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Abstract

The accepted equation of motion for a classical charged particle is second order in
velocity and has solutions that violate conservation of energy and causality. This
note derives a more satisfactory equation that is a first order differential equation
in velocity, conserves energy and preserves causality. It has the additional feature
of being non-linear. The result is extended into the relativistic domain by
formulating the procedure in 4-vector notation.




The Equation of Motion for a Classical Charged Particle

Introduction

The inclusion of the effect of radiation on the motion of an accelerating
charged particle has a long and unsatisfactory history. The generally
accepted equation of motion is the Abraham - Lorentz equation, which may
be written.

mv-zv=Ff (1)

where 7 = 6.24. 10 seconds, and the term involving T supposedly
accounts for the radiation. The derivation of this equation hinges on
equating integrands of definite integrals and so is intrinsically unsound. The
resulting equation is of third order, that is it depends upon the rate of
change of acceleration, and consequently is not of a form generally accepted
as an equation of motion. A consequence of this last observation is the
generation of solutions involving ‘pre-acceleration’, that is the particle is
predicted to move just before the force is applied! In an attempt-to avoid
this violation of causality, Dirac introduced an ad hoc boundary condition,
which merely transformed the difficulty into making the motion of the
particle dependent on all future forces! The form of equation (1) is also
curious in that the radiation correction term is negative which implies that
it contributes a force in the same sense as 7, and this result is vigorously
defended by Dirac. However, ighoring these arguments and changing the
sign does lead to solutions that look more hopeful. Pre-acceleration
disappears, but we find that particles subjected to a particular history of
forces end up with the same velocity regardless of whether the radiation
term is included or not, and so violates the conservation of energy. There is
a further factor worthy of comment. The A - L equation is linear, and yet the
rate of energy loss from an accelerating particle is

9E _ _g?v?
dat  6ne, c?
that is, it depends on the square of the acceleration and hence non-linearly

on the applied force. Summarising the objections to the A - L equation we
have

= mev? (2)

(1)  Third order equation

(2) Derivation unsound

(3) Solutions violate causality

(4) Solutions violate conservation of energy
(5) The equation is expected to be non-linear

A full discussion of the shortcomings of A - L equation can be found in [1],
the standard derivation in [2] and Diracs defence of the equation in [3].
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The Non-Relativistic Equation of Motion

Consider a charged particle released in a force field. The force causes the
charge to move with a resultant change in momentum. In the absence of
radiation we would write

dp

£ -7 (3)
at

as the equation of motion. We wish to find how to modify this equation to

take into account the fact that accelerating particles radiate. We can write

for the kinetic energy of a particle

mv.v=l—££ (4)
2 m

Differentiating

dEyn 1 _dp _ 1 _dp
—2 = _ p. £ = — p—L cosB (5)
dt m a m dt
However, if the change in momentum is entirely due to a loss of kinetic
energy and not to some force that does no work we must have

cosb = 1 (6)

In other words, it is only the component of the change in momentum that
is parallel to the momentum that can cause a loss in kinetic energy. A loss
of kinetic energy implies a change of momentum parallel to the momentum.

Denoting the loss of kinetic energy due to radiation as E,,y, we can write

GErag _ 1 WBPrg (7)

a mP o
and accordingly the momentum not acquired by the charge is given by

dp m GE,u (8)

at p dt
This loss of momentum is in the direction of the momentum, and so we
have

Pra . m Eng p (9)
dt p t p ,

and the equation of motion becomes




Q + _f_TZ_ dErad
a p2? at

Expressing this equation in terms of velocity

i'/+r—‘£v= —f- (11)
v2 m

as the non-relativistic equation of motion for a radiating charged particle.

Discussion of the Equation

We first note that for 7 = o, i.e., no radiation occurring, the equation
reduces to the Newtonian form. Inclusion of the radiation term leads to a
non-linear term as expected, and the equation remains of second order, i.e.,
first order in velocity.

If we form the scalar product of this equation with the velocity, we obtain

o v2 L
V.v+t —V.v=—f VvV (12)
ve m .
which reduces to
mv.v+cvi=~fv (13)
and these terms are immediately identifiable,
dE,, . dE .y _aw (14)

dt dt dt

where dW/dt is the rate at which the force is doing work on the particle.

