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Abstract

We use three new constructs to obtain a new probability model for the spin-half measurements, the
simplest EPR problem, under the usual positive probability theory and without instantaneous interaction at-
a-distance. The constructs are: 1) the reciprocal PDFs (probability density functions); 2) the spin types;
3) the measuring equipment’s observation co-generating variable responses.

From the average of repeated measurements on a Z -polarized spin state " 2", we explicitly deduced

that there are the two spin types, named A and B. For " 2", the spin orientation r.v. (random variable) RS
of the two types have the conditional PDFs f ﬁs( F"z",A)=4F-Zu(f-Z) and fﬁs(ﬂ"z‘",B) = 2u(f-2),

- respectively. For an d-directed measuring equipment, its response r.v. R s has both types conditional

PDFs f; (F|la,A)=1and f; (7|aG,B)=2|F-a] . When an equipment encounters a particle, their
Ry Ry

probabilistic measurement interaction is modeled as R =R v © ﬁs, the reciprocal product r.v. of R \ and
f\’s where the former responses in kind to type of the latter. The model predicts all one particle spin
measurement probabilities. Then, assigning the joint PDF fﬁm i (A.5]"0") = 6(F +7,) to the source r.v.

(fi’s, , Rsz) of a singlet pair "0", the model immediately predicts the pair’s QM (quantum mechanics)
measurement probabilities by a conditional probability expansion under independent measuring PDFs and
independent counting probabilities at separate measurement sites. The EPR “paradox” is shown to be
another counter-intuitive example in conditional probability.

Moreover, we showed the necessity of the type attribute by a self-contradict that follows from, and
exhibits the mutual incompatibility of, four premises. The well-known first three are: QM measurements,
positive probability, and independence of space-like separated measurement equipments. The heretofore
unrecognized but tacitly used fourth is: disallowing interaction types. The self-contradict, implied by the
four premises, is a mathematically false relation in the second moment, the Bell inequality. Whence all
related difficulties. The new model deletes and replaces the fourth, explicitly and quantitatively. Further,
we suggest an experiment in He spectroscopy to test and demonstrate a factor-of-two observable effect of
the spin types. Finally, we summarize, including a list of implications.
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1 Background

The simplest example of the well-known EPR wave-packet reduction and QM (quantum
mechanics) incompleteness problem [1] is the spin-half particles’ singlet-pair measurements [2].
Consider a population of many such singlet-pairs, each prepared in the spin zero state "0".
Randomly sample a singlet-pair from the population. Measure the spin of one member of the
sampled pair at location x, on 4 and referred to as #1, e.g. by passing it through a Stern-Gerlach
magnet aligned along an arbitrarily fixed unit vector . The measurement result S, is +#/2 xor

O (exclusively either or) —4/2. Repeating this sampling and measurement procedure many times, the
accumulative results tend to be 50% +#/2 and 50% —#/2. The same holds for S,, measurement
results to the other members of the sampled pairs measured separately at x, on b and referred to as
#2. But if the measurement results are paired by keeping track of the outcomes of both S, and S, for

each pair, then the many repetitions tend to the joint probability ' [3]

~ 1~-a-b
Pr{S, =+, S,=+"0";4,b}= : 1)

Since a measured S = — on 4 is same as S = + on —4, the other three outcomes’ probabilities are
obvious. They are referred to as etc. when needed and imply the covariance

cow(S,, S,|"0" a,b)=-a-b (1-1)
The (1) is derived readily in QM and verified by experiments [4].

Now, (1) exhibits that the paired measurements’ results are not statistically independent. This of
course is anticipated because two members of a singlet-pair come from a common source at which
they are prepared to be correlated, namely O total spin angular momentum state “0". The puzzle is

' The usual probability theory, with its frequency interpretation and explicit notation, is used. E.g., Pr{X=xly} is

O the conditional probability that the random variable X realizes as x given that the condition y occurred; Pr{X=x}
=3 Pr{X=xly; }*Pr{Y=y; } if {y:} are disjoint and exhaustive; cov(X, Y) = E{XY}-E{X}E{Y} where E{X} is
expected value of X. Also, spin values are in units of #/ 2 and S = + stands for S =+h/ 2, etc.
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that the seemingly simple (1) has heretofore defied all previous probability modeling efforts under
only two obvious and general constraints: 1) the usual positive probability theory; 2) the finite speed
of light and its implied independence of space-like separated measuring processes.

These two constraints are cherished because 1) should tally any physical frequency of occurrences
[5] and 2) is the foundation of relativity [6]. But all such modeling attempts on (1), many by brilliant
researchers, to conceptually reconcile QM and relativity, failed. Finally Feynman showed that all these
previous models must invoke negative probabilities [7]. In fact, insisting positive PDFs (probability
density functions) to these models for (1) leads to self-contradictions, e.g. the Bell inequality [8] in their
second moments. The above are well-known [9].

