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Abstract

A fundamental aspect of the formulation of quantum electrodynamics (QED) is the imposition of
gauge invariance. The potentials are not unique but the various acceptable forms all give the same results
for measurement. This has implications for the influence of the potentials and their measurability under
quasi static conditions, in which case it is possible to have potentials without electric or magnetic fields at
positions away from sources. Two different antennas are discussed which emphasize the Lorenz vector
potential on the one hand and the Lorenz scalar potential on the other. These have the same
electromagnetic fields (those of an electric dipole) to illustrate this property of gauge invariance.



I. Introduction

As is well known in classical electromagnetics the fields described by the Maxwell equations can be
derived from a vector and scalar potential. However, there are various forms that are possible,a Il giving the
same fields. This is referred to as gauge invariance. In making measurements at some point it is the fields
and perhaps current and charge densities that one considers. Potentials are quantities inferred (within
the ambiguity of gauge invariance) by integration of the fields along appropriate paths.

In quantum electrodynamics (QED) the potentials assume a more important role in the formulation,
being related to a phase shift in the wave function. This is still an integral effect over the path of interest.
This manifests itself in the phase shift of an electron around a closed path enclosing a magnetic field, even
though there are no fields (approximately) on the path itself (static conditions). As can be shown the result
of such an experiment is gauge invariant, allowing the use of various choices of the vector potential (all
giving the same result).

Generalizing the question somewhat one can explore the degree to which one can measure vector
and scalar potentials, including the implications of gauge invariance. Assuming that there are sources
(current and/or charge) in some region of space away from the observer, in what sense can the potentials
be distinguished? In particular one can compare static and dynamic conditions. Under static conditions it
is possible to have zero fields in the vicinity of the observer (away from the source region), while having
non-zero potentials. Two different antennas, one emphasizing the vector potential and the other the
scalar potential (Lorenz gauge), are discussed which have the same fields away from the source region.




Il. Electromagnetic Fields and Potentials

In standard form we have the Maxwell equations

VxE=-28
ot (2.1)

V><I7=f+a—D
ot

and constitutive relations (for linear media)

D=E¢-E (2.2)

-

B=ji-H
& = permittivity = £, 1 for free space

fi = permeability = u,7 for free space
Z,= {‘;—0] = wave impedance of free space

(/]
1
¢ =[1,€,] 2 =the speed of light
The divergence equations are not independent but can be derived from (2.1) under zero initial conditions

V(Vx )=0

V.-B=0 (no magnetic charge) | (2.3)

vV.j= -%V -D= —%f:- (equation of continuity)

The fields can be derived from the well known scalar and vector potentials in free space

[6,7,8,17,18,20,21] as

F=—_dA_
E=-%A_vo (2.4)




As is well known these potentials are not unique since one can add a potential ¥ as

~

A'=A- Vx (2.5)
O'=P+ —aa—'q:-

giving the same result in (2.4). Different choices of X correspond to different gauge conditions.
The most common form taken uses the Lorenz potentials which satisfy the Lorenz gauge
V-A‘+c‘2%=0 (2.6)

These are taken as retarded potentials (outgoing waves for zero initial conditions) with explicit forms
PO B [ (A o
A(r,t) -ﬂojw av

2.7)

Foy=-L1
<I>(r,t) - £
This form has both potentials propagating away from the source at speed c and is relativestically invariant,
and for this reason often preferred.
A related potential is the Hertz potential

- { S
nmn:ﬁjAmmm'

(2.8)
for which we have
E=-c 2 fav(v i)
ot (2.9)

H=¢,V x[—%ﬁ]




However, this is basically the same as 4, since in complex-frequency domain

(2.10)
~= Laplace transform (two sided)
5s=Q+ jo = Laplace transform variable or complex frequency
Note that the retarded potentials can be expressed as a single vector potential via (2.6) as
- 2(f -
O(r,t)=—c V- AF.¢)dt’
oo (2.11)

with zero initial conditions. Thus we can define what we might call the electric gauge condition for which

D.(F,1)=0

A=A+ [ voF.rar

=-_. _2‘ t,V .“-.” ” gy,
Arn-2[ [ wv-AFenara (2.12)

Note that this is also a retarded potential propagating outward at speed c.
Another convenient choice is the Coulomb gauge for which we have [17,20,21]