If we consider the equation of motion with zero applied force and make the
assumption that the acceleration is not zero we have

v Lv-o (15)
v2

This imples that




vilv (16)

and the equation reduces to

1+cX=0 (17)
v
which has a solution, which is the only solution
v=V e" (18)

i -

T
This states that any velocity will decrease rapidly to zero in the absence of
an applied force. This non-physical result implies that the assumptions are

false. Specifically, if the applied force is zero, the accelration cannot be non-
zero.

We have now demonstrated that the new equation of motion conserves
energy and preserves causality, two of the fundamental requirements for a
classical equation of motion and so would appear to be satisfactory as the
equation of motion for a classical charged particle.

Linear Motion Under a Constant Force

Considering now linear motion, the three vectors in equation (11) become
co-linear and the equation reduces to

.2
vV L (19)
v m

Treating this equation as a quadratic in acceleration we obtain

. _ _V [,H 1+4tf ) (20)
2t my

Inspection of equation (16) shows that we must take the negative sign, the
positive sign giving negative acceleration for positive forces. The equation
to be solved is then




h_v_( 1+5_r_f_1] 2

Rearranging we have

[ dv _t
° 2t (22)
v[ 1.8 1]
mv
Observing that

. av
v=yvL« (23)

ax

we obtain from (17)

[’ av .4 |
°o 2t (24)
[ 1+it_f_ -1 ]
mv

The integrands in equations (18) and (20) are reduced to rational algebraic
functions by the substitution

w=|1+3f (25)
mv
yielding
[—aw L | (26)
(w+1) (w-1)2 4z

f waw _ __mx (27)
(w+1)2(w-1)* 163f

Carrying out the integration and reverting to the original variables, we have
the parametric solution, with velocity as the parameter

O




; | PRLI
— 4+
O LA 1 Dl v | (28)
4<
2[1+°-1J 1422 - 1
v ! v J
v
1+—2+1
n;; 2_ .2 gl v | (29)
T v
~|1+——°+1 Y 1+-2-1
v [ 1“";0‘1 N v
where we have written
f oy (30)
m

O T-L (31)

X = _'7;_’; (32)
T

we obtain the graphs presented in fig 1.

~

5 Radiated Energy for Linear Motion under a Constant Force

The standard approach to calculating the energy radiated by an accelerating
electron is to calculate the motion ignoring radiation and to follow this by
integrating the radiation loss over the acceleration history. If we carry out
this process for linear motion, we have, ignoring radiation,

v 12t (33)
m
O where we have assumed a constant force. The kinetic energy of the electron
is then
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Fig 1 Non-Relativisit Solution for Linear Motion
Under a Constant Force
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2
E =2 mi=1m (ﬁ) (34)

The radiation rate is

2
= mv2 = me (—f) (35)
Integrating

E,

ra

f 2

= (_ t (36)
m

The fractional loss of energy due to radiation is then

Erag
Ey

-2 (37)

|5

To compare this result with deductions based on the new equation of
motion, it is necessary to obtain an approximate explicit solution for the
velocity. With the assumption

~

Yo 4 (38)
_ v
equation (28) reduces to
1+ ..EL n [1 + mv
t= my <f (39)
_f
mv
solving for v
L
V= m (40)
1 + .f..f_ In [1 + _'_n_V]
mv <f

The first iterative solution is obtained by noting that




V= At (41)
m
yielding O
1
V= m (42)
1+Xn (1 + —t)
t t
Making use of the binomial expansion
vhﬁb~1mﬁ+$) (43)
m t T
The kinetic energy of the particle is then
1 (ftY T t\Y
E=1(A(H-Zma+L (44)
g lm) (7m0 )
Again using the binomial therein
1 ( ft) 21 t )
E,=—|=||1-=Zmd+= (45)
ST TR o

The logarithmic term represents the radiated energy and so we have
immediately

Erad 2t t
—rd _ 21+ — (46)
Ek t n ( ¥ T)

Comparing the two calculations for the radiated energy

Ens _in 1+ 4 (47)
T

rad st

As an example, consider an electron gun with 10* volts applied over a
distance of 0.1m. The force is

f= Eq=_‘f_‘l (48)

The transit ;ime is
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2
t = .Iﬂ"i - 3.37.10%s (49)
Vg

Noting that r~ 6.266 .10?%*s, the ratio is

E
2d - ¢n (1 + 5.382.10™%) = 33.92 (50)
Eradst

Non-relativistic Motion in a Magnetic Field

The force on an electron in a uniform magnetic field is

f=qvxB (51)
The equation of motion then becomes
vit 2 yv-9yxB (52)
v2 m

Consider an electron injected into a field with its velocity vector
perpendicular to the field. Expressing the equation of motion in cartesian
coordinates

viev i L wievh-LwicvjxBEk (53)
X y Va X y m X y

Separating this equation into its two component equations

-2

it L=y, (54)

v2 m

v2 q
V,+t1—V,=-—LByvy (55)

y Vz y m X
where

V2 = Vf . Vf (56)
V2 = ‘;,f + \',3 (57)