2 New Model Synopsis

We introduce and quantify three new concepts to probabilistically model (1) under the
constraints 1) and 2), following a long strenuous effort. They are the reciprocal PDFs, the spin
types, and the measuring equipment’s active role in co-generating a measured outcome. The
intuitive physical picture follows.

There are two types of spin-half particles, A and B, type being a new attribute aside from the
polarization. But an a-directed spin measuring equipment carries both types of measuring responses.
The particle and the equipment have nothing to do with each other before their measurement
encounter. During the encounter, the measuring equipment responds to the measured particle
according to the particle’s fype. Their interaction is probabilistically modeled by an interaction r.v.
(random variable) 1?, whose PDF is the reciprocal product of the particle’s PDF and the equipment’s
PDF, the former depending only on the particle’s polarization and the latter only on the equipment’s
direction. These PDFs of the same type are naturally reciprocal to each other. Then the 1?, ’s random
sampling realization 7 determines the spin measurement outcome. Measuring equipments space-like
separated are physically and statistically independent so that their joint measuring PDF is the usual
product of their individual marginal PDFs.

To present the model, we first show the relevant mathematics. Then we model and solve the one
particle spin in a polarized state. We next apply the solution to all one particle states. Then we apply
it to predict the two particles singlet-pair measurement statistics. An explicit exhibit of the EPR
“paradox” as a conditional probability illusion follows. Finally, we show the necessity of the model

and summarize.
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3 Reciprocal Probability and Preliminaries

3.1 Reciprocal PDFs

A PDF is a real-valued non-negative scalar function which integrates over its defined domain to a
normalized 1. Consider r.v.s X and ¥ with respective PDFs f, (&) and f,(¢) and CDFs (cumulative
distribution functions) F, (€ ), Fy(<x0)=0 and F,(&¢), F,(<y0)=0. Thetwo r.v.s are defined to
be reciprocal to each other and form a reciprocal product r.v. denoted by Z= X ®Y =Y ® X if the
product of their PDFs f,(& )= fx(&) fy(&) remains a PDF, which is the PDF of Z.*> Its CDF F, (&)
has F,(<20)=0, z0 = max(x0, y0). Here, ther.v.s X and ¥, and Z, can each be multidimensional of
the same dimension with its own joint PDF. Notice that (Z,, Z,)=(X,, X,)®(Y,,Y,) does not imply
Z, = X,; ®Y, unless we have independent { X, } and independent {Y, }.

3.2 Some Simple Properties

One, immediately following definition the reciprocal PDFs can not be discrete. They must be continuous.
Two, many distribution families, but not the normal distribution, have natural reciprocals. E.g., the
exponential PDF Ep{A}, e™**/4, x € [0,»), has the reciprocal Ep{1- A} for A in (0,1). Their reciprocal
product’s PDF is Ep{A(1-A)}. The beta PDF Be{m,n}, x™'(1-x)"" I'(m+n)/(T" (m) I (n))

x € [0, 1], has a continuous set of reciprocals Be{m’, n’} and forms the reciprocal products Be{m+m’-1,
n+n’-1}. For integer orders, the Be{m’, n’} becomes discrete, such as the Be{5,4}, Be{20,15}, Be{76,56},
Be{285,209}, etc. to Be{3,1}; and the Be{1,2}, Be{2,6}, Be{6,21}, Be{21,77} etc. to Be{2,2}.

Three, the reciprocal product r.v. is a Fourier complement of the independent r.v. sum. Le., the CF
(characteristics function) of the sum Z/= X1+ Y1 is the product of the CFs of X/ and Y/. And the
PDF of Z1 is the convolution of the latter’s PDFs. Complementarily, the CF of Z = X ®Y is the
convolution of the CFs of X and Y. And of course the PDF of Z is the product of the latters’ PDFs.
This Fourier complementariness may imply interesting physics, relating to the uncertainty principle which
is just the mathematical inequality ,” o, > 1/ 4 for PDFs | f(?)]’ and |F(@)’ of normalized Fourier
transform pairs f(¢) and F(w).

Four, the reciprocal product r.v. Z = X ®Y can be viewed mathematically as a deterministic
mapping function
Z=g(X) @-1)

2This is not the joint PDF fy y (x.y) = [y (x) fy(y) of two independent r.v.s X and Y with respective PDFs

fx(x)and fy(y).



that maps a r.v. X under an influence of both the reciprocal PDFs of X and Y. The mapping function .
g() solves

d (
fx(g&(n)) fy(g(n)) g,;g(n)=fx(n) < Fyey(g)=Fx(n) (2-2) Q

which has a unique solution for scalar r.v.s but has infinite solutions in general. The probability
distribution of realizations of the r.v. X ®Y is identical to that of the r.v. g( X).

