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ABSTRACT

Symmetry is a powerful concept which has found application in various areas such as
quantum mechanics and crystallography. It has also found use in electromagnetics and this
paper goes through such applications, particularly as might be used for antennas and
scatterers . Such symmetries include those in the Maxwell equations ( duality, reciprocity),
those in geometric symmetry ( rotation, reflection, translation, similarity ) and
combinations of these. In 4-dimensional space/time additional symmetries are also found.
These symmetries are cast in a group theoretic form to help outline the various
possibilities.
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I. INTRODUCTION

The concept of symmetries has been a rich source of inspiration that has been
imbedded in our culture since antiquity. Although the aesthetics of the concepts of
symmetry has been a source of continuous fascination both in the arts and in science , it
was not until 1830 that the mathematical foundations were laid out by the French
mathematician Galois who examined the symmetries of the solutions of polynomials of
fifth degree and higher. Progress followed rapidly in the latter part of the early part of the
the nineteenth century when it was realized that crystal shapes can be categorized through
the elementary concepts of group theory. The fusion of the ideas in geometry and
symmetry with physics has proven to be extraordinarily fruitful and has produced the
modern foundations of Physics. H. Weyl [9.23] and A.V. Shubnikov and V.A. Koptsik
[9.20] have beautifully written accounts of the early days of group theory .

Presently research in group theory finds itself in two classical entrenched fronts
and a newcomer. The two classical areas of activity are the abstract mathematical world and
the mathematical foundations of quantum mechanics . The newcomer is the electrical
engineering community that is slowly beginning to realize that concepts of symmetry and
group theory can provide powerful analytical tools . Applications were found early starting
with the celebrated Babinet's principle where the concept of duality was found useful in
drawing parallels between electric and magnetic sources. The principle of equivalence can
also be thought as having its roots in the ideas of symmetry. The statement that a Huygens
source is equivalent to a combined magnetic and electric current source is a statement of the
symmetry of the Maxwell equations. The applications of the mathematical tools of
symmetry which is group theory are slowly appearing in the electrical engineering
literature. Montgomery and Dicke [4.14] examined multiport microwave networks using
group theoretic concepts. The area were symmetry is beginning to play an important role is
scattering. Group theoretic concepts are acquiring a significant role in the simplification of
the scattering calculations by reducing the dimensionality of the resulting impedance
matrices. B. Kibner and A. Kotlyar [1.10] and later D. Cohoon [1.3] have successfully
used group theory to reduce the cost of solving scattering problems.C. Baum and his
coworkers [1.1,1.2,2.1-3,2.5,2.8,4.1-8,6.1-2,9.2] have introduced group theoretic
concepts for the characterization of scatterers and synthesis of electromagnetic devices.

H. Kritikos [1.11,4.10,8.5] has introduced the point groups into antenna synthesis.
N. Engeta [7.3] has shown that material chiral symmetry alone can sustain two distinct
propagating modes.

While in physics and chemistry group theory is introduced to describe nature based
on observations of symmetry in nature (e.g. molecules ,crystals, elementary particles,etc),
in electrical engineering the motivation is different. Here we are not necessarily given
symmetry as a fact ;we wish to construct symmetry into various devices so that desirable
properties will result. A systematic investigation of symmetry in antennas ,scatterers ,
properties of various media as well as in combination with symmetries inherent in
Maxwell's equations allows one to synthesize (design) new types of devices, the desirable
properties not being otherwise obvious.
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II. ELECTROMAGNETICS, SYMMETRY AND GROUPS

_ Our interest is that of exploiting various symmetries that are present (or can be
imposed) in electromagnetic problems. Such symmetries take the form of invariance of the
result to various transformations in the problem. Some of these invariances are found in
the very form of the Maxwell equations.

VXE(r) = - S B(r,0) - Jm(r,0)

VxH(r,t) = %D(r,t) + J(r,t) | (2.1)

Note the inclusion of the magnetic current density Jpy, for symmetry. This common
artifice allows one to introduce the concept of of equivalent magnetic current and charges,
not from the point of view of whether such things are physically present , but as a
mathematical convenience. . For example , one may specify boundary conditions for the
electric field in the form of a magnetic frill. Section III develops this kind of symmetry on
electric/magnetic interchange which is called duality.

Besides the Maxwell equations one needs the constitutive relations which in a
simple form are

D(r,s) =sE)Er,s), Jr.s) =BG)Er,s) (2.2)
B(r,s) = sfis)H,s), Tm(r.s) = Bm(s)A(r,s) (2.3)

where the constitutive parameters are
€(s) = permittivity, G(s) = conductivity
fi(s) = permeability , Sm(s) = magnetic conductivity

which can be combined in the form s&(s) + &(s) and sfi(s)+ Sm(s) if desired. The current
densities in general include source terms as well. Note the introduction of the two sided
Laplace Transform as

o= [foesdt ,f(t)E-%r}B_F(s)eS[ds 2.4)

s= Q +jo = Laplace-Transform variable or complex frequency

Br = Bromwich contour in strip of convergence

This presupposes two symmetries : linearity (amplitude scaling symmetry) and time
invariance (time translation symmetry). In time domain the constitutive parameters take the
special form of convolution operators.

The constitutive parameters can be 3x3 matrices. If these matrices are symmetric
(note symmetry again) , a special case of which is the scalar form in (2.2) , then we have
the important electromagnetic symmetry known as reciprocity. This is discussed along
with the energy theorems of similar form in section IV. Another interesting form of
constitutive equations mixes the electric and magnetic terms giving a chiral medium which
separates waves into right - and left -handed waves with different speeds. This form of
symmetry breaking is discussed in section V and related to removal of reflection symmetry
in the earlier duality discussion.

Next we introduce geometric symmetries (such as for antennas,scatterers and other
electromagnetic objects) in terms of the point symmetry groups (rotation and reflection) in
section VI. This leads a host of possible geometries of interest , the different types of
symmetry being illustrated by a few examples involving scattering , measurements,
capacitors and antenna arrays.
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This sets the stage for combining the duality symmetry with point symmetry in the
form of the Babinet's principle in section VII. Complementary planar structures lead to
self-complementarity , self-inverse , and self-rotated-inverse structures with higher orders
of symmetry. Special cases of self-complementary antennas and resistors are illustrated.

Continuing with the geometrical symmetries section VIII considers translation as
well as rotation and reflection , giving the space groups . These are well known to be
important for crystals , but also important for electromagnetics. Periodic structures such as
periodically loaded waveguides are a common electromagnetic example. A more general
kind of geometric symmetry involves similarity as discussed in section IX. In this case not
only is there rotation but uniform dilation (change of scale) in the summetry operation. This
is important for log-periodic and spiral structures which have been used for "frequency -
independent " antennas.

Increasing the number of dimensions to four we have the Minkowski space in
section X. This leads to the Lorenz and Poincare groups considering the symmetry between
various inertial frames as well as translation, rotation and reflection. Various conservation
laws under Lorenz transformation are discussed ,including the role of duality in this
context.

An underlying theme for symmetry discussion is group theory . A group Gis a set

G={(5)p} .2 =12.. 2.5)
The number of elements may be finite or infinite. If the number is finite , say 2, , this is
the order of the group . A group is required to have the following properties

(a) Forall (§); ,(G)y

(9, (®y€ G (Group operation)
(b) Associativity

(6 (D g (G)g") =((§)g (G NG (2.6)

(c) Identity element (1) ( being one of the (G); )
D (@)= (@ (D)= (G), for all 2

(d) Inverse
Foreach ¢ thereisan ' 3

(90 (@ =(@g (@p=(1)
(@ = (G);l (inverse)

Here the group operation is often referred to as multiplication (indicated by placing a group
element to the left of another group element) . However , this operation can correspond to
various kinds of operation and group elements can be considered as operators.