VA =0

(2.13)
A (Ft) = A7 1)+ J'j [Vo(7, ) - Voo, (7, 1) e

E=2A -Vo,




H Ho XA

However, note that ®. (and hence Kc) now “propagates” with infinite speed, but that the fields still
propagate with the speed of light c.




lll. Potentials and Quantum Mechanics

In formulating quantum electrodynamics (QED) it has been found convenient to introduce the
electromagnetic interaction with charged particles via the potentials instead of the fields. Consider a
particle of charge qtravelling on some path P from A to i». Then the magnetic change in phase of the

wave function is just [12]

o =-;ljpx(r,x)-d1‘

(3.1)
n=L  h= Planck's constant
and the electric change in phase is just
se=32[ [yow.o)-diar
=3[ [0 -oGp @.2)
where the total change in phase is just
b=0n+0 | (3.3)
Combining these expressions we have
=4 _[P[Z(?, - j_'“ V<b(?,t’)d:’] v o0
This is interpreted in the sense of changing a quantum wave function y in the form
y—elfy (3.5)
Note that if the path is closed we have
B =F
p=4 (j)}&(?,z) -dl =§-J’S [vx AF,9)]- 48
P (3.6)

=4 jsé(;,:)-d§




with Pthe boundary of S and the unit norrhal 15 taken in the usual right-handed sense. Note that this is

independent of the scalar potential and of the gauge chosen since 4 enters via the curl. This phase shift
is the basis of the shifting of the dlffractlom pattern of electrons from a common source going through two
slits with a confined magnetic field betweén the slits (Aharanov and Bohm experiment).

Electron motion is more generally formulated in a form of the Schrodinger equation including the

spin in the presence of external fields known as the Pauli equation. This equation is gauge invariant in the
sense that a transformation as in (2.5) also changes the quantum wave function v as

v (3.7)

leaving the Pauli equation unchanged [11]. Noting that vytor |w|2 is the physical observable, this
phase change is not important. In particular one can choose
j "o
=- r.t')dt
r=-) . (3.8)
and we have the electric gauge in (2.12) in which only the vector potential A’e appears. This can be readily

computed from the usual Lorenz vector add scalar potentials from (2.7) and (2.12). Other choices, such
as the Coulomb gauge, can also be used where convenient.

Another derivation of gauge invariance concerns the time-independent Schrodinger equation [13].

Here it is shown that a zero-curl vector pot}ential can be absorbed into the scalar potential with no change
in the observables, i.e. only a phase change in y of the form (3.7). This is consistent with the previous
discussion in that it is only the divergenceilfree part (non-zero curl) of the vector potential that is associated
with the measurable effect of an electron Qath enclosing a magnetic flux. Note that Vx 4 is gauge
invariant, and this is the part producing the measurable effect.

In formulating QED a least action principle involving a Lagrangian is often used [10,14,15]. This
involves the potentials in various forms. Not only is relativistic invariance (Lorenz potentials) desired, but
also gauge invariance. At leastinthe currént state of QED, gauge invariance is included as a fundamental
part [9,22].




IV. Implications of Zero Electric and Magnetic Fields Away from Sources

Consider a volume (simply connected) Vs with surface S; of finite dimensions containing the

sources as indicated in figure 4.1. The observer at 7 is assumed away from the sources, i.e.

F3vJss (4.1)

Suppose that £ and H are zero for all times at the observer. Then from (2.12) we have
Ag(F.t)= A,(F,~) = constant vector (4.2)
VX A (F,t) = VX A, (F,—c0) = 0

as the only solution, a zero-curl constant vector for all time. Setting J and p initial conditions to zero we

have

A‘e(?,z)=5for all ¢ (4.3)

as the only solution. In terms of the Lorenz form of the potentials this gives

- t -
A(?,z)+j VO, ')’ =0

(4.4)
Since the initial conditions on J and p are zero then
A(F,—0)=0 , ®(F,—c0)=0
and constant potentials in this form are also excluded.
This can also be considered in complex-frequency form for which we find
A,(7,5)=0 forall s (4.5)

AF,5)+1Vd(F,5)=0 foralls

with all appropriate limit for s - 0.



observer
coordinates

source volume

Vs

Fig. 4.1. Sources Confined to a Simply-Connected Volume of Finite Linear Dimensions
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V. Change from One Static Potential to a Second Static Potential

Let us now consider an initial set of static potentials (subscript 1) followed by a second set (subscript
2) with sufficient time between to allow static conditions to be achieved (at least approximately). Then
without loss of generality consider zero initial conditions

A, (=0 , &4(M=0 , &7=0

Actually, for these potentials, this can be taken in a retarded time sense, i.e., zero for

-L
t<tq P (5.2)

since they are formulated in retarded time via (2.7). Note that the finite linear dimensions of Vs allow 11 to
be adjusted for propagation through V;.