3.3 Some Integrals

Define df =dQ), / 4z as the normalized infinitesimal solid angle in the 3-dimensional unit-vector 7

orientation spacg. We present some integrals for later use:

V@ u(#-2)= ) d 17-21=1/2 3)

@ uip-3)7-a=a-3/4 (-1)

| ugr-2)p-a=1/4 (4-2)

VdF u(p-2) u(i-a)F-a=(1+4-3)/8 | (5-1)

[a ur-2) 7.2 sgnp-a)= | i -2) -3 sqner-ay=ai4 62

(@ u?-a) (7 b)=(1-6,/7)/2 ©) O

Here, u(&) is the step function, sgn(&) the sign function, and 6, (< =) the angle between & and b.

The (3), (4-1), and (6) are obvious. The (4-2) is easily seen by graphically rotating 4 away from Z in the
integrand of (4-1). The (5-1) immediately follows (4) and implies (5-2).

4 One Particle Model

4.1 Formulation --- Polarized State

Consider the sampling and measurement experiments of Sec. 1, but to a population of "z"
polarized particles at only one site. The average of the many repetitions’ 4 -measurement results S,

each + xor -, is 4- 2. This phenomenology alone, with definition of statistical average, implies
Pr{S=+|"z",a}=(1+a-z)/2 )

Without loss of generality, we model the measurement interaction by a unit-vector r.v. R ; and
conditionally expand on it the left side of (7)
Pr{S=+|"2",a}=|df Pr{S=+|"2" a,R, =F} fR'(r“l"E",&) 8) O
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Next, conforming with the + and - observations, we make the simplest intuitive assumption that given
,’s realization 7 the measurement outcome is deterministically + xor - solely according to the sign of
the realized a-r, i.e.

Pr{S=+|"%",4,R, =F}=u(a-F) | ©)
Pr{S=-|"2"4,R; =F}=u(-4-F) (10)

Now, we postulate that the interaction r.v. ﬁ, be the reciprocal product of the measuring
equipment’s response r.v. R,, and the measured particle’s orientationr.v. Ry, i.e. R;= R, ® RS with

J# (FI"2".8)=f (Fla) fp (FI"2") | 11)
Substituting (8) to (11) jnto (7) gives the integral equation
dr u(f-a) fﬁu(r‘l&)fﬁs(r“l"z“")=(1+&-z‘)/2 (12)

4.2 Solution

The integral equation (12), assuming the obvious physical-space orientation isotropy which dictates
that £ Ay (7|a) be a function of 7-4 and f ﬁs( 7|" 2" ) be a function of 7 - Z, has two set of solutions. They

are unique, within a physical smoothness excluding “infinitely oscillating” mathematical functions.
Denoted as type A and type B, they are

fi,(Fla,A)=1 (13-1)

O fo(FI"2" 4)= 472 u(F-3) (13-2)
and

fRM(r“ld,B)=2|r‘-d| (14-1)

fks(r‘l"f",B)=2 u(f-z) (14-2)

From (3) to (4), clearly all these are PDFs and the f?M and ﬁs of the same type are reciprocal.

When substituted back, of course either type renders (12) an identity and reproduces the
measurement probability (7) with the expected value @- Z to S. But the expected value can also be
viewed from the interaction r.v. Iéj_. E.g., for type A we have

E{S|"2" a, A}=\dr fR,(fl":?", a, A)E{S|"z",a, A, 7}
- & [y (F|&, A) [ (F1" 2", ) sgn(-8) (15-1)
=a-z (15-2)

Here, (15-1) uses (9) to (11); (15-2) uses (13), (5-2).

The physical interpretation is that there are two spin types, A and B, of spin-half particles. Sucha
. particle carries, and is characterized by, ar.v. Rg|" p”,T) whose PDF depends only on its polarization

state “p” and spin type T, given by (13-2) and (14-2) if " 2" polarized. However, a measuring
equipment carries both types of response r.v.s { R,\a, A), R,,\a, B)}, each of which has a PDF



depending only on its type and the equipment direction setting @, given by (13-1) and (14-1). Only

during the particle- equipment measurement encounter, the measuring equipment responds to and

interacts with the measured particle according to the latter’s type, locally. The interaction is random and O
modeled by ar.v. R 1= RM ®f23, the reciprocal product of Rs and RM which of the same type are

naturally reciprocal to each other. Then the interaction randomly samples a realization ¥ of ﬁ, to

determine the measured spin reading and its outgoing polarization state: S =+ and "+4" polarized if
F-4>0;S=-and "-a" iff-a<0 ?