The notation is suggestive in that one can have a _matrix representation of a group,

in which case one associates a square matrix (dxd) with each group element ( d being the
dimension of the representation) . The multiplication is the dot product sense (contraction )

giving
(@ > (Gf:,)m)p

(99 (D¢ = (62074 (G0 = (G5 )y for some 2" Q.7



1 0
1) - 0 . = (1n,m) O

(gﬁr‘)m)-pl = (‘}(,3,1) o for some R"

Note the superscript (r) indicating the rth representation . By a similarity transformation a
given representation can be changed to another one, so (except for r=1) the representation
1s not unique. Some representations are preferred over others . Specifically _irreducible
representations are those of smallest dimension r in a block form.

Matrix representations can have a simple physical interpretation in some cases ,
such as rotation and reflection matrices . In other cases , such as translation symmetry the
symmetry is an invariance on addition of a vector. More general symmetries involve
invariance on interchange of various parameters such as electromagnetic fields ( e.g.
duality).

Groups are also divided into discrete and continuous ( or Lie ) groups. A lie group
has one or more continuous parameters ( such as angle, position coordinate ,etc) so that
one can think of an infinitessimal change in such parameters as group elements. In the
context of the point groups ( rotation and reflection), reflection is not a continuous
transformation, but proper rotations can be. . So one distinguishes the case of proper
rotations which have the determinant of the rotation matrix as +1 by the use of + as a

subscript on the group symbol , e.g. O; .In another common notation this is replaced by

the prefix S, e.g. SO3. Our notation follows the usual physics notation (e.g.[9.8]) with O
modification to handle our special problems in electromagnetics.
It should be emphasized that our concern here is symmetry , specifically in
electromagnetics. Group theory is for our purposes a tool to assist in the exploration for the
consequences of various kinds of symmetry that can be exploited for understanding and
extending electromagnetic theory and for synthesizing various electromagnetic devices and
special field configurations and properties.
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1. DUALITY

A fundamental symmetry in the Maxwell equations is that of duality, i.e. the
symmetry on interchange of E and H. this is compactly seen by formulating the combined
field [ 2.2,2.5,2.6,2.7,9.1]

E(r,) =E () +jqZH(r,1) 3.1)
q=t1 = separation index
j= ™2 =\-1 = unit imaginary

Z= Z—L = wave impedance of uniform isotropic medium characterized by
permeability p and permittivity €

Similarly define the combined current density

Jo @) =3 @) + j3Im (D) (3.2)

J (r,t) = electrical current density

Jm (r,t) = magnetic current density, in general fictitious but useful as a
mathematical artifice as an "equivalent” magnetic current
density in various problems.
The various other parameters such as potentials, charge density, Green's

functions, etc. can also be defined in combined form [2.8,3.2]. In this combined form the
Maxwell equations become

[Vx- 3j %] Eq () =qjZJq (r) (3.3)

1
c=—
Vue
In the combined form duality is evident in that interchanging electric and magnetic
quantities is equivalent to multiplying the above equations through by -q j, in which case

EQry = -G E
E9r) =ZHry, HO=-ZE@r)

(F
90 =g L@
IO = 2Im @), Ir0=-ZI0rD | (3.4)




where the superscript d indicates the dual parameter. Multiplication by gj is a rotation by qg

in the complex plane, this being an element of the C4 rotation group. Note in addition,
however, that one can multiply these equations through by any magnitude 1 complex

constant as el¥ which is equivalent to rotation by  in this dual complex plane; taking the
real and imaginary parts of the resulting combined complex quantities gives two linear
combinations of electric and magnetic quantities which are dual to each other. This kind of

rotation is Coo or 0; (a Lie group).

Now there are precisely two ways to form the combined field as given by the
choices of q. This can be thought of as two ways of "rotating" E into H. (This rotation
aspect will become clearer in the discussion of the Babinet's principle.) The combined

field is invariant to transformations in 0; (rotations only, a Lie group). However, if one

includes reflections (giving 03, not a lie group this operation of reflection changes q to -q.
This is understood in the context of magnetic quantities changing sign under reflection.
Later, under the discussion of chirality, the two values of q will be associated with two
different propagation constants and polarization rotations.

One application of duality concerns the equivalence principle. As indicated in
fig.3.1 the equivalence principle states that for a volume V surrounded by a closed surface
S (outward normal 1g) an incident field (no sources in S) can be replaced by surface
currents on S (coordinates rg) giving [2.2]

Eéinc)(r,t) for r € V
E(rt) =
0 for r ¢ VUS

(inc) :
T2t = Fy LIIXE(rs)

= equivalent combined surface current density on S

So given a desired field in V one can construct electric and magnetic surface currents on S
to produce this field with no external field. (The roles of inside and outside can also be
interchanged). The dual equivalence principle follows with multiplication by gj giving the
dual surfaace current densities to produce the dual fields in V. As discussed in [2.3] the
electric and magnetic surface current densities can be approximated by distributions of
electric and magnetic dipoles on S.

There is also a kind of dual boundary conditions appropriate to quasistatic fields.
In this case the fields in V are dual but external fields are allowed and only electric currents
are required on the boundary S [ 2.1,2.2].

(3.5) .



_ p(ino)
Eq=E}

(d) _ g (inc)(d)
Eq =E';
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Figure 3.1. Dual Equivalence Principle
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-IV. RECIPROCITY AND ENERGY THEOREMS O
Symmetry is involved in conservation laws, e.g. time reversal symmetry (as in a
lossless cavity) implying conservation of electromagnetic energy. There is also a symmetry on
interchange (in a general sense) of transmitter and receiver known as reciprocity. These concepts
can be combined in a very compact form using the combined field [3.2].
Write the combined Maxwell equation in the complex frequency domain.

[V- 3qy] Egrs) = 3 q Z Jo(rs) 4.1
s = Q+jw = Laplace transform variable (complex frequency)

~ =Laplace transform (two sided) , 7y =§ = propagation constant

Note that time translation symmetry ( a Lie group) is what allows the two-sided Laplace transform
to give the above simplification. Using 1 and 2 to denote two different combined fields (with
associated combined sources) with in general different values of s and q, let us form (using
common relations of vector analysis together with (4.1)) the result

~ ~(2
VIEQ(rs) X BQrs)]

=[ VXEq,(r,s)]* Eqy(rs2) - Eq (r,s)[Vx Eqy(r,s2)]

. ~ - . . ~ L~ (2
= jld11 -92 Y2l Eq,(r:8)) - Eq,(ris2) +j q1 Z Eqy(r,s) Jf,}’(r,sl) Qg Z Eg)(l‘,sﬂ 'th)(l‘,Sz) O
4.2)

Applying the divergence theorern over a volume V with closed boundary surface S gives

J[Eg’(r,sl) x E&(r,s9) ]15(r) dS
S

= f {itari-aova] EQ(r .51 EQ(r,s0) + QiiZED(r,s5) T (r.51)
v

a5 Z EQrsn) - 3P rs0)] fav 4.3)

This leads to numerous theorems which can be found by appropriate choice of the relation of the
"1" and "2" quantities and splitting of the combined quantities. In [3.2] there are numerous
results, only some of which are quoted here.
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Consider first the set of reciprocity theorems associated with this, defined by

UN1=EQRT

f [E(rs1) x ED(r,50) ] -15(ry) dS
S

=jz f [@ED(rs) I s1) - G EQ(r,50) T2 (r,s)1dV (4.4)
S

so that the volume integral contains products of fields and sources (i.e. no fields times fields).
This is the same general form as the usual reciprocity theorem [3.17]. :

The surface integral can be set to zero under certain conditions. Some of these involve
cavity problems in which case tangential E is zero on S. here consider the cases that all sources are
in V with an outgoing radiation condition. Then let the integral over S be evaluated by that over

Seo (a surface —ee centered on V), this integral being zero for certain cases. The volume integrals

can be conveniently represented in symmetric product form < , > implying integration over V.
An interesting case has

qy=qz2=q ,S; =82 =8

<EQ(rs) ; 129> = <ED(r.0: 10 (r.0> “@s)
<EV(r,5); 3Pr,9> - <AD(r,8),38(r,5)>

= <EPr,5;3Vr9> -<AP(r,5),]P(r,9)>

(electric reciprocity)
<EPrs;3Pr9> + 22<AV(rs); IPr,9)>

= <Er,9,J0r,9> +Z2<AP(r,s); IV(r,9)>
(magnetic reciprocity)