As a first approximation
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(58)

Introducing these approximations into the radiation terms, the equations of
motion become

, P g2, . 4
Vx+T-n?B VX”;BV}’ (59)

2

y q 2 q

vV, +1—-——B°vy,=- 2L By, (60)
Y omr Y m

Differentiating the first of these and substituting for v, and v, in the second

and collecting terms the resulting equation is

2 2 2
oo (@ (@ (e
m m m
This is the equation for damped harmonic motion with a damping factor
2p2
9B (62)
m?

The equation for the y-component is identical and so we have a quasi spiral
motion. We can assume without loss of generality that the initial motion is
along the x axis, we then have the initial conditions

Ve=V, v, =0
. . q (63)
v, =0 vV, = - - BYv,
Introducing a r for the damping factor the x-equation becomes
ve2at Vv, +a{l +at®}v,=0 (64)
and similarly for the y-equation.
The solutions to the two equations can be set in the form
V, = " (A cos wt + B, sinot) (65)
v, = 8™ (A, cos ot + A, sinet)

where
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S}

wﬁ5=-% | (66)

Imposing the initial conditions the solutions become

v, = V, et {cosm‘ ¢ 2 sinwt} | (67)

w
y == V, e sinot
The magnitude of the velocity is then given by
v2 = V2 @2t (1 + 201 sin wtcos ot + w? 12 sin? o) (68)
For fields such that
o<t (69)
T
we may write this as
v2 = V2 2% (1 + 2 wt cos wt sin ot ) (70)
or
v2 = V2 2™ (1 + 1 sinZwt) (71)
To the same order of approximation
veV, e-wzﬂ{a - 85 sin 2 wt} (72)

The traditional approach is as follows. The approximate equation of motion
is

v=4Bv (73)
m
and this gives directly
= _ o q2B% 2 74
Ey=m — v (74)

Now the kinetic energy is
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E, = 2 mv? (75)
On differentiating
E,=mvv (76)
We must have
E = - Eu (77)
This yields
2p2
ve-c 38, (78)
m2
or
v=V,eHt (79)

Comparing the two solutions we see that the amplitude of the velocity
decreases at the same average rate, but the new equation indicates a
modulation at twice the angular frequency. This effect will cause the rate of
emission to be modulated and change the spectral content of the radiation.

Differentiating the velocity components and retaining only first order terms
in wr

o —p? .
v, = - oV, e sin ot

!

2 (80)
V= - oV, e™ “fcoswt - wtsinwt )
Squaring and adding
v2 = 02 V2 2%t (1 - oisinZot) (81)
giving for the radiation rate
E,, = Mm% V2 o2 (1 - wrsin2ot) (82)
These results were determined under the assumption that
wt <1 (83)

To understand the implication of this restriction we may assume the
approximation to be reasonably accurate up to values of wtr~0.1 This gives
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accurate estimates for magnetic flux densities up to

B =M _ 10" whm? . (84)
ar

For all practical magnetic fields the approximations that have been
developed are adequate

The Relativistic Equation of Motion

The equation of motion for a relativistic particle is now derived in the
covariant 4-vector notation of relativity. By ensuring that the terms of the
equation are 4-vectors we ensure that the equation is invariant to a Lorentz
transformation. We denote 4-vectors by bold face capitals and 3-vectors by
lower case as before. Introducing T as the proper time, the equation of
motion for a non-radiating particle is

P _F (85)
dr

where P is the 4 momentum and F is the 4-force, and we may write this
equation displaying their space-like and time-like components

-1/2 .
T;Lr (p.imc,) = (1— 15) (f,

i sy ) (86)
c? c

where p is the momentum

m, v
\I——V? (87)
1 -V
c? .

and we note that the time like component of the 4-force is the rate at which
work is done by the force on the particle. To modify the equation we
introduce a 4-vector that represents the 4-momentum not acquired by the
particle by virtue of the particle radiating,

P, Py
ar ar

The relativistic equation for the rate of loss of energy by an accelerating
particle is

(88)