Next, turn on the sources J and p and have them reach constant values Jo and p, after some time
12 less transit times across V. Then, in a retarded time sense for

_r

t>1p-< (5.3)
we have A and @5 constant with

- - . ty -

A, ()= Ap(F) + j VO(F, 1')dt’

h (5.4)

From (2.7) we have constant A'g and ®,. However, zero electric field implies

E(F)=-Vo(F)=0 (5.5)
allowing only a uniform &5 (independent of 7). This is inconsistent with (2.7) unless

®2=0 (5.6)

which in turn implies that p (F) is constrained to a distribution with no exterior potential. A set of charges

inside a constant potential surface (zero potential) such as a conducting cavity with requisite resulting

surface charge density on the interior of the surface is an example of such a charge distribution.
Furthermore, we have after o

VXA, (F)=0=VxZ(F) (5.7)

11




(5.8)

Then, for both Lorenz and electric gauges (and others such as Coulomb as well) the change from
initial (1) to final (2) conditions is characterized by (5.4). Referring to (2.4), we can see that this change is
characterized by the electric impulse

[ 2 Bt =—A,. (7)
[ 2
=&~ 2 Vo7, )t
h (5.9)

subject to (5.5) and (5.7) as conditions on the potentials. So, while the fields are zero before t1 and after
12, they are not in general zero in between these two times. The electric impulse is characterized by Zez
(i.e.the change in A’e from initial to final conditions). As indicated by (5.4) this can be expressed in various

gauges, the electric impulse being gauge invariant.
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VI. Potentials from an Electric Dipole

Now, consider how one might realize the conditions set forth in Section V. Consider first an
elementary 2-directed electric dipole at the coordinate origin in the source region as

B(0)= p(1)%; (6.1)

This can be thought of as elementary charges +Q(r) placed at z =+d /2 with the limit taken as d — 0 with
the product

ple)=0()d (6.2)

constant.

The usual cylindrical and spherical coordinates are related to the cartesian coordinates via

x='Ycos(¢) , y=W¥sin(¢) (6.3)

z=rcos(f) , ¥Y=rsin(8)

The relevant dyadics are

1=1,7,+7,7,+ 1,7, = identity

ol

=1-77, =T5% + 1y = transverse identity

The Lorenz potentials for this case are from [3]

AF s)=e 7 Ho & =S
AFs)=e " ZZspls) , v=4 (6.5)

&(F,s) = e'”{“;ﬂ e }1‘ - pls)

and the fields are

Z,
4nr

7= e s g ot - T o3 -7 B

(6.6)

Gi7 y=e-T{ =12 ___1 1 x3
H(F,s)=e {Mms 4m:rz.y}‘lp(p(s)

these being related by (2.4). Including the electric gauge as in (2.12) we have
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E(F,5) = —5A(F, ) - VO, 5) = Ay (F,5) 6.7)

HF.s5) = ﬁ;in(F,s):l—l%ij(F,s)

So the electric-gauge vector potential is readily expressed in terms of the electric field as in (6.6).

In changing from one static potential to a second, Section V gives this in terms of the electric

impulse

tp - .~ th_
| E(r,t’)dt'=—A2(r)-j VOF,)dt’
h h (6.8)

=—4,,(F)

where zero initial conditions are assumed, and hence zero initial electric-dipole moment. From (6.6) and

(6.7) we have

. o
=4, (F)=| " E(F.t")dt’
2 J (6.9)

4

R

with now

lim p(t)=0
(6.10)

=300

or zero final condition for the electric-dipole moment, with non-zero complete time integral.