Notice an asymmetry in the measuring and the measured. The former’s state and r.v.s are not
altered by the measurement, but the latter’s are (except the trivial case of measuring "Z" on z). Notice
also a symmetry. A measuring equipment does not just sort a pre-realized deterministic attribute of the
measured object, as treated in classical physics. Nor it is limited to sample from a pre-described r.v. of
the measured object and sort, as practiced in QM. It co-founds the interaction r.v. and does the sampling
realization and sorting. All on-site, during, and is the measurement. From a pre-prejudiced, unphysical,
view that disallowed this observation co-founding role to measuring tool, one would proclaim that the
measuring equipment “distorts” the measured attribute before recording and reporting it.

To sum up, the spin-half probability model is

Pr{S=+"p" a‘}:ZP(tj )} df Pr{S=+|"p" 41,7} 1 (FI" P",4,1,) (16-1) O
J
Pr{S=+|"p" 4,1, F}=u(@-F) ‘ (16-2)
To,(FI" D" 4, 1;) = fr (Fla, 1;) fo (FI" D" 1;) (16-3)

Here, “p” = spin polarization state; @ = measuring equipment’s direction setting; t; = j_th spin type = A,
B; P(t,) = probability that the particle spin type T, a new attribute additional to “p” and not dependent
on a, ist;; and RM is reciprocal to RS and has PDFs (13-1), (14-1). The explicit solution of (16) for a

general multi-states quantum system is not found yet.

4.3 Application to Unpolarized State

First, a unpolarized state "U" has no preferred direction. The simplest model is to assign, to both
types, a uniform PDF to its ﬁs, ie.

fRs(Fll'U"’A)=fjés(":|"UH’B)=1 (17-1)
Then, applying the above model (16), with (13-1), (14-1), (17) and using (3), (4-2), predicts
Pr{S=+"U" 4, a}=jdfu(f-a) 11=1/2 (17-2)

3The -7 = 0 case is of zero measure. It does not matter whether, or how, it is assigned + or - as long as done selD

consistently.



-t

O

Pr{S=+"U"B, 4} = jdf (&) 2A7-a 1=1/2 (17-3)

This is the observed, and QM calculated, result.

Second, using (4-2), we can assign the PDFs
Ja (FI"U", 4)=2|F-2""| (18-1)

Sa(FI"U".B)=1 (18-2)

with any 2'’, simultaneously. And we still get the measurement probability 1/2, same as 17).

Third, the state "U " can not be measured without being changed. Thus, the PDF of its ﬁs can and
needs only to reflect property of the population; and we can model “"U" as a type-unrestricted
population of polarized particlAeS of which each is polarized along its Z’ direction, with a corresponding
PDF (13-2) xor (14-2) to its Rg, while the whole population’s set { z’ } is uniformly distributed in all 4%
solid angles. Ie.,

fﬁs(r‘l" U"t)=|\dz fﬁs(Fl"U", t,2') f;021"U", t)= J'df' fﬁs(i:l "z’ t) 1=1 (19)
where type t = A, B. This model to f?s predicts the measurement statistics (17-2, -3) just as well.

Thus, a unpolarized spin state "U" has its spin r.v. Rg not uniquely modeled. E.g., it can be

interpreted at least three ways as: 1) a type unrestricted population consisting of individually
unpolarized particles each with a ﬁs given by (17-1); 2) similar to 1) but with its Rs specified by (18);

3) a population of individually polarized particles with their polarizations distributed uniformly in all
directions. This non-uniqueness to underlying modeling, in view of measurement result being indirectly
and probabilistically co-generated by the measuring equipment, is no surprise.

5 Application to Singlet-Pair Measurements

5.1 Joint Probability

Reconsider the paired measurements in Sec 1. The above model requires two members of a singlet-
pair to be different types. Keeping them type symmetric, we assume the simplest and often used anti-
correlated joint PDF for the source pair’s spin orientation r.v.s Rg; and Rg,

fﬁs“ﬁ”(i‘\/. 5|"0"; A,B)= O(F+1F)= fﬁ“'ﬁ”("'},%l"ol','B,A) (20)

Suppose the #1 is type A and #2 type B. Apply model (16). The reciprocal-product interaction r.v.
(R, R,,)=(Ry, 1. R\>)®(Rs,, Rs,) has the joint PDF | A

fo”,R"(;J' 7|"0"; a,b; A,B)= fks,.ks,(fl' A|"0";A,B) fkm.ﬁm(rl’ Fla, b;A,B) (21)



Now the separate measuring equipments at x; and x, are not related and, each locally seeing its own

direction-setting and encountered spin type, are physically and statistically independent. I.e., the joint O
PDF of theirr.v.s R,,, and R,,, is
Sty b (T2l 8,62 4,B)= fi (F)] a,4) fg,,(216.B) (22)

where the factors are given by (13-1) and (14-1). Similarly, given realizations 7, and 7,, the conditional
measurements S; and S, are local and independent, i.e.
Pr{S, =+, §, =+|"0";4, b; A, B; P P} =Pr{S, =+|"0", a,A,F} Pr{S2 = +|"0” b,B, Fy)
=Pr{§,=+|a, #} Pr{S, = +|, 7} (23)
where the last factors are specified by (16-2).