These symmetric products can be referred to as reaction as introduced by Rumsey [3.17]. Note
that what here is referred to as electric reciprocity is the usual form. Setting the magnetic current
density to zero simplifies (4.4) and shows the electric reciprocity involves the combination of
electric fields and current densities. In addition, however, this type of analysis has shown that
there is a magnetic reciprocity involving combinations of magnetic fields and (electric) current
densities. Reciprocity is a fundamental symmetry in the Maxwell equations, a symmetry
(invariance) on interchange of two solutions.
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Second there is the set of energy theorems defined by
WN=-@Y

(1 (2 ] ~ .
f[th)(l‘,Sl) X th)(r,sz) ] "14(ry) dS= j2q; ¥, JEg)(r,sl) ) Eg)(l',sz) dv
S \

+Z f [a; EQ(rs 3050 - @ E (s 3rsp] av | (4.6)
v

where now we have volume integrals over field products. Like reaction this can be split up into
various combinations of fields and currents.

For present purposes let us take the usual case of an outgoing radiation condition.
Futhermore, let both solutions be the same in the interesting case

q1=q2=q , S7 =-S5, =S 4.7)

J[ Eq(rs) x Eqg(r,-s) ]1g(rs)dS

=j2qY<Eq(r,s); Eq(r,-s)> -jqZ[<Eq(r,s);Ja(r,-s)> - <Eq(r,-5);Jo(r,s)>] O

This is the usual Poynting vector theorem in combined form; various other forms are derivable
from this.

Time-domain forms of these can be found by taking the inverse laplace transform with
multiplication going over to convolution. Numerous other forms exist in the literature involving
both frequency and time, and other EM quantities such as potentials as well. The present examples
exhibit the symmetry between two solutions and the role of duality, this being the purpose here.
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V. UNIFORM CHIRAL MEDIA

A chiral object is defined as one which cannot be brought into congruence with its
mirror image by any combination of rotation and translation. In the language of the next
section (VI) it has no rotation-reflection symmetry Sy . As illustrated in Fig. 5.1 it has a
handedness in the usual screw-thread sense. This lack of reflection symmetry can induce

some special properties in the Maxwell equations through the constitutive equations as
[(7.1,7.2,7.31]

D(r,5)=8(s)E (r,5)+R(s)H(r,$)

B(r,)=R()E(r,)+{(s)H(r,s) (5.1)
where R(s) is a measure of the chirality or handedness of the medium. In fig. 5.1 note that
a time-varying electric field induces both electric and magnetic moments in the chiral object
through the coupling of the straight wire to the loop. A time-varying magnetic field

similarly induces both magnetic and electric dipole moments. Assume that there is uniform
random distribution of such chiral objects so that we can consider the effect to be

represented in an average sense as in (5.1). Note that €(s) and [I(s) are even functions of s

if the medium is lossless. Similarly R(s) is an odd function of s (going to zero as s—0) as
will be seen later.
Combining (5.1) with the Maxwell equations gives

VxE(r,s) =-sB(r,s) = s[R(s)E(r,s)-fi(s)H(T,s)]

VxH(r,s) = sD(r,s) = s[E&(s)E(r,s)+R(s)H(r,s)] (5.2)
Now form a combined field analogous to (3.1) giving (with no sources in the region of
concern)

Eqrs) =E(r,s) +Lg@HT,s)
VxEq(rs) = s{ [RE)+L@8®)] Er,)+[&)Zq(s)-0)] H(r,s) }

= s[ﬁ(s)+§(s)€(s)]ﬁq(r,s) (5.3)
Byts) = "D
R(s)+Cq(9)E(s)
This is solved as
F oy eairt B _ i 70s)  a=tl (5.4)
Ca(s) =qj 26) qj Z(s) , q=t

so that the same simple form as in (3.1) is possible . In complex frequency domain the
combined Maxwell equation with no sources takes the form

[Vx -qj Fq(s)]Eq(r,s) = 0

Tq©=s [VAOES) - giks)]"
- S

vq(s)
Vq(®) = [V &) - k] = phase speed
For a right-handed medium (fig 5.1) &(j) is negative imaginary, and conversely for a left -
handed medium. Then for a right -handed medium the chirality increases v+ and decreases
V. (and conversely for a left-handed medium), thereby giving two different wave speeds in

(5.5
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left handed right Handed

Figure 5.1 Chiral Object Linking Electric and Magnetic Terms of Average Constitutive
Relations.
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the medium. Note that for s=jw real [i(s) and &(s) require imaginary & for the speed to be
real and give non-attenuating (lossless)wave propagation.

Consider an arbitrary plane wave which ,since the medium is isotropic ,we
can take as propagating in the z direction as

Eq(r,s) = EvZ 1ge 1a®)2

1g= \/L_z [1x +qj 1,] (5.6)

which is consistent with (5.5). Using standard conventions [4.4,4.5] then + gives left-
handed polarization (LHP) and - gives RHP, both circular of course.

This business of chirality can then be looked at as one of breaking
symmetry . A non-chiral isotropic medium has identical properties for both RHP and LHP
waves. A chiral medium gives these different speeds (or propagation constants). Viewed
another way reversing a space coordinate or time (a reflection) in a lossless medium is
equivalent to reversing the magnetic field and hence the sign of q. The handedness of the
medium destroys this mirror symmetry. In terms of three space coordinates then a chiral

medium has OF symmetry (proper rotations , a Lie group) but not O, symmetry (which
3 SY

includes spatial reflections).
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VI. POINT SYMMETRY GROUPS : ROTATIONS AND REFLECTIONS

s
The point symmetry groups consist of rotations, reflections, and combinations Q
thereof. Under these transformations at least one point (the center of symmetry) remains
fixed. These groups are very important for symmetry in scattering and the design of
various electromagnetic devices. See [9.8] for a thorough discussion of these groups.
Here we focus on their significance in electromagnetics.

Begin with Cy, an N-fold rotation axis 15, Considering as a rotation angle (right
handed) about this axis we have the commutative group (order N)

Cn={(Cn), | 2=1,2, ...N}
(Cy), =rotation by —2—32 = (CN)f

CY=(Cn=()  (closure) (6.1)

This has a matrix representation

_(cos(dp) -sin(dp) ) _ 0 -1
(Cn.m(¢P))—(Sin () cos(¢p)}_exP(¢p(l O))

=% -2 =12...,N (6.2)

(Cn.m(o)) = (Cn,m(zﬂ:)) = ((1) (1))

One can also represent this group in scalar form by a complex rotation ei%¢ but the above
form is better for what comes later.

Cx symmetry is related also to problems involving circulant matrices[4.15].

Considering some appropriate matrix such as an impedance matrix (Z,a(s)) (or an _
admittance matrix),then if this corresponds to an electromagnetic structure such as a circular
antenna array in fig.6.1 with Cy symmetry [4.10,4.11], the matrix elements have the

property
Z..(s) = function of m-n+MN (6.3)
M= any integer

i.e. these are only functions of the differences in the angular position of the elements , {n,-
¢, around the array. Such matrices have eigenvectors Vl_; (ei2nBNy  for B=1,2,..N.
However we usually have reciprocity in our electromagnetic problems (section IV),
i.e.
Zon) =(Zom($)
Z.m(S) = Zn(s) = function of Im-nl or 10x-0, | (6.4) Q



Figure 6.1 Circular Antenna Array.

individual
antenna
element
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Such symmetric circular matrices are called bicirculant, The extra condition increases the
symmetry [4.15] allowing the left and right eigenvectors to be the same and the
eigenvectors to be expressible as real vectors (doubly degenerate) by taking real and
imaginary parts ( cos and sin). Furtheremore the number of eigenvalues is reduced as

N
) 2 for N even
number of eigenvalues= {N 1 (6.5)

+
) for N odd

Due to these additional properties beyond purely Cy symmetry one can define reciprocal
rotation symmetry (uniaxial) as Cy,. Note that in some cases the bicirculant matrices are
real (as in a multiconductor transmission line with wires uniformly spaced around a circle)
in which case the associated eigenvalues are all real (as well as positive).