In terms of the Lorenz potentials, since there is zero current and charge at late time, we have
A(F)=0 , @(F)=0

[*ver.nar=4,m
, (6.11)]

o] [

So both Lorenz potentials are zero for late time (as well as initially), but are, of course, non-zero for
intermediate times. The electric-gauge vector potential is, however, non-zero at late-times and is the

negative of the electric impulse.
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VII. Lorenz Vector Potential Without Scalar Potential: Equivalent Electric Dipole
Now consider the case of no scalar potential (Lorenz gauge) for all time. This implies outside V;
O(F,t)=0

A(F 1) = Ag(F.1) (7.1)

V-A(7,1)=0=V-4,F.1)
tz - - , - — - -
|2 Bnar = A, (7) = Ap(5)
1

For simpilicity, one can take

p7.1)=0 (7.2)

consistent with the above, although as discussed before, there are special cases of non-zero pwhich
produce no fields outside Vj.

There are various forms that J can take with

V- J(7=0 (7.3)
One way to synthesize such divergenceless current distributions is to think of the various ways to make
closed conductihg Idops. Ina D.C. (low-frequency) sense there is a static current distribution with no
(macroscopic) charge density. Then take this same current distribution to non-zero frequencies, eitherin
an approximate sense if the loop is electrically small, or in a more exact sense by distributing current
sources around the loop, all producing the same current (both magnitude and phase), thereby
suppressing more and more exactly (in the limit of a large number of current sources) any buildup of
charge. As the integrals in (2.7) make quite clear, a divergenceless current distribution can produce a

vector potential with no scalar potential and hence fields (including radiated or e—r"- fields) via (2.4). One

can also say this directly with the dyadic Green's function of free space [16].

An important class of such loops can be referred to as field containing inductors [4]. In this type of
structure, the loop is constructed as a solenoid which is closed on itself to form a toroid-like structure.
Such is a doubly connected surface and higher order connectedness is also possible. At DC, the
structure is designed to produce no external magnetic field. One can synthesize such geometries by
considering a closed, perfectly conducting, multiply connected surface with magnetic field inside, but not

15




through the surface. Solving for the resulting surface current density via the inside tangential magnetic
field, one then constructs this current density (at least approximately) via appropriate spacing of wires on
the selected surface with one or more sources to drive the resulting loop(s). Note that there are no

exterior fields at zero frequency.

As indicated in figure 7.1, consider the simplest case of such a "field-containing” inductor, a body of
revolution as a toroid. The cross section of the toroid need not be circular. /t lies on Stand contains the

volume V. With surface current density J(7;,r) on St as indicated we have for zero frequency

uo$ forFeVr
OforFeVrUSr

B(7,0) = u, A(7,0) =

(7.4)
T:,0) = (7)< H(7,_,0)
7s_oninside of St
17(%)= outward pointing normal to Sy
Now constrain
Ts(7u5)= Fl)(7,0) (7.5)

where f(s) is some frequency function to be chosen for convenience. This assures a divergenceless

current distribution
Vs - T5(s.8) = 0 = =spig (7, 5) (7.6)

Appendix A considers the response of such a toroidal antenna in reception and transmission. In
reception, we have the open-circuit voltage from (A.14) for the electrically-small case as

Voc(5) = hy (s)- E@€)(s)

y(s) =22 @

2_w?

-
- wiN
H__z_J_‘P:‘“ y

[o4
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Fig. 7.1. Ideal Toroidal Divergenceless Current Distribution

17




where the last parameter represents the specific geometry of the antenna as derived in (A.7) (with Nturns
and dimensions ¥, (outer radius), ¥ (inner radius), and w (height)) for a rectangular cross section. Other

cross sections can be similarly calculated.

In transmission, this type of antenna is described in the electrically-small regime by an equivalent
electric-dipole moment

Peq(s)="hy () (s) = ZsT, 1 (s)

(7.8)
(1 being the current driving the antenna port) which produces fields
E-'?.s=e_7' ~do 27, Zo s|81,3, -1+ —1—_[371 -]} 5
(F.5) { s b2 s[3%1 -] prmge LA S D20 -

i}(i",s)=e—7{- 1 sz——“—}-x: 5
dmcr a2 1 X Peq (s)

provided ris large compared to antenna dimensions.