15




E o.M, v
2 89
U I -

c? c? '

and we wish to relate this loss to the components of P,,. Writing the
energy as

1..L2 (90)
o2

£ me2 vyv ___mWw
1 v2 32 o2 v2 3/2 4 (91)
e? e?
and we may then write
. myv
E = o rad
rad (\1 _ _\_,_2_ )3,2 (92)
2

where V,,, is the rate of change of velocity due to the radiation of energy.
This radiation is acting to retard the particle and so the rate of change of
momentum due to the radiation emission is in the direction of the
momentum. Accordingly we must obtain an expression for the rate of
change of momentum under the condition that the direction of the particle
does not change, that is

. d
= = (93)

where we have borrowed the notation from thermodynamics. To obtain this
derivative we write

_ my v
P = 2’y (94)

(1"§

making the unit vector in the direction of the velocity explicit. Carrying out
the differentiation

16

O

O




p - 0" rad v
rad v2 "y (95)
(-2
c
Making use of equation (96)
E |
Prad = J;” v (96)
Noting that
at g - Ve (97)
ar 2
we have
. m, Vv
m= 2R o2 (98)
a-=)
c
and similarly
I m, Weag _ Erag
rad y232 g2 c? (99)
(1 - -55)

Combining these results, the relativistic equation of motion becomes

d mv . d m, . v B i }

MV e d Mo | g V. Cmdd 5 Tg4) (100)

-yt -Lyn +{m47 ¢ } ?cf-
c? c?

er

Separating this equation into its space-like and time-like components

dt 2R Eraa —5 = f (101)
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c __d_ mo Erad = 1 f.V
at v2 1/2 c fo) (102)
1-=5)
c
Rearranging this latter equation, it becomes
d m,.ct .
at XL * Eg = fv (103)
1-2)
c

and this is simply a statement of the conservation of energy. Substituting
for E,,, in equation (103), we have the three-vector equation of motion.

m,v mr= .. A2 ‘
d o L P U2/ i B A

at 2 12 : 22 2 2
1-L a-5 (1 -5 [ Y
c? c? c?

(104)

Relativistic Linear Motion under a Constant Force

We simplify the equation of motion as before obtaining the scalar equation

v -+ tvz =.L
T o
c? c?

Solving this equation for v and discarding the negative root of the radical
occurring in the solution, we have

2 32
v-X -5 1. 45 (106)
27 c? myv
The solution to this equation is
[ dv -t
o 2 2t (107)
v -L)aﬂ{ L -1}
c? m,v

For all practical fields
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v, =M ¢ (108)

m,

for example, with a field as high as 10% v/m

4f<

o]

= 4410 m/s (109)

We may accordingly make a non-relativistic calculation for velocities up to
a more or less arbitrary large multipie of v, such that

nv, < c (110)

A suitable multiple would be of the order of 10'°. To evaluate the integral,
we now split it into two ranges

fnv,____ av + fV---- dv =_t_ (111)

o nv, 2‘:

The first of these has been evaluated for the general case and so we have,
with an obvious notation

1
1+ —+1
1 .;.lQn{\ n }=-t1— (112)

- 2 J——T 2t
- 1 +—-1
\l‘*; 1 N TR

To a high degree of approximation, this reduces to

t =4 m (113)

The radical in the second integrand may be approximated

1. 4 4.2t | (114)
myv m,v
and the integral simplifies to
[ dv b
v, 2fg _ Viap 2t (115)
(1-%)

m,

The substitution
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v=csin6
reduces the integral to
m m 6, v
—fﬁfseczeae=—f—°tane =—£7—°%-——
f1 - "
8 c

Inserting the limits and noting

nvo < C
we obtain
myv
-4m =t
fa - '—2')
c

and we have the result that to first order in 4f7/m,

myv

V2 12
fa - :5)

which is of course, the result for no radiation! This simply means that
electrons that are accelerated from rest by macroscopic electric fields to
relativistic velocities radiate a very small fraction of their energy. This can
be understood by observing that as the particle approaches ¢ the energy
goes into mass rather than changing the velocity. To estimate the loss from
relativisitic electrons we must refine the approximations to retain terms

involving 7.