With (20) to (23), the model (16) predicts _
Pr{§, =+, §,= +"0";4,b; A, B} = dr‘jdr} Pr{S, = +|f,,a) Pr{S, = +|r‘2,l;) 241)
me Rm("/-"2|a b: A B) fR ARs, (F,F2]"0" 4 B)
I dF, u(?y &) J' diyulhy )1 20y B18G +7)  @42)
=(1-4-b)/4 (24-3)
where (24-3) has used (5-1). Now let p 45 be the probability that #1 be type A and #2 be type B,
and p,, be vice versa; thus p g + pp4 = /. But exchanging A <> B in (24) renders
12|, b | > 2|F,-a| 1 in (24-2) and the same (24-3). Thus, regardless of the singlet-pairs’ spin
type arrival probabilities at x; and x,, the new probability model under constraints 1) and 2) predicts
Pr{S; =+,8, =+"0";4,b }= pag Pr{S; = +8, = +|"0";4,b; AB}+ (A< B)
=(1-a-b)/4 (25)
This is the puzzling (1).

5.2 Marginal Probabilities

Suppose in the paired measurements we are interested only in one site’s measured results, say S;
at x; on a@ and do not care about the outcomes of #2 at x, on b. It is straightforward to calculate

the marginal and conditional probabilities and PDFs. E.g., (25) and etc. immediately imply for S,
Pr{S, =+|"0";a4, I;} = Pr{S;=+,8,=+1"0";a,b}+ Pr{S, =+85,=-1"0";a4 b}=1/2(26)
This is the observed probability. The same holds for S; on b.

But (26) can be obtained and interpreted from the marginal interaction r.v. R, ;- Integrating out

R,2 from (21) gives
fR“(r,("O" 4,b;A,B)= Idn fR R, (F,,F,1"0"; a 3, b:A,B)=21F, - B (27-1) O

and similarly
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fﬁ“(;:] I”O",' 5’5’.B,A) =2 IF] al (27_2)

O Therefore

f3,(Fil"0" 4.6)= pap 2|F, - bl +pgy 2|F,-d (28)

It appears unsettling that the measuring direction b at x 2, Whatever its measurement outcome,
enters the marginal PDF of the interaction r.v. f", ; at x;. And one is even tempted to literally
interpret particle #1 as having an spin orientation r.v. 1%5 ; whose PDF be 2|7, -b| when it is type A,
with a probability p 45, and be / when type B with a pg,. This interpretation is just (18), one
description of the unpolarized state “U". The appearance is just an artifice caused by our insisting,
in the first place, on obtaining and organizing the hecessary common information to combine the
separate measurements into a paired experiment and then choosing to view part of the whole
information in a particular way. Regardless, from (28) and using (4-2) the model predicts the
observed probability

Pr{S, =+|"0";a b} J.dr, u(r,-a) fR (F,|"0";a b) 1/2 (29)
on any 4, same as (26) and as (18) did.

A different, and intuitively more appealing, interpretation is to view the #1 all alone, by itself and
without even mentioning its companion #2. From the singlet source r.v.s’ joint PDF (20), integrating
out RS , gives the marginal PDF for Rg !

S, (F11"0" . 4) = f (F, 10", B)=1 (30)
This contains no information about #2. It is just another modeling representation of “U" described
at (17). Thus, when viewed individually the model predicts either members of the singlet-pair be a
unpolarized spin "U" with a measurement probability (17-2, 3), or (29), or (26). As remarked
earlier in Sec 4.3, the PDF modeling of unpolarized spin’s orientation r.v. f{g is not unique.

5.3 Conditional Probabilities

The joint probability space of measurement r.v.s (Sy, S2) consists of the four outcomes (+,+),
(+,-), (-, %), (-,-) as sample space and their respective probabilities given by (25) etc. Their
conditional probability of say S; glven S,=+, using only (+,+) and (-,+) as its sample space and the
(25) and (26), is _

Pr{S, =+.8,=+/"0":a b} I-a-b
Pr{S, =+"0", db} 2

This is of course the observed, and QM calculated, conditional probability to the S;=+ subset of

Pr{S;=+"0";4,b;S, =+} = (31)

paired measurement repetitions. But it can be viewed and obtained from the joint probability space
of the interaction r.v.s (R}, R;2), as follows.