An interpretation of this equivalent electric dipole is indicated in figure 7.1. Consider a contour Ce,
say on a plane of constant ¢, enclosing a surface S, on this plane. Define

St =S 1 (7.10)

Note that C, cannot be shrunk to zero without passing through V¢ since Sy is a multiply-connected

surface. From the integral form of the first of (2.1) we have

(7.11)

where on a plane of constant ¢

-

5, =% (7.12)

By design, B is relatively large in Ur, but note that E can only be zero everywhere outside Vr if there is no

time variation, i.e. only for a static situation. This is consistent with (6.8) due to the factor of s included.

Having the fields from this equivalent dipole, we are in a position to calculate the potentials from the

electric impulse for static initial and final conditions as defined in Section V. Again we have
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. f -
A 7)= [ BF.yar
: j‘* (7.13)

Ty [3-1;1 ‘:‘.]J:z Peq(t')at’

So we require zero initial and final conditions for Pegq just as for p in Section VI. From (7.8) this means we

have for the current driving the toroidal antenna
Iy=0 (initial condition) (7.14)
- o _ Nanr
Ip=17; °J;1 Deq(t')at
(final condition)

In another form, we have

12 P
j.“ Peq(t)d =E112

(7.15)
-4, ()=—15[813,-1] i
A82 r 4“ r3 1"1’ 4 2
Now from (7.1) we have for the Lorenz potentials
Dy (F)=D¢(F)=0
Ay(F)=0 (7.16)

Bo()= Aoy ()=~ -3 (033 - ) Reatp =~ L [633 - 1) [ gt
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VIIl. Comparison of Potentials for Electric Dipole and Toroidal-Antenna Equivalent Electric Dipole

Comparing the two cases in Sections VI and VI, let the two cases be the same in initial and final
senses, i.e. set

[ = [ pugten o
Then we have the same electric impulse in both cases. This gives the same electric-gauge vector
potential A'e? However, the Lorenz gauge potentials are quite different. For the electric dipole in Section
VI both 4 and @ are zero. For the toroidal-antenna equivalent electric dipole in Section VII, while Do is
zero, Kg is non-zero. How then are these two cases different? Within the gauge condition (2.6) they are
the same.

As long as we stay in the electrically-small region for both antennas and equate p(¢)and DPeq(t) forall

time, we also have the same fields. How now can we, away from the source regions, tell the two cases
apart? Is there anything inherent in the Lorenz potentials, as distinguished from other potentials, such as
derived from the electric gauge which can be measured to make this distinction?
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IX. Concluding Remarks

So now we have the question posed in an interesting form. There are two quite different kinds of
antennas, both of which produce electric-dipole fields, but different Lorenz potentials, one emphasizing
the vector potential and the other the scalar potential. In a classical electromagnetic sense, one cannot
distinguish these two cases by measurements of the fields (the measurable quantities) at distances away
from the source region. The gauge invariance of QED implies the same iniauantum sense.

Note that as discussed in previous sections, under static conditions, these two antennas give no
fields. In going between two static conditions, one can have the same fields at intermediate times, but a
change in the electric impulse, this being related to a change in the Lorenz vector potential or to a non-
zero time integral of the gradient of the Lorenz scalar potential. However, with no fields, the vector
potential has zero curl, which in a QED sense is not measurable.

One can modify the two-antenna experiment in various ways, if one wishes, to give other kinds of
antennas. For example, one could enclose each antenna in a conducting shield, perhaps with high
permeability as well. One merely redefines the antenna to include the shield as part of it. Under initial and
final static conditions, the ideal toroidal coil has no external fields and its shield has no currents, and any
residual magnetization is assumed negligible (assumed linear materials). The static Lorenz vector
potential is then the same, although it may take more time to achieve static conditions due to the required
time for the shield currents and magnetization to decay to zero. The electric dipole inside a shield has its
excitation modified so that the electric-dipole-moment time history including the charges induced on the
shield have the previously specified form giving the desired electric impulse. Note that the return of the
scalar potential to zero is associated with the dipole moment returning to zero and the decay to zero of the
exterior charges on the conducting shield, even with charges allowed to remain on the interior antenna
‘(and shield interior surface as well).

