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Abstract

This paper considers an alternate way of viewing the role of the vector

o

otential in quantum electrodynamics (QED). The closed-path line integral of

ct

he vector potential can be related to the same integral of the time integral
of the electric field. Alternately, by looking at a perfectly conducting loop
on this path we can have a static current proportional to the vector potential

or associated magnetic flux (i.e. no additional time integral).
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I. Potentials and Quantum Phase Shift Around a Closed Path

Recapping from [1] the phase change for a particle (such as an electron)

f charge q is
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in terms of the vector potential A and scalar potential ®&. This changes the

quantum wave function ¥ from the form prior to introduction of the potentials

as
b - el (1.2)

For reference we have [2]

h = —— =1.05443 x 1073 Joule seconds
2n (1.3)
g, = electron charge

-1.60206 x 107%°
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As indicated in Fig. 1, if we have two paths P; and P, from r, to r,, there

[+}]

re in general two different phase changes given by (1.1). For the same wave

unction ¥ at ;a for particles traversing both paths we have at fb wave

Hh

functions
P, = e for path P, (1.4)

The difference in phase is the closed-path integral
¢ - ¢, - %% J AZ,t) - di
C
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s (1.5)




C=P1U(-Fé)
=boundary of S

FIG. 1. Paths For Charged Particle




®,(t) = magnetic flux through §
(with boundary C)

-

1lg = unit normal to §

Note that neither & nor VeA enier into this result which depends only on UXA

which is equivalently B. The gauge invariance of QED is associated with the

fact that VxA is the same in every gauge.

Note that quantum phase is not a physical ¢bservable (at least in current
formulations). The observable is Pp* or |¢]2. 1f, however, we have two (or

more) quantum wave functions, such as ¥; and ¥, at 1, we obtain interference

at r, from the relative phase with appropriate aormalization via

| by, + P = le™® + e |yl -4 cos?(dh, -dNIUF (1.6)
|
th
difference. The absolute phase at Eb can be made whatever one wishes by a

|
gauge transformation involving an arbitrary scalar potential, but this has no

with the phase difference as in (1.5) being th« operative parameter. Note
t if P, and P, become the same then &, = 0 aid there is no phase

effect on the phase difference.

i It is also possible to have this phase difference with negligible electric
add magnetic fields on C. It is essential that there be a magnetic field and
a45001ated flux &, passing through S. A solenoid (with current) or magnetic

méterlals (permanent mag.et) can be used to confine the magnetic fields away

; ot 1 .
K ®,(t) - - ¢ j ﬁ(f,t’)dt’i - il -4) Az ) - dl
c |'-» c

@ (-») =0 (initial condition)

from C. However, as discussed in [1], in setting up such a field we have
(1.7)




ihus, the phase difference is related to the time integral of the electric

Eield (the electric impulse) on the contour. At some time t the electric

field (or its contour integral) can be zero, while the corresponding impulse

(time integral) is non-ze

210 .




II. Magnetic-Field Measurement by Integration of Electric Field
Around a Closed Path

The basic way to measure a magnetic field is a loop as indicated in Fig.
2, For simplicity, let this be a thin conductcr on the contour C as indicated
with a port (at the loop gap) where we can define voltage and current with
s$me load taken as a resistance R. The basic jerformance for wavelengths

lérge compared to the loop (electrically small loop) is [4]

{1nc)
V, o (E) =y - g—l%zzt-)— (open circuit voltage)

eq

{inc)

I, . (t) = fh,,,,, . g8 (short circuit current)

(1nc) _{inc) . . s .
B{t) - OHZt) (incident m gnetic field)
= .7 (2.1
Po Ap,, = Ly,
L = loop inductance
A, = 2quivalent area
Zhw = equivalent length
ﬂf the loop is approximately planar, encompassing an area Ap with is
perpendicular to this plane, then we have
Aheq - Ahgs (2-2)
For general complex frequencies (still electrically small) we have
- L ine)
V(s) = RI(s) = =L _ 4, - B(s) (2.3

R + 8L e




FIG. 2. Basic Magnetic-Field Sensor




Looking at the open-circuit voltage we have

d (inc) _{inc) "
Vo (£) = —=®p (£) = = (j)E(t) e L (2.4)
(o4
(1nc)

&4 (£) = AT ¢ - B(E)
So the open-circuit voltage here looks like the phase difference in (1.5)

except for a time derivative. The short-circuit current takes the form

(inc)
- _{ine) & (t) (2.5)
1
Is.c.(t) - IAhaq ! B(t) - = I

Now we have a loop parameter, the short-circuit current, which is proportional
to a magnetic flux without a time derivative, like the phase difference in

(1.5). Of course, this is now an incident flux which has been excluded by the

closed (perfectly conducting) loop.

The discussion above is in terms of a shorted loop excluding a magnetic
flux. Remaining in a classical context, it is also possible to have such a
flux in a loop (passing Lhroégh S) in the absence of an incident field by
impressing the current from some source and then shorting the loop gap. For a
perfectly conducting loop, the resulting fields on the contour C in Fig. 2 can
be zero in such a steady state condition; the loop current flows on the

gsurface of the conductor.

Suppose we take a long solenoid (with current flowing) or a permanent
magnet and place it inside the loop in Fig. 2. The resulting magnetic field
on C (after placement) due to the solenoid can be made quite small if the
solenoid is long compared to the loop diameter. This is what one does in a
QED sense to establish the flux between the two paths in Fig. 1. 1In so doing,
one establishes a current in the perfectly conducting loop. So, phase shift

around C in a quantum sense is 1ike establishing a current in a perfectly

conducting loop on C.




III. Quantization of Magnetic Flux Enclosed by a Superconducting Path

Returning to a quantum view, the short-circuit current in a loop needs to
be quantized in the normal form for a superconducting loop [3]. Basically,
one just makes the phase difference in (1.5) around a superconducting loop as
in Fig. 3 take the form

¢, - b, - @, - 2mn
(3.1
= integer

so that the wave function is continuous around the loop. It has also been

observed that the appropriate charge is

q = 2q, (3.2)

since the superconducting electrons (which are ordinarily Fermi particles)
apparently form bound pairs which act as Bose particles. Noting the negative

electron charge we have [2].{

AD, - -TD o __B .5 0677x 107% Webers (3.3)
qe 2q9

as the separation of the quantized flux levels. For typical areas this can

represent a rather small magnetic field, e.g.
A, = 1074 m? (3.4)
AB = 2 x 10°1 Teslas (= 2 x 1077 of earth’'s magnetic field)

Larger areas correspond to even smaller magnetic-field increments.




FIG. 3. Fluxin Superéonducting Loop
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