11



From (9) and (10), the condition of given a measured S;=+ on b is equivalent to 1%, R 71; >0 in

the ( fi’, 1 f{l 2. probability space. Thus, the corresponding conditional PDF of R, , 18 Q
sz”R (7,,7,]"0" ;4, b; A, B)
S V- 7yb>0 2 b 2 b
S3,(AI"0":8.5; A, B;S, = +)= 22 —— =4 #r(-B) u(Fr(-5)) (32-1)
Jdrz fﬁu(rzl"o ;a,b; A,B)
Frb>0

when #1 is type A and #2 is type B, Similarly
j dF, [, 4, (FiFol"0" ;8.6 B, 4)

A - 7yb: . . A :
fﬁ,,(’;l"ﬂ",‘a,b;B,A,'Sz =+)=- > — - =2|r-a| 2u(r(-b)) (32-2)
Jdr2 fﬁn(r2|"0" ;a,b;B,A)
#b>0
when #1 is type B and #2 is type A. Therefore
T, (Fl"0":8,6:8, =+)= pag 47y (-b)u(F- (-6 )+ pay 2Frdi 2u(h-(-B)  (33)
11

Substituting into the model (16), any one of these conditional PDFs predicts the observed conditional
probability (31) as they should.

From (32) and (33), the reciprocal probability model ﬁ, 1= RM 1 ®ﬁ’s ; explicitly states that for a
singlet-pair, given one member be whatever type and measured + on b, the other member must be the
other type and appears "_p" polarized. This appearance concludes just as in QM, but only as the O
effective result of a conditional constraining in the (R;;, R;5) joint probability space. Ie., the
measurement result + on #2 does not makes any physical change that alters #1 from a unpolarized "U"
to a polarized "_b" . Rather, it reflects the necessary common information, inherent in the joint
probability space and originating from the correlated singlet-pair source, in partitioning and restricting to
an observation-constrained conditional sample subspace such that a realization condition of #2 restricts
possibilities to #1. Although it is well-known that statistical correlation implies a common agent, which
correlates, but not a physical causality, this may still seem strange due to our lack of experience in
combining and sorting probabilistic events.* Such counter-intuitive and apparent “paradoxes” are
algmglgat in conditional probabilities as a result of sampling from a conditioned sub- sample space, even
when the underlying joint probability space is disarmingly obvious [10].

However, the full content of the common information inherent in (24) and (25) implies more than
just these marginal and conditional PDFs and probabilities. It further dictates that the measuring

4 As a simple example in classical physics, consider the experiments of Sec. 1 but on coin-tossing to a population of
coin pairs, each with two coins oppositely biased say one with py=0.9 and pr=0.1 and the other vice versa. Then, Q
independent tosses at x; and x, give Pr{H;,H;}=0.09 and Pr{H,,T,}=0.41, etc. Thus the unconditional Pr{H,}=0.5 but
conditional Pr{H,|T,}=0.82, etc. Le., for a pair, knowing #2’s tossed result changes the odds of #1.

12



equipments do not merely sample and sort an attribute of the measured object, they co-found the
interaction attribute, necessarily. This is shown next.

6 Necessity of Model and Remarks

6.1 Unphysical Cases

If we disallow or fail to recognize the type attribute, then symmetry dictates that measuring
equipments must have the same uniform PDF to their R v SO as to not co-founding the interaction
r.v.. Le, forcing f, Ru( F|a,T) =1 in (24-1), then instead of (24-2, 3) and (25), we get

Pr{S, =+ S,=+"0";4,b}= j dr‘,,[ df, Pr{S, = +|7,4) Pr{S, =+\7,,6) fo_ 1 (7. 7:1"0") (34)

= Idr‘, u(f,-a) _[dr; u(fy-b) 1 1 8(F,+7,)=0,:/(2x) (35)

The hypothetical (35), intuitive but unphysical, was often used in previous effort to exhibit the puzzle
of (1) [11]. '

Notice that even in this hypothetical case we have
Ja (RI"0":8,6:8,=+)= 2u(?,-(-5)) (36)
Thus the condition of #2’s measurement S;=+ on b appears to alter the PDF of #1 from marginal

isotropic to conditional -b -hemispheric. Again, it is just a matter of informing of and constraining to
partitioned sample subspace (Footnote 4, p10). However, this RM-disallowed model, intuitively

appealing and mathematically self-consistent, just does not describe actual physics.

Another unphysical case is, using (20) to (22) and (27), the conditional PDF
Sa b, (FI"0":a.6: Ry =)= 8(Fy+7,) 37)
Le., given the condition R, , =P, implies R, =-F, and, of course, (37), (30), (20) are correctly

related. But this condition is nof the physically realized observation S;=+ described in Sec. 5.3.
Further, the conditional PDF of RS ; given IAQSZ =F,, a condition also nof physically realized, is same

as the right side of (37).