Such uniaxial symmetry can appear in many objects. For present illustration.
consider on-axis backscattering as in figure 6.2 with radar polarizations 1y (horizontal) and
1y (;vertical" actually in a vertical plane).As shown in [4.4,4.5] the backscattering matrix takes
the form

Zu(s) =u(s) (o 1) for N23 6.6)

i.e. a scalar function of frequency times the identity. Said another way for N23 there is no
depolization of the on-axis backscattered signal. Note that no symmetry planes have been
assumed for this purpose. However, reciprocity is important so as to constrain the matrix
(backscattering) to be symmetric. A two-fold axis (fig. 6.2C) is not sufficient as can be
seen by alligning the incident polarization along the assumed two symmetry planes defined

by yo and v, + % Going to N23 successive rotation by —F?— gives two linearly

independent vectors to span the two-dimensional space, these two orientations as
polarizations giving identical backscattering characteristics by the symmetry. One can

extend Cy as N—ee so that a body of revolution (fig.6.2A) is obtained. A Ce body of
revolution need not have a symmetry plane; it might consist, for example, of anisotropic

materials such as a large number (as N—e= ) of conducting spiral (non-radial) spokes; let
=3 in fig. 6.2 B be altered by increasing N arbitrarily. Note Co is a Lie group also

known as O; (orthogonal group of proper rotations in two dimensions (no reflections)).

Considering reflections we have the group (order 2)

R={ (O,®) }, ®)? =(1) (6.7)
with matrix representation
100
R= (0 1 0] (6.8)
00-1

where in a three-dimensional space this is equivalent to reversing one axis, typically taken
as the z axis when not combined with other symmetries.

O




O
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Figure 6.2 On-Axis Backscattering
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Such reflection symmetry is very common. To illustrate this consider a typical
aircraft with a vertical symmetry plane, as in figure 6.3 As discusssed in [4.1,4.2,4.7]
reflection symmetry decomposes the response into two parts denoted symmetric and
antisymmetric, which (for the surface current density vector) reflect through the symmetry
plane (multiplication by R) with + and - signs respectively. By positioning a sensor on the
symmetry plane P one can orient it to be sensitive to only one of these two parts of the field,
thereby eliminating one entire set of natural modes in the scattered field received by the
sensor. The interesting case has a magnetic sensor on P oriented parellel to P. This
eliminates the symmetric part of the aircraft scattering (including the major fuselage modes)
from the sensor response. The position and orientation of the magnetic sensor on P are
then chosen to minimize sensitivity to the antisymmetric wing and horizontal-stabilizer
resonances as well as low-frequency distortion near the fuselage. As indicated in fig. 6.3
this leads to two optimal choices designed by positions r; and r; on P, on a line through
the projections of the wing and horizontal stabilizer on P, and with orientation (sensor
axis of sensitivity) parallel to this line.

Adjoining reflections with rotations, first let (R;) denote reflection through a
symmetry plane containing an N-fold rotation axis giving the group (order 2N)

Cra= {(CN)2 »R)(Cp)e | 2=1,2,...N } (6.9)

There are N axial symmetry planes in this kind of symmetry. This turns out to be

an important kind used for antenna arrays, such as for direction finders. In such a case one
might have N elementary antennas (say finite-length wires) evenly spaced around a circle
on a plane perpendicular to 1,. with the currents parellel to 1,. In this case by adjusting

the currents as cos (pd,+yo) one can excite specific antenna patterns associated with each
relevant integer p. One can steer the beam and have narrow, well-defined nulls (useful for

locating a scatterer (or radiator) with respect to azimuth ¢ ).Appendix C considers such an
example in detail .

One can also form Cy, by adjoining Ry meaning reflection through a plane
transverse to the N-fold axis. Rotation-reflection symmetry Sy is defined by

Sn={(Sn)e 10=12,..N}

S = (G R =R (Can (6.10)
(Sn)g= (SN2 = (C)F (R)*=(Cr)z (R

which applies particularly for N even, since for odd N this becomes equivalent to Cn[9-81.
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Figure 6.3 A special location and orientation for the magnetic sensor to minimize scattering
from both wing and horizontal stabilizer.
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Higher-order rotation symmetry is first dihedral symmetry defined by adjunction of
a 2-fold axis to a principal N-fold axis given symbolically by (2N elements)

Dy ={ (Co)y . (C, (€ 12=1,2,..,N) 6.11)

where Cgl) is rotation by about an axis 1, which is perpendicular to the N-fold axis 1.
This generates a set of N 2-fold axes which can be designated 1, for u=1,2,...,N. Note
that this symmetry involves only proper rotations (Cy) p and (C(zu) ), i.e. no reflections.

An illustration of dihedral symmetry is given in fig. 6.4 for a special kind of
high-frequency capacitor [4.8]. Here the principal axis 1, is taken as 2-fold and there are
two other C, axes at right angles to it. This particular example has an equal number of foils
in each of two sets (A and B) in such a way that the tabs and foils are the same piece of
metal (rectangular). The separating dielectric sheets would in general be square. In this
example there are two more symmetry planes P1 and P spaced between the secondary C,
axes. These are special axial (a) planes referred to as diagonal (d) planes, giving D,y
symmetry (order 8). Note that the tabs are bent "up” (A) and"down" (B) to connect to the
next capacitors in a column and that the column itself retains dihedral symmetry.

One can go to even higher N for such capacitors by using, say circular foils with N tabs
with positions alternating for A and B.

Considering more than one N-fold axis with N>2 we have the groups associated
with the regular polyhedra : T (tetrahedral); O (octahedral, including the cube ), and Y
(icosahedral, including the dodecahedron). To these one can adjoin symmetry planes with
"d" or "t" reflection as in the case of Dy. An interesting application of this kind of
symmetry would be for an antenna array which would steer a beam with two angles to

specify a direction, i. e.,8 and ¢ in spherical coordinates (useful for locating a scatterer (or
radiator) with respect to both angles.

Finally, we have the Lie group O; consisting of continuous rotations with respect to

two angles. This is visualized by considering some point on the unit sphere. Choose some
direction at this point ( an angle) and advance some angle around the sphere. This can be
done from every point on the unit sphere. Adjoining reflections via planes through the
center of symmetry (all such planes) gives O (not a Lie group) which keeps x2+y2+z2
invariant under the symmetry operations.
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VII. GENERALIZED BABINET PRINCIPLE (Cn; Symmetry)

Now combine the duality symmetry in Maxwell equations with a geometrical
symmetry , specifically Cy symmetry in a planar structure . First consider ,however, what
is called a complementary structure (planar) in formulating the Babinet's principle [6.3].

Multiplying the combined field in (3.1) by -qj to give the dual combined field we
form the dual fields as in (3.4). Consider the z=0 plane , designated S, as a plane on which
electric surface current density and various sheet impedances (including perfect sheet
conductors and sheet insulators) are assumed to exist. Then assume that the complementary
fields are the dual fields for z>0 but the negative of the dual fields for z<0. Here we assume
that sources (for simplicity) are on S and waves are outgoing [6.2]. This allows us to take
the original and complementary fields as symmetric with respect to S as discussed in
section VI [4.1,4.2,4.7].