So our choice of the two antennas is not unique for separately emphasizing the Lorenz vector and
scalar potentials. All that is required is for the two to have the same exterior fields (say electric-dipole
fields, or more general multipole fields) with different potentials (related by the gauge condition). Ina
classical electromagnetic sense, these antennas cannot be distinguished by exterior measurements.
This is a classical non-uniqueness of sources. In a QED sense, the same is the case due to gauge
invariance in its currently accepted form.
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Appendix A. The Toroidal Antenna

To analyze the properties of the toroidal antenna, consider it first as a receiver. As in Figure A.1, let
the antenna be a body of revolution with respect to the z axis with the usual coordinates. With the
incident electric field £("¢) taken initially parallel to the z axis let the antenna be electrically small. Neglect
the field distortion due to the antenna conductors, or equivalently consider the antenna (as in Section VII)
as a set of distributed sources in space specified by a surface current density J with

Js(Fs.t)-1p =0 (A1)

From

{}f)‘ 7=§j a5
S

c

(A.2)
take the contour on constant ¥, z (a circle) giving
2% inc)pz o 2 3 Llinc)
wjo HY") (7 1)dg = w2, £ E ~s
where £(") is taken as uniform over the antenna. The average (over ¢ ) magnetic flux density is
(avg) _ (ave) _ X6, inc)
B¢ —uoH¢ =2 Hobo E( (A.4)

The magnetic flux in the toroid is just the integral of Bg"'g ) over the toroidal cross section at constant ¢

giving a flux (per tum) as

— [ Y2 plave) oy _ V39 9 glinc)
vf_w_[\y1 By 8law = =225y e, 2 K a5

giving a total flux for an N-turn toroidal antenna as NY.

The actual design of such an antenna has many possibilities ranging from the typical Rogowski coil
(large N) to other forms (such as the CPM type) involving various parallel arrangements for high-frequency
performance [2,19]. This antenna has some similarity to the FMM type of sensor for measuring vertical
current density (displacement and, if present, conduction) [1,19]. In any event, the geometry of the
various turns is made to assure an accurate averaging over the incident magnetic field so that (A.5)

applies.
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Fig. A.1. Toroidal Antenna as a Receiver
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Such toroidal antennas are also used to

measure current, say / positive along the z axis. In this case

the magnetic field falls off as ¥~ and the open-circuit voltage is [2,19]

Voc.= M%’; (A.6)
M= ﬁ%‘f-tn(%) = mutual inductance
Note there is a question of sign convention at the antenna port. By comparison (A.5) gives
Voe. =50 = 2 e, 32;:(;“)' (A7)
i v;:-;vf O

The difference is associated with the fact that

displacement current density aug""c) /ot is allowed in the

region ¥y <¥ < ¥,. For ¥; near ¥, one can assign an area 1:‘1’12 or Wg to multiply by the displacement

current density to give a current so that we ca

Voc.= M4 D))

n write

(A.8)
where now
. wg—wz
If desired we can separate these as
A, = m¥27, = equivalent area
¥, = equivalent radius
= average of ¥; and W5 in some chbsen sense (A.10)
w22
M=-2 wuoN
4ny2

e

In another form we can write
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\P2_q;2 2
V, . =—2-51 ,n 1 9" EFlinc)
o.c. 4 C2 3‘2 2 (A.11)

so that this is a second-time-derivative electric-field sensor. However, the usual electric-field sensor has
the open-circuit voltage proportional to the incident electric field (no time derivatives). So, except for the
second time derivative (or factor of s2 ), this can be regarded as an electric dipole, except that it does not
have any electric dipole moment [17]

5= [p()7av = ok,
4 (A.12)

he = equivalent height
Q= charge delivered to antenna port (in transmission)

since (7.6) gives zero charge density. One way to look at this is to consider the free-space wave equation
for the incident electric field as

Vx|V Ene)] = ~v2Eine) - 1 92E0)
2 (A.13)
The second time derivative is related to Vx V x. In the antenna one curl corresponds to converting Egmc )
to By, the other curl corresponds to converting By by a surface integral to a line integral of an electric field

for the antenna voltage.

So we have an equivalent electric dipole to which we can assign the equivalent area A, as
discussed above. We can also think of this as an electric dipole of equivalent area A, coupled to the

output via a transformer of mutual inductance M. In terms of the usual antenna reception properties [5] we

have
Voo (s) = Iy (s)- E0) 5)

hy (s)= 2527, (A.14)

This last term is an effective sensitivity parameter for the toroidal antenna in reception.