We start again with the radical in the second integral in eq (115) and we

write

(116)

(117)

(118)

(119)

(120)

(121)

O




and the integral becomes

m, fV v av
- - b
f Jm, 3/2 (122
i1 (1 _ _vEJ :
m, Poa
Noting that
v, » 1T (123)

o

we make use of the Binomial theorem and expand the bracket involving T,
yielding

m, rv dv v dv _
_f— fnv, T o\a2 T fnv, - b © (124)

The first of these has already been evaluated, while the second, with the
same subsitution becomes

- ____@_ =t {secOd + l on (ﬂi@.) (125)
sin6cos26 2 1 + cos@

Reverting to the original variables and inserting the limits we have




Again making use of the Binomial theorem and (127)

—)
2 2
\ I PR PG
MoV 4nc+r 1 - (v Lon N\ c? r=t,
1/2 12 2
c c \ N ¢? \ c? |
(127)

Without making significant error for relativistic particles we may simplify
further to give

2
m =47 —Lz 2
” Rl ! 1 -1 +Qn4n+lcn \_c¢ . 4c =t (128
f _v2 _v: 3 2 14+ |1-¥2 n*v;
c? \ 2 N\ ¢2 J
where (116) has been extended to give
t, = 4n< + v (n4n (129)

The first term is the solution under the assumption of no radiation, leaving
the second term to account for the delay in reaching a spepcified final
velocity, or equivalently the delay in attaining a specified energy due to the
emission of radiation. We may write this delay as
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2
1- 1"'V—z 2
At=ci—1 1,2-1+0n4+10n N ¢ .402“130’
1.V 2 1+ ]1-¥ v
c? \ c? ‘

At high energies the E - t curves for both the radiating particle and the non-
radiating particle will be approximately parallel.

The total energy is

( Vz]uz - (131)
1 -2

Expressing v in terms of E and substituting into (123) we have

. E J1 _[macz)a (132)
fc E

Differentiating with respect to E

dE m0221,2 (133)
4
E

which gives
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Ate AE
{ m.é& 2}"2 (134)
cf )1 —( 5 )

Equating the two expressions for At we obtain an estimate of the energy
radiated after first expressing (74) in terms of energy

;- m,c
At=t{E -1+ma+lm E ,40:> (135)
m, 2 1. m,& V3
L E )
Comparing (137) and 138)
)
" ] m,c
22 -
AE=fCt(1-(m°c)] {_E —1+Qn4-ln(—v—°]+lﬂn———5—?
E m, ¢ 2c) 2 - m,c
\ E /|
(136)

The conventional approach to obtaining an estimate is to calculate the
acceleration assuming no radiation and then to use this value in the radiation

rate relation, followed by integration. Following this process we w rite the
acceleration as

32 :
v = (1 B} _‘{f) £ (137)
c2) m,
The radiation rate reduces to
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2
E, -tV (138)
(1 - v3*®

Combining these two resulits
) 2
E, -Li= (139)

The total energy radiated in time t is then

2
E, =15t - AE (140)
mO

t is the time to attain an energy E, and so we have that the radiated energy
is

2
ae= I BEL FTY L fre Ja -1 (141)
m, ¥
where
Q= mE..cz (142)

AE = froya® 1. |1 _VE_ fwe? A (143)
c? a

Comparing this estimate with the first estimate based on the new equation
of motion, and which we designate as aE,, we have
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A—E‘=a-1+en4—an[}é)+lon“'1 (144)
2c 2 o + 1

If we consider a highly relativistic electron, say 10Mev, that has been
accelerated over 1Tm we find

— = 34.9 (145)
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Conclusion

A new equation of motion for charged particles has been developed which
takes into account the radiated energy in a consistent manner, consistent
that is, with classical physics. The equation has been deduced using the
conservation of energy, and the one analytical solution found preserves
causality. Approximate solutions for motion in a magnetic field have
indicated the modulation of the motion at twice the rotational frequency.
The same processes, expressed in the 4-vector notation of relativity theory,
yield the relativistic equation of motion. Here it was found possible to find
an approximate solution for linear motion expressing time as a function of
velocity. Changing the dependent variable to energy it has been shown that
a conventional approach leads to errors of factors of ~34 in the estimate
of the radiated energy for linearly accelerated electrons in a constant electric
field for both relativistic and non-relativistic electrons. The complexity of the
relativistic equation indicates that a numerical approach to obtaining
solutions may be necessary.

27




References

4

O

[1] A Critical Examination of the Abraham - Lorentz Equation for a
Radiating Charged Particle.

J.L.Jimenez and I.Campus.

Am Journal of Physics 55(11) Nov 1987.
[2] Classical Electrodynamics.

J.D. Jackson.

John Wiley & Son.
[3]  Classical Theory of Radiating Electrons.

P.A.M. Dirac.
Proceedings of the Royal Society, 1938.

28