Letting the tangential fields on S be designated by a subscript s and letting them be

considered as two-dimensional quantities with cylindrical (¥,0) coordinates we have using
the fields at z=0*,

EQ(w.030 = Z H(,03)
HO(,0:0) = - 7 E(¥.050) (7.1)

Applying boundary conditions on S for the magnetic field gives
J(F,0;t) =2 TqH,(P.0;) (original surface current density)

ch)(\v,(b;t) =2 «z'd-H‘:)(w,q);t) (complementary surface current density)

Ty = (i '(} =§ rotation (1.2)

Note the complementary surface current density (not dual as in (3.4) ), so that we
deal with only electric surface current densities ( both original and complementary ). Let

regions of S as appropriate be characterized by a sheet admittance ¥, ( a dyadic or matrix ,
2x2) for electric boundary conditions (away from sources) as

J w09 = ¥ (2.059) ‘E(2.0;5)
TOw,0:5) = F° (2,059 -ECw055) (1.3)

this also defining the complementary sheet admittance . One includes incident fields (not
symmetric with respect to S in general) by adding to (7.3) (on the right side) sources of the
form

TOw,0:) = ¥, (2,055 - E)2.0,2:5)

z=0

(7.4)

JoO e, 035) = ¥ (,058) - 47 (,0,259)

z=0

O
‘ri
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In this case ﬁ,(‘i',(b;s) and Egd)(‘i‘,(b;s) in (7.3) are associated with the scattered field
O (symmetric) , which when added to the incident fields as in (7.4) give the total fields.
Alternatively ,one can use the magnetic field (and its dual) to define these sources via (7.2)
for source regions on S, such as the "gap" region for an antenna problem.
Combining (7.1) through (7.3) we have
JOw.09) = ¥ (2,059 -EQ(w,0:9=2 ToHO(w.059)

=-2 To Brom = -7 Ta F' e Tveo

4 ~ ~ ~ ~
=2 Ta ¥, ToH(209)=- % T4 ¥ T - EQ2,0:9) (1.5)

with inverse here taken in the two dimensional sense. Noting that
7l 7= 1= (", %)) =-% rotation (7.6)

and letting Egd)(w,cp;s) be arbitrary we have

FOp0) =- % Ta T, T, 7.7
as an explicit formula for the complementary sheet admittance [6.1,6.7] . In normalized
form define

g T =- £ T, (w9 , TO®me = -2 FOw039) (7.8)
giving

~(©) Q) = -1l 4T

Vs (F.0:8) =TqY - T4 (7.9)

as a convenient form of the result. So on S the complementary admittance is a rotated
inverse. This is consistent with the usual Babinets principle as can be seen by considering a
scalar admittance sheet as

T, (2,058 = ¥, (.09 1, ¥Ow,059) = ¥O(w,059) 1,

oo = 2,09, YO0 =2 209

2
(7.10)
(1 0 _ . . . .
1= 0 1) = IxIx+1lyly =two dimensional (transverse) identity
2 4
= Ty=T4
in which case (7.9) becomes
YO®39) = ¥ (w.059) (7.11)

O
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A perfectly conducting sheet has ¥ = o so that the compliment has ?gc) =0 ,i.e. an open

aperture (and conversely). The form in (7.9) is ,however, considerably more general. In
effect this defines the complementary "geometry".

Having found the complementary problem on S let us go on to the self-
complementary problem . This is usually defined by requiring that the complementary
problem be the same as the original problem after a rotation in S about some point which

we take as the coordinate origin W=0. Letting the rotating angle be ¢, we have
v Q) = ~(©) . T
ys(\y’¢+¢c ,S) - Tc.ys (\Pv¢+ ¢C ’S) .Tc

_ (cos«bc) -sin(¢c)

sin(0e) cos(dc) JE rotation by ¢¢ (7.12)

T 'c1= fI‘E =rotation by - ¢¢

Substituting from (7.9) gives the basic self-complementary relatonship as
¥ (W,0+0c 58) = Te. Ta. ¥, (¥,0:9) T2 T L (7.13)

Applying this twice (an additional rotation by ¢ gives
Y (2.0+20¢59) = Te Tar ¥, (F.0+0cs) Ty T ¢

=2 J,(2,0:8) - T2 (7.14)

using the commutativity of the rotation matrices. This shows a periodicity of 2¢¢ Requiring
periodicity of 2 for the sheet admittance requires

2¢0.N=2xn , N=1,2,... (7.15)
which defines Cy symmetry ,i.e. invariance on rotation by 21\'11! . Noting that S itself is a

transverse symmetry plane , one might consider this a case of higher symmetry ,except that
it is degenerate since such a reflection is only an identity for all points on S.

Now we are in a position to define the self-complementary rotation group (order
2N) by

Cne={ (CN) p,(CN) o(Cnc) l2=1,2...,N }
= { (Cne)?le=1,2...N} (7.16)
CNc =rotation by Oc (=§) and taking of complement as in (7.9)

~ (CNe)?=(CN . _
This is a commutative group. The basic group element has an operator representation
(CNe)= Te T ( Yla}- 77

(Cn)> T () T3 (7.17)

Note the inclusion of matrix inversion (not just multiplication ) in the representation . One

can also impose other symmetries such as R, (axial symmetry planes placed ¢c apart)
which is equivalent to 2-fold rotation axes in S giving dihedral symmetry Dy which is



27

combined with the self-complementary property to give Dne symmetry ( or CNca
symmetry) of order 4N.

For scalar sheet admittances the self-complementary relationship (7.13) becomes

¥, (F,0+0c 38) =y, (¥,0+0c ;5) (7.18)

As one varies ¢ around the circle the normalized admittance is inverted after each change by

¢c . For typical self-complementary antennas this is an alternative between 0 (nothing) and

;o (perfect conductor) [8.1] . For dyadic sheet admittances assume the realizable diagonal
orm

Vo (2.039) = ¥, (2.0 ;9120 1a(9) +Y,, (¥.0 :9)1p(0)1p(9)

1p(d) = Ty 13(¢) , 15 1p real (7.19)
Y; (%0 35) =Y; (2,0 39)1a(0)1a(0) +¥;1 (%.0 ;9)1p($)15(6)

Now the self-complementary relationship (7.13) gives

Yo (Z.0+0ci8) = ¥;. (2,0 39)1p(¢+0c) 1p(@+0c) +7;, (¥,9:5) La(9+0c) 1a(0+0c)

(7.20)
Referring to fig.7.1 A what is happening is that the unit vectors 1, and 1, are rotated by ¢

for each advance in ¢ by ¢. .However, the corresponding eigenvalues (eigenadmittances)
are not only inverted , but interchanged in advance by ¢ . Labelling ')75. and ;sb by §51 and

Y, at some starting ¢ , they take on values 37521 and ;S 11 , respectively , on advance by ¢,

returning to §51 and ;sz , on a second advance by ¢

A special case of this concerns an added symmetry which occurs in the scalar case
(7.18) if the normalized admittance is 1. Referring to this situation as self inverse note that

there is no change on advancement by ¢c. If this condition is maintained throughout S, this
is an impedance sheet of value %— ,acase of C. or Do symmetry. For the dyadic case as
illustrated in Fig. 7.1B one has what can be termed a self rotated inverse , that is on

advancement by ¢c , § s is merely rotated by ¢ with the constraint

Y, (#:0 597, (%.0 35) =1 (7.21)

so that the two eigenvalues are mutually inverse . A special case of this might have > and 0
for .y's‘ and ;s respectively ,corresponding to a uniconducting sheet with direction of

conduction forming spiral paths on S , an example of C. symmetry.
While Cn symmetry carries through for §s it is not applicable in the same way to

the fields and sources on S. As discussed in [6.2] the imposition of self-complementarity
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A. Self rotated inverse.

Figure 7.1 Dyadic Sheet Admittance
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results in Cp¢ symmetry for sources and fields . This occurs because going to the
complementary (dual) field is a 7t/2 rotation . For certain other cases of Cn¢ symmetry ,
Cac symmetry is a subgroup , specifically for

N=4M+2 = 2,6,10,...