Now consider such an antenna in transmission by reciprocity. An electric dipole produces fields [3]
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EF.s)=e 7'{— s~°-1,+ [31,1, 1]+ [311-?]}-5(.9)

4meor (A.15)
For our case let us restrict
A=L$>>w,0 (A.16)
r>>Wq, ¢

and assign an equivalent electric dipole moment Deq t0 go in (A.16) and describe the radiation properties

of the antenna. Clearly by symmetry

Peg ()= peg (1),

(A.17)
i.e. parallel to 4,.
The far field from such an equivalent electric dipole is
E(F.s)=-¢ " $52%, T, pogls)
=L 5 (3.9 V(s)
= £ ()i A18)

V(t)= voltage at antenna port
I(t) = current out of antenna port

m(s) =l

Ws)
Tinls) ~ Ts)

(in transmission)

= antenna input impedance

This follows the conventions discussed in [5]. Then we have the transmission functions for the far field as

(s) (A.19)

Fr(0.9) = Zin () (3p09)
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In reception antennas can be characterized by effective height for voltage and a related parameter

for current 5] with wave incident in direction 1, as

P

Ve, () = Iy (%,5)- E%€)(5) = open circuit voltage (A.20)

Tyc(s)=hy(%.5)- E€)(s) = short circuit current
i1 (3,5) = ~Tin(s)hy (3.)

where as before the incident field is evaluated at 7 =0. Since the antenna is electrically small then only

the|z component is relevant and

Ve (8) = hy (s)E, 1) (5)

Isc.(s) = hp()E, () (s) (A.21)
Ry (i9)= ()%
i (%.)= (o),
The reciprocity between transmission and reception now establishes [5]
Fi(ls)==s42% Ry (-3.9)
=-s52% iy (s) (A22)
o (i0)=shet i3
=s427 Ghy(s)
Combining with (A.18) this gives
(A.23)

Pels) = 1y (5)i(s)

=—1k(s)7(s)

and various other combinations.
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The equivalent dipole moment in transmission is then using (A.14)

DPegq(s)=ZsI(s) (A.24)

Such an antenna is clearly inductive, and for low frequencies has

Zin(s)= sLin (A.25)

Ly~ NM  from (A.6)

2
=HoN7w , (¥o
=2z "‘(w

Actually the inductance is slightly larger than this since the N discrete Windings only approximate a
continuous ¢-independent surface current density.

div

In terms of a low-frequency voltage drive we then have

ﬁeq (s)= 'f;':';‘v(s) (A.26)

Thij is like the usual electric dipole except that the current does not go to zero as s — 0, but rather

rges as 1/s. On the other hand consider a current drive. Then at low frequencies (A.24) indicates that

Peq—s0 (as well as V(s) —0).

elec

eva

In resolving the apparent paradox of how an antenna with no charge (in free space) can have an
tric-dipole moment, one can go back to definitions. In [17] the fields from a current distribution are
uated by expanding

k-

A(F.s)= LI s)dv’
A(r S) ﬂoJ.V 4’4’_" (r S) | (A27)

e_yr 3 - ’
- o G [ IF )V
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Then evaluating the volume integral of the current density (with no current crossing s, the boundary of )
we have [3,17]

Thi

J7.s)av’ =s[ 7, s)av’
IV -[V (A.28)

= 5p(s)
shows that a divergenceless current distribution gives a zero electric dipole moment in this sense.

However, the expansion in (A.27) as a leading term at low frequencies is only an approximation.

Since, with an assumed divergenceless current distribution, this is zero, then we need to include higher
order terms. This involves higher order terms in the expansion of e"'I’ o around s=0 (for an

electrically small antenna). By the previous derivation such higher-order terms can give non-zero electric-
dipole-like fields. See the factor of s2 that enters in the results, clearly a higher-order term.

In the usual texts there is also introduced a multipole expansion involving spherical Bessel functions

and spherical vector harmonics [7,8,18,21]. The fields from electric and magnetic dipoles correspond to

the lowest order terms (n=1) in the expansion. If we define dipole by this expansion then our toroidal

ant

nna is an electric dipole. In any event the fields away from the source are the same. This is perhaps a

matter of consistency in definitions.
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