauge invariance in formal and practical calculations. Therefore we will
answer the questions above in the subsequent sections.

Recently, a stimulating article appeared which provided helpful background mate-
rial in this regard [3, 4]. The present paper continues this direction and works out the
physical and mathematical properties of the electromagnetic potentials from the very
basic. In particular we will stress the non-dynamical character of both the scalar poten-
tial ¢ and the irrotational (“longitudinal”’) component of the vector potential A. As a
by-product we will also recognize that there is no problem with causality if the Coulomb
gauge is applied to solve Maxwell’s equations. '

2 Origin of gauge invariance: The electromagnetic
field as a gauge field

In the following we have to borrow some knowledge which belongs to the realm of
quantum physics. Let us assume for the moment we already know how to formulate
a theory of free electrons and positrons [5]: In quantum mechanics these particles are
described by a so-called spinor ¥, a mathematical quantity which consists of four complex
components, ¥ = (¥;, ¥z, ¥3, ¥,). Any component V; is a field ¥;(r, t) which describes
a distinct particle. More precisely, the four components comprise the description of
an electron with spin up, an electron with spin down, a positron with spin up, and
a positron with spin down. (Spin can be viewed as internal angular momentum of a
particle. Given an arbitrary axis one can only measure two different values of electron
or positron spin with respect to this axis. These values are called “spin up” and “spin
down”.)




It is possible to separate the complex ¥ into a real part |¥| (which still consists of
four components) and a phase part exp(j#) according to

¥ = V] exp(j6) = (|91, [Tal, | W3], [Wa]) exp(j0). (10)

That we can actually separate the same phase from all four components is Jjustified
by the physical fact that the phase is not directly observable. Only phase differences
are physically observable, for example in an interference experiment with electrons or
positrons. This is a nontrivial result from quantum mechanics. Now the point is that the
unobservability of the phase 0 is responsible for the gauge invariance of electrodynamics.

We have to explain this, of course: Suppose we would like to assign at a certain
position r to a certain time ¢ a specific value to the phase 6, that is, some number of the
interval [0, 27. Even if we cannot observe the complete spinor ¥ directly it does exist,
at least in some mathematical space. This is sketched in Fig. 1, where one (arbitrary)
component ¥; of the spinor ¥ is represented by a wiggly line. In order to give § an
absolute meaning we need some reference frame which tells us where § = 0, for example,
is located. The choice of such a reference frame is not unique, as is shown in Fig. 1.

Figure 1: The value of the phase @ of ¥; does depend on the choice of a reference frame.
A gauge transformation corresponds to the transformation of one reference frame to an
equivalent one. It is mathematically expressed as a rotation in the plane about an angle

e

There is a gauge freedom in choosing a reference frame. In f?,ct, any two admiss?ble
reference frames are related by a rotation in the plane. The ch01ce.of one of the possible
reference frames is said to be the choice of a specific gauge. In th1§ language, the value
of 0 is gauge dependent. A gauge transformation of # is mathematically expressed as

sh=0—0=c¢, (11)
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since the change of #, when shifting between two reference frames that differ by an angle
¢, is just given by e. We note that the difference of two phases 0, 0, (at one point (r,
t)) is gauge independent (=gauge invariant), i.e., independent of the reference frame
chosen:

66(91 - 92) = 6601 - 5592 =e—€=0. (12)

In the previous paragraph we concentrated on the phase at one point in spacetime.
Now suppose we wish to describe how the phase § changes between two different points
of spacetime. To be specific we focus on two points (r,t) and (r + Ar,t), with Ar in-
finitesimally small. In order to describe the change of f we have to distinguish between
the true physical change Df/Dr, which is observable by a suitable interference exper-
iment, and the gradient Vf. Remember that an observable change should be gauge
independent. However, the definition of V4, which is given by the limiting process
(0(r + Ar) — 8(r))/Ar for Ar — 0, involves two different reference frames (the one at
r + Ar and the one at 7), both of which can be arbitrarily chosen. The gradient V@ is
not gauge invariant since a gauge transformation d. acts according to

5.(V6) = V(6.8) = Ve, (13)

and this expression does not vanish in general. The reason for this complication is the
fact that V@ includes a possible unphysical change of 6 that is due to the arbitrary
orientation of the reference frames at (r,t) and (r + Ar,t) to each other. What we
need to know, however, is the true physical change Df/Dr which is obtained if parallel
(=“unchanged”) reference frames are used.