M=0,1,2.... (7.22)

As an example a uniform plane wave with direction of incidence parallel to 1,
induces Cy¢ sources on a Cy¢ admittance sheet. The fields resulting from Cp¢ sources have
the special property that on the z axis (away from S) they are TEM waves [6.2], i.e. E and
H are at right angles to each other.and the z axis (propagating outward) and related by Z,
The polarization can vary with time or frequency ( as in the case of spiral or scimitar like
Cy¢ antennas). The TEM property is restricted in general to the z axis except in cases such
as flat conical structures which support a TEM mode everywhere.

Cyc is an important special case . There is the usual self-complementary antenna
consisting of conducting sheets in C2 geometry excited by a single source at ¥ =0 . As
indicated in Fig. 7.2 this can be generalized by a terminating impedance sheet of sheet
resistance of Z/2 for all frequencies. If the resistive sheet is truncated ( to give a finite size
antenna)at radius ¥, » ¥y (approximate radius of the antenna conductors). This impedance
will still be approximately Z/2 at low frequencies. Using the previous discussion various
portions of the structure can be uniconducting sheets or whatever , subject to the Cp¢
constraint.

Figure 7.3 illustrates another notable result. Consider first an impedance sheet of
value Z/2 in a Cy¢ structure. As shown in [6.2] , by performing integrals of E and H
across such a region to give voltage and current , the ratio is just Z/2. Letting the region
become electrically small one can consider the region as an impedance element provided
there are alternate electric and magnetic boundaries in the Cy. sense. . Then connecting ( at
low frequencies) an impedance meter across the terminating pairs (conductors along the
boundaries) gives Z/2 for the measurable impedance ( neglecting stray inductance and

capacitance). Scaling the result let the impedance sheet be of value Zs ; the impedance

element is just Zg . This applies to all shorts of shapes (circles ,stars, etc.) all of which
have this simple answer. ( This can be also shown from complex variable theory on
interchange of electric and magnetic potentials.) More general Cyc admittances can be
included in this region (involving slots,conductive strips ,etc) and scaled in the same way

to give Zs for the overall impedance.
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Figure 7.2 Self-Complementary Antenna with Exterior Resistive Termination



O Figure 7.3 C4 Impedance Sheet with Alternating Electric and Magnetic Boundaries.
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VIIIL. SPACE GROUPS: TRANSLATION PLUS POINT SYMMETRY GROUPS IN
THREE OR LESS DIMENSIONS

Consider the translation group Tq for d=1,2,3.. (dimension of the space) given by
Ta={Ta(€) | r— r+&} (8.1)

with r the position vector and § the arbitrary translation vector in d-dimensional space
(real) . This is a Lie group (continuous) with d parameters. For discrete translations we
have € restricted as

d
€ = Zmnﬁn , My = integers (8.2)
n=1

where the §, are d basis vectors for the d-dimensional space. Starting from some origin
(say r = 0) then (8.2) generates a lattice by taking all integer values (+,- and 0) for the
various my, . This lattice is a periodic structure and moving from one lattice point to
another gives the same local environment. It is known that such lattices can be constructed
in 14 different ways for N=3 (Bravais lattices) [9.6 ] . Such lattices are very important to
crystallography. ‘

Consider rotations about any point (taken firstas r=0)

O{ = Ce = rotations preserving x2+y 2 (d=2)
O, =Cxa = rotations and reflections  (d=2)
O; = rotations preserving x2+y 2+z2  (d=3)

O,= rotations and reflections (d=3) (8.3)

The superscript + indicates only proper rotations ,referring to the +1 determinant of the
associated rotation matrix representation. In other notations this superscript is replaced by a
prefix S (special) . These proper rotation groups are Lie groups (continuous). Combining
the above groups with translations gives the space groups Eq (Euclid) consisting of all

transformations keeping distances invariant , or E; if only proper rotations are included

with translations. Note that the group elements are not simple matrix multiplication but take
the form

Eq ={(Q.8) r—> Q-r+£} (8.4)
Q = rotations and reflections in d-dimensional Euclidian space

( Q2+ = proper rotation)
€= translations in d-dimensional Euclidian space.

Note that one can generalize Eq4 to the Galilean group by including time as a parameter by a
substitution of the form

E=vi+E&p (8.5)
with the introduction of the constant velocity v with a time displacement (say tp) as well

[9.8].

Considering discrete translations (as in (8.2) ) there are 73 types of space groups
(designated as symmorphic ) when O3 is combined with discrete translation [961.
Furthermore one can combine translation with rotation and reflection by screw rotation axes
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and glide reflection planes ,respectively, giving another 157 types of non symmorphic
space groups.

Electromagnetics has not made as much use of the space groups as has
crystallography. However, in one dimension, this is commonly employed in a form
known as Floquet's theorem. This is applied to periodically loaded waveguides such as
slow-wave structures [9.3,9.4]. If translation is taken as the z direction with period z,
then in terms of the electric field we have

B(r,s) = e ¥2(8)Z Eq(r.s)

Ep(r+nzpl,,s) = Ep(r,s) (8.6)

The one need only solve for the periodic function over one unit cell extending z; in the z
direction together with periodic boundary condition. This leads to Bloch waves with pass
and stop bands similar to those encountered in solid state physics these properties

appearing in 7,(s). These results are of course generalizable to two and three dimensions
using a periodicity as in (8.2).

Another common structure is the conducting helix, the basis for the helical antenna .
This is a case of screw rotation symmetry where in going from z to zy there is a uniform

rotation by * 2 around the axis . This is a higher symmetry than merely periodic as in
(8.6).

Items like diffraction gratings are another common periodic structure , which
though practically are not infinite in extent , can usefully be treated as though they are
infinite. While these are traditionally periodic on one direction ,they could be made
periodic in two dimensions on a plane. Perhaps such structures ( and even three-
dimensional large arrays of antennas and/or scatterers) need to be investigated for the
future design of electromagnetic devices.
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IX. SIMILARITY GROUPS: ROTATION PLUS UNIFORM ISOTROPIC DILATION
IN THREE OR LESS DIMENSIONS

The space groups E4 in the previous section are subgroups of the affine groups in d
dimensions [9.19]

Ad={ AE)r > Ar+€ }
det(A)#0 9.1)
A =rotation , stretching and shear in d-dimensional Euclidean Space

In the previous section A was restricted to rotations L2 (with determinant £1) . Here also
we limit the discussion to real coordinates.
Another important subgroup is the linear group [9.8]

L={alr - A} 9.2)
where now the coordinate origin is a special point that is invariant under this

transformation. At this stage , besides rotation , A includes stretching (or compression)
and shear , i.e. on transformation the shape of a geometric object is distorted.

In previous sections geometrical transformations were such as to bring the object
into congruence with itself. Now the concept is similitude , i.e. after transformation the size
(but not the shape) of the object is changed , this change in scale being a uniform dilation
(expansion or shrinking), the dilated body being congruent with the original (including
rotation and reflection). The electromagnetic significance concerns scaling with frequency
or time. In the sense of wavelength A ,dilation by a factor 8 means that the object responds

the same way at a wavelength SA (including appropriate rotation). This is an important
concept in the design of what are termed frequency-independent antennas [8.4].

Keeping the shape of the object the same means that there be no shear in the
transformation and that the stretching ( or contraction) be the same in all directions (i.e.
isotropic). Furthermore this must be the same for all points . Let us refer to this as a
uniform dilation [9.23,9.24] . Including rotation and reflection (improper rotation) this
leads to the group

a={ar— ar}

A=8 Q , dilation factor = §>0 9.3)
which might be referred to as the similarity group [9.20] or uniform dilation /rotation
group. Note that for 8=1 this reduces to O, (section VI) which has also discrete subgroups.

Now include the changes of scale (similarity) we can expect some of these
rotation/reflection groups to play an important role. Noting that

det( A) = 3'det(Q)

det(Q2)=%1 9.4)
one might think of this as a kind of complex rotation group , since n applications of the
transformation expands the scale as 3", an exponential growth. Furthermore this implies
that (for 8=1) the group is not closed , but applies to objects infinite in extent with a
periodicity (unit cell) that expands proportional to r as one goes out from the origin. Such
structures are referred to as log periodic,i.e. uniform decrements of #n(r) for the unit cell of
the structure. Including the rotation gives log spirals.