6.2 Necessity of Type and ﬁ’M

More strongly, the measuring equipment’s R \,~disallowed probability model (34), which

physically invoked only the independence of separated measuring processes, is incompatible with the
observed probability (1) no matter what Pr{S = +|f,a} and f R, i?sz( 7,,7,|"0") are used unless they

13



8o negative. This was shown by Feynman [7]. We just exhibit this incompatibility by a familiar self-
contradiction, next.

First, we force (34) equal to (1)
1-4-b
7 - Pr{S, =+, §,=+|"0";a b} _[dr,'[dr Pr{S, =+|f,,a) Pr{S, = +|r2,b)

gy (P B2 10%)

(38)

Thus, from (38) and etc. the covariance of {§,,S,|"0", 4, bjis
~d-b = |df, | dF, E{S,|"0",4,7,} E{S)|"0"B.%,} fr 4 (F.F:l"0") (39)

where the obvious E{S 11"0", a} = 0 etc. were used. Now by definition the conditional S, under a given
#; is deterministically +1 xor -1, thus | E{S,|"0",4,F, }|=1 , etc.

Then, insisting non-negative PDFs, evaluating the (39) at 4 = b implies E{S ,|"0",a,F, }
=-E{S,|"0",a,7,} inside its integral. Therefore, the difference between covariances of
{S,,5,]"0" a, b -( and {S,,S,|"0", a, ¢} becomes
-4-b+a-¢ = | df, | dF, E{S,|"0" 4,7, } ( E{S,|"0"b,F, } - E{S,|"0"é,F,}) Tag, 2, (F1:721"0")

. . (40)
-.-Idr,_[drz E{S,|"0",a,F, } E{S,|"0",b,F, } (1+ E{S,|"0",b,F, } E{S,|"0",¢,F,}) fk“j”(ﬁ,r}l"O")
Taking absolute value and insisting again a non-negative PDF, the (40) results in
|[a-b-a-¢ <|df, | dr, (1+E{S,|”0”,I;,f,} E{S,|"0".¢,7,}) fks’ﬁ”(i’,,le"O")= 1-b-é (41)
for any unit vectors 4, b,é. The (41) is of course the Bell inequality [8]. It is a mathematically false
statement’ and is the self-contradiction.

6.3 A Suggested Experiment

For the model to have physical consequences besides merely solving a logical difficulty, there
must be other experimentally observable implications. A conceptually feasible experiment is
suggested next to demonstrate such a consequence.

The new model dictates that any two electrons in a singlet state must be of different types.
Consider the He atoms. At room temperature their two electrons are virtually all in the 1s? ground
state as singlet pairs. Suppose the He atoms are ionized into He" ions, with one electron remained
behind still mostly in the ground state 1s'. Then the ions are accelerated to form a low-density ion

3 Can be seen easily over a wide range of angles among 4, b, é. E.g., when they are coplanar: if n/8 apart then

(41).
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v

beam and passed through a neutral gas, letting the He" re-capture an electron, to make a neutral He

beam. Now the re-captured electron in the neutral He should quickly radiate a photon of ~20 eV to
g0 to the ground state and join the other electron as a singlet pair 1s®. Using usual QM assuming
identical electrons the rate of this radiation, pom, can be accurately calculated as a function of
temperature, ion and neutral atom densities, beam velocity, and position along the beam path. And
the observed rate py can be measured.

But according to the new model, the re-captured electron’s type could be either same as or
different from the electron remained, with a 50%-50% probability each. And only in the later cases
of different types can they reconfigure into the 1s® singlet ground state. In the former cases the two
same type electrons can nof radiate a photon and settle to this ground state. One of them has to
collide and exchange with an electron of an appropriate neighbor atom before the two can radiate and
go into the singlet ground state. For a low density beam this collision exchange occurs in a much
longer time scale. Thus the interaction types of the new model predict a radiation rate pn = pom/2, a
factor of two lower than the QM prediction. The observed radiation rate py should be able to clearly
distinguish them. '

7 Summary

The probabilistic rules and their implied wave packet collapse when measurement occurs have
been perplexing ever since the beginning of QM. In this paper we explicitly resolved the spin-half
measurement problem by a new probability model, under the usual positive probability theory and the
independence of space-like separated measuring equipments and processes. Aside from a new notion
of reciprocal r.v.s, the model is mathematically unremarkable.

But physically it shows that in an observation the measuring equipment and the measured object,
facilitated by the new type attribute, co-found the interactionr.v. R, = R,, ® R during the

measurement encounter and then sample 1%, to determine the observed outcome. These r.v.s should
underlie the respective QM wave functions. Moreover, in order to preserve the three accepted
premises of QM result, indeperident measurement processes at separated sites, and positive
probability, it is necessary to have such a interaction type attribute and an observation co-founding
role of the measuring equipment. This necessity, physically part of the whole phenomena, logically
stands apart from the sufficiency of the explicitly solved reciprocal probability model.