A priori, the notion of paralle]l reference frames is not defined in the space of the
phase §. Therefore we write as an ansatz
Dé
- = - 14
Dr V- A (14)
with a so far unspecified vector function A. The role of A is to define parallel frames
at two points (r,t) and (r + Ar,¢). This is explained in Fig. 2.

We can derive the behavior of A under gauge transformations from the gauge inde-
pendence of the observable Df/Dr. We use (13) and the definition (14) to obtain the
conclusion "

6{%’:) -0 = §.A=Ve (15)

In an analogous way we can &onsider the physical change Df/Dt of 0 between two
points (r,t) and (r,t + At). This leads to the introduction of a scalar function which
we call . The field ¢ compensates a possible unphysical change of 90/0t,

— =—+¢p. (16)



Figure 2: Determination of parallel reference frames: Suppose we start from some com-
ponent ¥; at (r,¢) and want to know how its phase changed while passing to (r+ Ar, t).
We choose some reference frame at (r + Ar,t) (here displayed as dotted frame). This
gauge can be used to calculate the gradient V. Now we obtain the reference frame at
(r + Ar,t) which is defined to be parallel to the one at (r,t) by a rotation of the dotted
frame by an amount of A - Ar. This is how A determines parallel reference frames and
thus the true physical change Df. Note that the actual value of A depends on the choice
of the dotted frame, i.e., A is gauge dependent.

For “experts” we remark that in (14) and (16) the change of the sign in front of the
potentials is rooted in the Minkowskian structure of spacetime. It follows

D6
We recognize from the right hand side of (15) and (17) that the fields A and ¢ transform
under gauge transformations exactly in the same way as the electromagnetic potentials
do, compare equation (9).

So far, ¢ and A are introduced as a necessary means to describe the change of the
phase of an electron or positron. Their actual values are not imposed by us but by
nature. There are well-established physical principles that tell us how to make ¢ and
A to true physical fields that are determined from physics. One (standard) way (see [5]
or [1] Chap. 12, e.g.) is to use ¢ and A to construct kinetic energy terms together with
source terms. During this construction it is decisive to know the transformation behavior
(15) and (17) in order to derive gauge invariant expressions. Then an action principle is
applied to obtain equations of motion. The result are the Maxwell equations (1), (2) and
it is in this way recognized that ¢ and A are the electromagnetic potentials, introduced
in a deductive and modern way. Therefore the (gauge) structure of electrodynamics is,
in the end, a consequence of the freedom to choose certain arbitrary reference frames in
quantum physics.




3 Dynamical and non-dynamical components of the
electromagnetic field

The gauge invariance of electrodynamics, reflected by (15) and (17), leads to the con-
clusion that not all components of the set {p, A} are dynamical. Arbitrary gauge trans-
formations can be used to change the value of some field components. Let us identify
these non-dynamical degrees of freedom.

To begin with we consider the scalar potential ¢. Under a gauge transformation
it transforms according to d.p = —0¢/0t. The gauge parameter ¢ = é(r,t) is a priori
arbitrary and so is its time dependence d¢/8t. Thus we conclude for the moment that
% is not dynamical since its value can pointwise be arbitrarily changed.!

Next we focus on the vector potential A. It changes under a gauge transformation
according to d.A = Vg, i.e., it changes by a pure gradient, the rotation of which vanishes,
V x Ve = 0. This motivates to use Helmholtz’s decomposition theorem to decompose
the vector potential A into a rotational part A™* and an irrotational part A" 2

A=A+ A" with V-A™=0, VxAT=0. (18)

Such a decomposition is always possible if the vector field A is defined over the whole
space and if A and its derivatives fall off sufficiently fast at infinity. Moreover, the
decomposition is unique up to a constant vector.® It follows '

ScA = 6, (A™ + A™) = Ve = (Vo)™ (19)

where the wavy equal sign “~" indicates “equal up to a vector which is constant in
space”. From the last equation we conclude '

G A™~0, 6A"~Ve.| (20)

We recognize that, up to a constant and in particular non-dynamical vector, the rota--

tional component of the vector potential is gauge invariant while the irrotational com-
ponent is gauge dependent.

1The attribute “arbitrary” is not quite correct since, so far, we have neglected possible boundary
conditions, in particular the boundary condition (7). We will comment on this below and remark for
the moment that boundary conditions certainly pose restrictions on a system but do not change the
(non-)dynamical character of a field variable.