In two dimensions the rotation dyadic Q corresponds to (Cpm($)) (plus a possible
reflection) as in section V1. This being a rotation in a plane , such is appropriate for planar

O
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log periodic and spiral structures . As planar structures they can also be chosen from the set
of self-complementary structures for additional symmetry and associated electromagnetic
properties (section VII). Note that since there is dilation in radius as ¢ increases there need
be no closure, i.e. rotation by 27 need not replicate the object at the new radius , i.e. the
group element rotation need not be a submultiple of 27t except in the case where 6=1.

In three dimensions the rotation dyadic £2* (with +1 determinant) can be shown to
be a three-real-parameter operation with two parameters determining the orientation of an
axis (a point on the unit sphere) and the third parameter being rotation about this axis
[9.8]. Successive application of Q* , say as Q*? (integer 2 ) , is just successive rotation
about the same axis by the same rotation angle. So our similarity group has a particular
preferred axis which we choose without loss of generality to be the z axis. Let the rotation
about this axis by Q be just ¢; . The the rotation by Q*?* is just rotation about the same
axis by #¢; (which need not equal any multiple of 2n except for ¢ =0). Recognizing this

preferred axis then the rotation is two dimensional as described by (Cym(9)).
Considering infinitesimally small rotations and dilations one can define a one-
parameter Lie group via

r= A(a)r,
Ala) = e®0s o 0fs _ 0[3s1+Qs]

§= e  Q=es
det(Q) = e* ) = 41 ,o(Q,)=0

where r, is some staring coordinate of interest with spherical coordinates (ry,8,,¢o) . Note
that r, can be chosen as any spatial point on our object of interest , and in fact applies to
every such point. The exponential nature of the transformation dyadic assures that

successive dot multiplication by A givés
Aap) A(oy) = A(ay) Aop) = Ao, +0) (9.6)

so that the group is also commutative.
Recalling that Q gives a preferred rotation axis which we take as the z axis , then

the rotation affects the x and y coordinates (or just ¢ in cylindrical or spherical coordinates).
Our rotation element can then be written (recall section VI)

cos(ad,) -sin(ad,) O 0-10
Q= [sin(oub,) cos(ad,) O e“°s (l 0 O] 9.7)
0 0 1

000

so that ¢, is some scale factor for the rotation just as J, is for dilation . Then we have

0-10 8s-0s 0
5s1 100 ¢s 85 0 9.8
A(a) = ed[ s +¢s (0 0 Oﬂ = ca[oso sas ( )

and we identify

10
@,:q,,(ol 0 o] (9.9)
000
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Interpreting this geometrically , beginning with some r, this produces a conical
spiral described by

(1,8,0) =(1, %%, 85,00+00, ) (9.10)
~coL (Koo

Essentially the shape of this spiral is governed only by the ratio %- i .e. the ratio of dilation

to rotation. This is also referred to as an equiangular spiral since the spiral path makes a

constant angle with the radius vector. Starting from some ( 8,09 ) produces one spiral ;
another choice (with fixed r,) produces another spiral and so on. Thinking of these as thin
conductors (preferably with conicaly tapered cross sections) produces the usual conical
spiral antennas [8.1,8.2,8.3,8.4]. Of course the conductors need not be thin , but should
meet the spiral condition (9.10) for every point. ( Truncation issues are another matter.)

Note that projected on the unit sphere such spirals are circles described by a constant 6

(=6,) . Special cases are conical conductors (no variation in (8,0) , only dilation in r)
defined by straight lines from the origin. With at least two such independent conducting
cones, the structures can support TEM propagation in the radial direction[9.2].

Letting the transformation dyadic in (9.3) be discrete other possibilities emerge .

Again Q has an axis of rotation which we take as the z axis. Any starting r, (or (r0,60,90))
in spherical coordinates now generates a discrete type of logarithmic spiral. Projected on

the unit sphere proper rotations have ¢ increased by some constant amount , say ¢, , on
each operation. Since 0 is still constant (i.e. 6,) these points all lie on a circle, but these

points need not repeat (no closure) if %lt_ is irrational . Of course on each rotation there is

also a dilation & . If we choose G% for all points on the structures we have a planar log

periodic structure (on the z=0 plane ). Furthermore if there is no rotation (i.e. ¢, =0 ) This
applies to the simpler log periodic arrays[8.1,8.2,8.3,8.4].

One can also adjoin symmetry planes (reflection) as part of Q . A transverse (to z)
symmetry plane repeats the part for z>0 at z<0 as well (R, symmetry). This plane can also
be for rotation-reflection symmetry with points alternating on opposite sides of the z=0
plane. Note closure on 27 rotation ( or 2mr) is not required due to the dilation , so this is
not Sy but is more general.

One or more axial symmetry planes (R, symmetry ) can also be adjoined . This

places some constraints on the rotation angle ¢, consistent with the number of such
symmetry planes, since on successive operations the symmetry planes must transform into
themselves or other such axial symmetry planes. Thus the rotation part must take the form
of Cn (closure) in this case.

Thus far we have considered a single elementary dyadic 8 & which (with the

identity) gives the group structure . This can be generalized to some set of o2, for
n=1,2...N. This then considers the possibility of more than one rotation axis (including
opposite senses of rotation on the same axis. Thus we are led to include forms of the
dihedral symmetry Dy and the tetrahedral , octahedral and icosahedral symmetries (T,0
and Y) as in section VI. For example one might have a succession of coaxial cubical- anq
octahedral -like objects, alternating and exponentially expanding (dilation) for log periodic
roperty.
prop ¥t would then seem that not only can log-periodic spiral structures be cast into a
group theoretical form , but the group structure can be expanded to consider other _
possibilities as well. Perhaps a more systematic investigation of similarity groups (and their

O

O
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adjunction with other symmetries such as reciprocity and duality) can lead to new types of
electromagnetic devices.

Another possible application of similarity groups is to electromagnetic interaction
with fractal objects [8.5]. Fractal objects are those which can be at least approximately
described by fractal geometry . Structures with this geometry can be constructed as self
similar. As a practical matter this self similarity extends over some smallest some largest
scale. (Even practical log periodic antennas have such a scale limitation.) Fractals can be
used to describe various irregular structures such as rough surfaces and turbulent media
,allowing some analysis of electromagnetic scattering properties.
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X. SPECIAL RELATIVITY: MINKOWSKI SPACE,LORENZ GROUP, AND
POINCARE GROUP

Special relativity came about from a symmetry observation of Einstein concerning
the invariance of physical laws (such as the Maxwell equations) from one inertial reference
frame to another. In electromagnetics this has the useful property that one can consider the
fields in the reference frame of an antenna or scattterer and then transform the fields to the
reference frame of a moving observer. This allows one to solve "moving media " problems
in the rest frame and consequently simplify the problem.

Here our concern is not with the detailed calculations of moving-media problems
such as Doppler shift ,etc. Rather our concern is symmetry or invariances in
electromagnetic quantities under spaecial-relativistic transformation. With this in mind let us
consider the four-vector/dyadic form of Maxwell equations , potentials , etc. and then
incorporate duality. This will be followed by the Lorentz transformation as a rotation in
Minkowski space and various resulting invariances. Note that here our concern is with
special relativity and not with curved space-time as encountered in general relativity. As
such in the forthcoming discussions we choose do not distinguish covariant and
contravariant vectors and tensors [1.8,9.2,9.9,9.10].

A Minkowski space and 4-vectors and dyadics.