O A profound implication of the model zippears to be that the measuring equipments and the
observed objects each carries not a pre-realized value of a r.v. but the r.v. itself, i.e. the PDF rule.
Not only that the joint PDF of a common sowurce s r.v.s can be carried means QM is incomplete and a
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common agent must exist to link them. And post-QM physics must address attributes of the
measuring and the measured simultaneously. Also that what observed is necessarily co-generated by, ' O

and seen through the eye of| the observer suggests that the underlying objective physical truth may be
scientifically inaccessible and therefore irrelevant.

To conclude, we recapitulate the implications. 1) If physical observations are necessarily co-
generated by both the observing equipment and the observed object during the measurement
interaction, post-QM physics must address both attributes at the outset. 2) Since any non-
independent joint probability is a consequence of a common third agent, the correlated joint PDF of
the source particles exposes that QM is incomplete, as Einstein maintained. 3) That the reciprocal
PDFs are continuous may indicate a “true” continuum underling all discrete observations. 4) The
measurement uncertainties and their probability modeling may indicate that our understanding of
nature be limited to some dice it appears to play. 5) An experiment, conceptually simple and ‘small
science’, is suggested to demonstrate an observable consequence of the spin types. 6) Research to
isolate, measure effects of, and generalize the interaction type may open new areas of physics.
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Clearing the Slate
About Feynman'’s
‘Last Blackboards’

I am submitting this letter to identi-
fy the equations and figures on. one
of Richard Feynman’s “last black-
boards,” shown in the middle of page
88 of the February issue. Except for
the blocked-off diagram at the lower
left corner and the boxed statements
at the top, the blackboard’s contents
come from the last discussion I held
with Feynman, on the afternoon of 14
January 1988. He had kindly allowed
me to present to him the new proba-
bility model on spin types I have
obtained to solve the Bohm spin-Y,
case for the Einstein-Podolsky-Rosen

“paradox” of quantum mechanics.
As Feynman sat in his big chair at
the right end of the blackboard, I
erased it, except for those portions
mentioned above, and started writing
from the center, toward the right.
This part is exhibited virtually intact
in the PHYSICS TODAY photo. Within a
couple of minutes, as soon as I pre-
sented the one-particle integral equa-
tion solutions that lead to two new
types of spin-Y, particles and to the
measuring tool’s type-dependent mea-
surement interaction, Feynman be-
came intensely interested. With his
. confinved on page 99

PHYSICS TODAY  JULY 1989 15

conrinved from page 15

eyes beaming, he walked to the black-
board and we continued working on
the left part, which, after several
intermediate erasures, was full at the

‘end of the discussion. The photo

shows that most of what we wrote on
that half of the blackboard was later
erased and replaced by two scatter-
ing-like drawings, which may or may
not represent Feynman'’s later think-
ing on the spin problem. But his
writing on the two-particle-type prob-
ability densities and the correspond-
ing measuring tool densities, as well
as his equation for g on the top right,
is mostly still there. I had not named
the two types and used subscripts I
and II in the exhibited formulas.
Feynman said to just call them A and
B. His use of this notation can be seen
above the left “scattering” drawing.

It is inappropriate for me to explain
the new model of spin types here (it
has been further disseminated and is
to be published), except to mention
that Feynman’s two lectures in 1980
and 1982 at Caltech on using negative
probabilities to understand the EPR
paradox inspired me to work on this
well-known fundamental problem.
He had allowed me quite a few
privileged discussions over the years,
beginning in 1966 with my taking his
advanced quantum mechanics course
at Caltech, and including several oc-
casions since 1980 on which I sought
to specifically understand the EPR
problem. But this last occasion was
the only such opportunity I had in his
last two years.

Knowing that he had been strug-
gling with cancer, I found it a great
inspiration to see his usual healthy
clear and quick mind and high spirits
during the discussion. He probed the
key notion of independent reciprocal
probability densities profoundly. He
was very pleased with and encourag-
ing of the new idea. He asked me to
write it up and see him again as soon
as possible. And he promised to think
more about it. I immediately shared
this inspiration with several col-
leagues. But I did not know, and only
learned retrospectively from his sec-
retary, Helen Tuck, that he was quite
ill even then.

In about two weeks I wrote the draft
up and brought it to his office. He was
ill and not in. I left it with Mrs. Tuck.
He never saw it.

Feynman’s last blackboards speak
of his generosity to others and his
unceasing quest for scientific truth.
What the great teacher taught, we
will carry on.

CHARLES TsE CHIN Mo
Ré&D Associates
3/89 Marina del Rey, California
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