2In the physics literature it is common to denote the rotational part as transverse and the irrotational
part as longitudinal.

3For a proof and a discussion of the Helmholtz theorem see §20 of [8]. The theorem is, in general,
not valid if the domain of the vector field contains boundaries. In this case only specific boundary
conditions can give meaning to the decomposition into rotational and irrotational parts. We would
like to mention in this connection the construction of a specific antenna which, in a certain gauge, is
characterized by a vector potential with both vanishing curl and divergence [9]. However, the vector
potential is not trivial but, basically, of the form of an electric dipole field. This is possible due to the

. nontrivial topology of the domain of the vector potential in this specific example.




Therefore we can summarize by saying that the dynamical electromagnetic degrees
of freedom are given by the rotational part of the vector potential while the irrotational
part together with the scalar potential are non-dynamical. This means in particular that
the time derivatives of A™ and @ are of no physical relevance.

We must stress that the arguments above are more of a plausible than rigorous
nature. A strict derivation that leads to the results presented requires quite an amount
of theoretical formalism. In this connection we mention the “Hamiltonian formalism”
which is very well suited to investigate gauge systems like the electromagnetic field. For
details the interested reader is referred to the excellent references [6, 7].

4 Gauge fixing in electrodynamics

The gauge freedom is often used to facilitate the calculation of an electromagnetic prob-
lem. Cleverly chosen gauge conditions can simplify equations which are otherwise diffi-
cult to solve.

 Gauge conditions must satisfy the following point:

e They must be admissible. This means that any gauge potentials ¢, A that satisfy
the equations of motion but not necessarily satisfy the gauge fixing conditions can
be transformed by a gauge transformation to gauge potentials ¢’, A’ which do
satisfy the gauge conditions.

Moreover, “good” gauge conditions assure that

o the gauge is fixed completely, that is, no nontrivial gauge transformations can be
found that leave the gauge conditions invariant.
We illustrate these points by means of the Coulomb gauge V A’ = 0. This gauge
immediately implies V - A"™ = 0 since the divergence V - A”™ identically vanishes by
definition. Together with the defining condition V x A" = 0 we obtain the result

A™ ~0 (in Coulomb gauge) (21)

From the previous section we know that this only fixes one out of two non-dynamical
degrees of freedom because also the scalar potential ¢ is a non-dynamical variable. Hence
it seems plausible to take as a further restriction the temporal gauge ¢’ = 0.

Let us check if both the temporal gauge and Coulomb gauge are generally admissible.
We consider two arbitrary gauge potentials ¢ and A. First we try to find a gauge
transformation which transforms ¢ into ¢’ = 0. We have

0 Oe
6€§o=¢'—(p=—§€ = (p:a. (22)

Integration yields

e(r,t) = /t o(r,t)dt + &é(r), (23)

|}
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with a new function é = &) which does not depend on time. Thus we find that all
gauge parameters €(r,t) of the form (23) lead to the temporal gauge ¢’ = 0.

Now we also want to specify () such that A is transformed into A’. We find from
V - A' = 0 the conclusion
0A=A'-A=Ve = V.-A=-V- Ve (24)

We plug (23) into the last equation and obtain
t
V-A(r)+V-V / o(r,t)dt =~V - V&(r). (25)

At first this does not look very promising since the right hand side with the freely
choosable function &(r) does only depend on 7 while the left hand side depends on both
r and ¢t. For arbitrary t it seems that we cannot find a function &(r) to always satisfy
(25). But let us investigate the time dependence of (25) a little closer. Differentiation
with respect to time yields

9 6o 8A
B-t(V-A(r,t)+V~V/ w(r,t)dt) = V-(E-+th)
= -V-E
1
= --V-D (26)

We remind us of the Maxwell equation V - D = p and discover that the left hand side
of (25) is constant in time if and only if the charge density vanishes, p = 0. In this case,
reasonable boundary conditions presupposed, &) is uniquely determined from (25).
This, in turn, fixes €(r,t) via (23). Therefore we have the result that both the Coulomb
gauge and temporal gauge are admissible and do fix the gauge completely if and only if
p=0.

To understand the situation for p # 0 we have to digress for a moment and return
to the Maxwell equations (1), (2). One has to note that the equations V - B =0 and
V - D = p are no dynamical equations but only boundary conditions: By means of the
remaining Maxwell equations they are fulfilled for all times if they are fulfilled at one
time. Therefore it is sufficient to calculate the solutions of V-B =0and V-D = p at an
initial time ¢, and then solve with these solutions as boundary conditions the equations
VXxE+0B/3t=0and V x H-0D/ot=J.

Now, if we work in terms of potentials, the homogeneous Maxwell equations, and in
particular the constraint V - B = 0, are trivially fulfilled. We are then left with the only
constraint

V-D = €V :-E
0A
= €V - (—Vgo— —-—) =p. (27)



In the Coulomb gauge V - A = 0 the constraint (27) reduces to

V'V¢=A<.o=—£;, (28)

the solution of which is well-known from electrostatics,

1 p(r” t) ds,r: )

t) =
e(r?) dmeey J |r — 7| (29)
It follows that the gauge choice
1 /
V-A=0, e(r,t) = olr,t) d*r' o (30)

dmeeg J |r— |

is compatible with the boundary condition V - D = p. It generalizes the choice of
Coulomb gauge plus temporal gauge of the vacuum case p = 0: We can repeat the

calculation (22)—(26) with the condition ¢’ = 0 replaced by ¢’ = g | w5 d®r'. Then

we obtain in place of (23), (25), and (26) the following three equations: The equation
for the original gauge parameter €(r,t) is given by

e(r,t) = / t (ert) - ¢(rt)) dt + &), (31)

while the determing equation for the secondary parameter é(r) turns out to be

V-A(r,t)+V-V/t<,o(r,t’)dt’= —V-Vé(r)+%/tp(r,t’)dt’. (32)

The time dependence of (32) is trivial since

%(V -A(r,t)+ V- V/tgo(r,t') dt' — %/tp(r,t’) dt’)
=——(V-D-plr,p)) =0 . (33)
€€y

This shows that the gauge (30) is admissible and does fix the gauge completely.

The Coulomb gauge V - A = 0, the temporal gauge ¢ = 0, and its generalization
(29) are natural and transparent since they directly restrict the undynamical degrees
of freedom. Among the unlimited number of other admissible gauges we yet want to
mention the popular Lorentz gauge which is given by

10p

It is admissible but does not fix the gauge completely since it is still possible to perform
gauge transformations as long as the gauge parameter € obeys

1 e
ey
From a formal point of view, the Lorentz gauge has the disadvantage of involving the

unphysical quantity dp/8t. The reason why the Lorentz gauge is nevertheless widespread
is its usefulness in solving the Maxwell equations. This will be considered next.

Ae =0. (35)

10
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5 Gauge dependent equations of motion - Coulomb
h, gauge and Lorentz gauge

In order to solve the Maxwell equations one usually does not rely on the gauge invariant
wave equations (4) and (5) but rather takes advantage of the gauge dependent equations
of motion (7) and (8). We now discuss the solutions of (7) and (8) for both the Coulomb
gauge and the Lorentz gauge.

We begin with the Coulomb gauge V - A = 0. In this case the equations of motion

reduce to
Ap = —% , (36) .
AA - %%%4— + V%%ﬂ = —puedJ . (37)
We alréady encountered the solution of (36),
p(r,t) = 1 o(r’,?) d*r', (38)

T dmeey ) [r—1

and now understand that this is not the solution of a dynamical equation but the solution
of a boundary condition which fixes a gauge. In this connection it is worth noting that in
(38) there is no violation of causality involved. We recall that the time dependence of p is
of no dynamical relevance. The “instantaneous” solution (38) refers to an instantaneous
adjustment of the physically irrelevant reference frames discussed in Sec. 2. The reader
in doubt might try to derive from (38) an “instantaneous” electric field via E = -Vp-—
0A/0t. That such an undertaking will not work can immediately be seen from (4) where
the gauge invariant wave equation for E with phase velocity c is displayed.

Now we use (38) and the continuity equation

V-J+ ?a% =0 (39)
to write (37) in the form
18PA 1 V' J(Tt) 5,
M-ggm = eI+ [ oo
= —pp(J — J)

This wave equation has the retarded solution

o, ¢ — =
It ¢ )dsr'.

r—7'|

A (r,0) = Alr,1) = B2 / (41)
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The currents

’ ’
J* = J+ Ly LI(—"ﬁdsr' , (42)
4z lr — 7|
irr  .__ 1 v'. J(‘l", t) '

are, respectively, the rotational and irrotational component of the current J ,
J=J+J", with V.J%=0, VxJT=0, (44)

as is easily verified. It is worth noting that, as was also pointed out in [3, 4], the
components J™, J' are in general extended over the whole space, even if J is a
localized source. Such an a priori counterintuitive behavior can be formally explained
by the necessary description of a localized source current in terms of distributions or non-
differentiable functions: If a localized current J is plugged into (42), (43) the divergence
operator V'- produces singular terms which lead to the extension of J rot  JF into the
whole space.

Equations (38) and (41) establish the general solution of Maxwell’s equations in the
Coulomb gauge. We note that the wave equation (40) and its solution (41) are purely
rotational: Taking the divergence of (40) or (41), respectively, yields identically zero on
both sides. That there is no nontrivial wave equation for the irrotational component A"
is in accordance with the fact that in the Coulomb gauge A'™ is dynamically restricted
to zero, A™ ~ 0.

One might ask what happened to the irrotational component of the current J T gince
it does not enter the solution (41). The answer is that J'™ determines the change in
time of the boundary condition (36) via the continuity equation (39),

V-J=V-(J'°‘+J‘")=V-J‘“=-%%. (45)

Now we turn to the solution of (7) and (8) if the Lorentz gauge is applied. Substitution
of V- A+ 8p/2dt = 0 yields

1 0% p
_———1 = - 4
A(P 2 ot? €€y ’ ( 6)
19’°A

This looks appealing since we obtain wave equations for both ¢ and A. However, the
symmetric appearance of the fields ¢, A™, and A™ is a bit misleading since one has
to keep in mind that only A™ is a true dynamical variable. Also one should be aware
that the gauge is not fixed completely, yet. The advantage of (46) and (47) is that they
are straightforwardly solved. One obtains the retarded potentials

1 p(r',t— 1—-1':" ) 3
p(r = d’r’, 48
() 4meeg _/ |r — 7| r (48)
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47 |r — 7/

g =l
O A(r,y) = EE It - = )dar', (49)

as physically meaningful solutions of the Maxwell equations. The fact that the gauge is
not fixed completely is not disturbing since, in classical electrodynamics, one is usually
interested in the calculation of observables, i.e., gauge invariant quantities, from (48)
and (49). The advantage of (49) is that, in contrast to (41), one can work with the (in
general) localized current J in place of the extended component J™, compare also 3, 4]
for a discussion of this point.

The solution (49) can be split into a rotational and irrotational part,

rot _opm [IO -l

ary) = b e (50)
. Jirr I ¢ — |r—-r'|

A‘"(r,t) — HhHo (', c )d3,,.l . (51)

4m |r — 7|

The rotational part (50) is identical to the solution (41) which was obtained in the
Coulomb gauge. This is not really surprising since we recognized in Sec. 3 that 4™

is, up to a constant vector, a gauge invariant quantity. In contrast to this, the Lorentz
gauge

_v.am_ 10
O V-A=V. -A"= 25 (52)

is reflected in the solutions (48) and (51):\ If plugged into the Lorentz gauge condition
(52) they simply yield the continuity equation.

6 Conclusion

Let us summarize the main results.

e The origin of the gauge invariance in electrodynamics is found in quantum physics.
Gauge transformations exhibit the freedom to choose (unobservable) reference
frames that are needed for the description of certain particles. The electromagnetic
potentials ¢ and A are necessary means to determine the physical change of these
particles.

e Only the rotational part A™* of the vector potential is dynamically independent
of the freedom to perform gauge transformations. The time development of the
irrotational part A™ and the scalar potential ¢ is of no physical relevance.

e The Coulomb gauge constraints the irrotational part A™ dynamically to zero,
A'™ ~ 0. In accordance with the boundary condition V - D = p the Coulomb
O gauge is reasonably completed and fully fixes the gauge if ¢ is chosen as the

13




electrostatic Coulomb potential, cf. (29). With this choice there is no instantaneous
propagation of observable quantities involved. It is straightforward to solve in this
gauge Maxwell’s equations. The solution explicitly shows that only A™ enters as
a dynamical variable.

 The Lorentz gauge does not fix the gauge completely but leads directly to a solution
of the Maxwell equations. In this gauge the non-dynamical character of A™ and ¢
is not obvious. This disadvantage is not really important for practical calculations
in classical electrodynamics.

As a rule one should keep in mind that there are no “right” or “wrong” admissible gauge
choices. Any proper gauge will lead to the same values of the gauge invariant quantities
E, B, D, H, p, and J. But depending on an actual problem a certain gauge can be
more appropriate than others. ' :
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