Let us represent four-dimensional Minkowski space via the coordinate or position
4-vector

rp, =(r,T,) = ( x,y,2,T,)
=x1x+yly+z1,+T,1I1, (10.1)

T, =jpct ,p=t1
With x,y,z,t all real , then the fourth coordinate is imaginary . There are ,however, two
choices that one can use ,depending on the choice for p. An alternate ,commonly used
formulation involves the use of a metric tensor with a minus sign for the time coordinate or
space coordinates. Our present formulation , on the other hand , will allow for the direct
generalization of the commonly used dyadic analysis in electromagnetic theory. The del
operator generalizes to

d d 9 0 0
Dp=<g’ 7T = ax oy @ T, )
=14 x lya—y- + lzg'z- + 1TP5T_p (10.2)
The generalized Laplacian is then

N -
[ P Dp' Dp’ v2+aT§ “ox2 ' 9y? +§+8T§

192

=V%- == 10.3
v 5 (10.3)
which is conveniently independent of p. Further note that

(], ro= 4 (dimension of Minkowski space) (10.4)

rp- rp=rr-c22=Irf - c22 = [ Irl +ct] [Iri-ct] .
This last quantity is not the same as Irp > since it can be negative.

B. Four-current density ,four-potential, and field tensor.
The current density takes the form

Jo(rp) = (J(r.), jpep(r,b) (09
so that the equation of continuity becomes
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" [ Jp(rp)= 0 = 7-J(r,0) +3p(r,0) (10.6)
O Similarly the vector potential takes the form
Ap(rp= (ALY, B o) (10.7)

so that the usual Lorentz guage condition takes the form

Oy Ap(rp)=0= 9-J(r,0+ 3 a%d)(r,t) (10.8)
with the wave equation
O 3 Ap(rp)=-U Jp(rp) (10.9)

From the usual solutions for outgoing waves

Ars)=p J G(r-r)J(r',s)dV'

B(r,s) = J Go(r-r';5)p(r',s)d V"’ (10.10)
r-r'l
Gotr-r's9) =gy
we can take the inverse Laplace transform of the kernel (free space Greens function) as
Vg g! v lerl
O Go(r-r'st-t) = Golrper) = 71— 8 (-t =) (10.11)
This allows us to write
J(rt -y
= - ¢ T
A(r0) =p J 4nirr'| av
] Ir-r'l
_L o PR
oy =1 v[ 4y (10.12)
Jp(r )

Ap(rp) = 1t J a3

rp=(r , jplct-ir-x"1])

Here we can see the difference between real space and real time through the lack of
symmetry in the above formula which is an integral over all space , but only over retarded
time for which ryrp in (9.4) is negative . This can be thought of also in terms of the usual
light cone using ume like" coordinates (rp'rp negative). The 4-vector notation should
then not lead one to obscure the different rolics of r and t since T, is imaginary.

The Maxwell equations can be wnttcn as

- [va J;T,—]

Jp(rp) = (jpcp %V E

O
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(e

%H—a% B | 0
iy o p 2 1RO
% 2B, ‘i)

_| JpZH 0 JpZH E
Folr) =| jpzH, -jpZH, 0 = E, (10.13)
‘Ex 'E ‘Ez 0

y
this last expression defining one form of the skew symmetric field tensor . Here we have
not invoked the Lorentz force law to define this tensor , but have found it directly from the

Maxwell equations.
In terms of the vector potential we have

E(r,p) =- V<D(r,t) -Q%r_t)
A =; XA®D (10.14)
( ° P c[ﬁél W et g -jPC‘JT‘
F(r,) = -jpc[a%\l 0 J'pc[aAz 098y 00 -jpc?‘rl
jpc[-ﬁ—‘»%"— jpc[®Az Qaéz] 0 _abcg _Jpcé__
k 0P +jpcm=- B—ﬂpcﬁx _g;_+ %%_ 0 )

=jpe[[1,Ap(rp) - ([]5 1 Apro)T]

which is the usual result [9.9,9.10] generalized to the two posible choices for p.
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C. Inclusion of duality to obtain combined four-dimensional quantities

O Including the ficticious magnetic current density we have the combined current
density and field as discussed in section III. Thus we have the combined 4-current density

Jp.a(®) = Jq(r,),picpa(r,1)

V-Jo(r,0) =- % Pq(r,t) (10.15)
Pg(r,0) = p(r,t) + j%pm(r,t) =& VEq(r,p)
Dp Jpa(r) =0

Note that this holds for all combinations of p and q (independently +1 and -1). From
combined vector and scalar potentials
Ay(r,t) = A(r,t) +jqZA(r,1)

Dy (r,t) = O(r,t) +jqZDp(r,t)
E(r,t) = -VO(r,t) -g—t A(r,0) -évx An(r.t) (10.16)
H(rt) = ivx A(r,p) - V-@(r.0) ‘gf Ap(r,t)

Eqy(r,t) =-Vq(r,t) 'g—t Aq(r,t) +jgeVX Aq(r,t)
the combined 4-potential is

Ap,q(rp)= (Aq(l‘,t),jgd)q(r,t))

O [, Apaq(r) =0= V-Aq(r,t) + CLZ% Dy(r.t) (10.17)

D; Ap,q(r) =H Jpq(rp)
In terms of the combined current density (10.12) becomes

Jq(r.’t_lr;r'l )
Ag(rt) = J gy

Ip-r'l

p (r"t'—— )
o=y | v
Jp,q(r" )
Ay(rp) = 1L J S av (10.18)

r; =, jplet-Ir-r'l])
The combined Maxwell equations can now be written as
d
: o I [VX +pqsIE
e =107 )= (7 P
q -pqV-Eq
= Dp * Bp,q(rp) (10.19)
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0 'EZq Eyq ‘Pquq
Ezq 0 -Exq -PqEyq
-E)'q EXq 0 -pqEZq

PqExq PQEyq PQEz; O

=- E:'q(rp) (skew symmetric)

Epq(rp) =

This gives the combined field tensor. Note that p and q enter in a form which gives all real
coefficients to the combined field componenets (three instead of six) . Choosing p=+1 and
-1 gives two forms of this tensor . Then choosing q=1 and -1 and taking sum and
difference to separate electric and magnetic terms gives a total of four separate forms af the
field tensor .Note that

0o -(Up - Epa(rp) ) = GZ [, Jpq(rp) =0 (10.20)
Now introduce the concept of a dual of a 4x4 skew symmetric dyadic
[1.8,9.9,9.10] . This done via a four index array or fourth rank tensor (d;, ;, n'.m?)
where
%for any even permutation of (1,2,3,4)

dp monm = -% for any odd permutation of (1,2,3,4) (10.21)

0 otherwise (any two indices equal)
Then an antisymetric dyadic (tensor) has the general form

0 Xi1,2 Xi1,3 X1,4

= X12 0 X3 Xo4 |__ xT
X— 'X1‘3. 'X2‘3 O X3'4 X (10.22)
-X1,4 -X2,4-X34
" Its dual is defined by
dual(X) E(Z dn monm Xotm') (10.23)
n',m'
and explicitely given by

)? X03,4 -}?2.4 )§(2,3
= -&3.4 1,4 -X13
dual(X) = X24. -X14 0 X2
-X23 X1,3 -X1,2 0

As one would expect

dual(dual(X))= X (10.25)
so that twice application of dual (...) produces the original skew symmetrical tensor.

Now go back to the combined-field tensor in (10.19) and observe

dual( Ep q(rp)) =pq Ep o(rp) . (10.26)
How symmetric! The skew symmetric combined-field tensor is its own dual or antidual
depending on the sign of pq (=%£1).

Relating the combined fields to the combined potentials one has from (10.16) the
three independent combined-field components as components of

. . ) .
Eq(r.t) = jpq[ v (GE@y(r.0) - 3T, Ag(r,)] +jqcTXALr,Y (10.27)
Divide the combined-field tensor into two parts as
Epq(rp) = jac XP + jpc X@ (10.28)

where
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0A;, 0A dAyx, dA;; 0 j 0Axq
(aA OaA S I A e aT,p!g\
X z a j A
x| = 0 = oy e,
| 0As 9An, i Ay d by A
D A b aay vty
\ x(c P T 5 OIS 57e% 7T 0

P

J

=- [, Apq(rp) + ([J, Apa(rp) )T (10.29)
and
X@ =
d j Az, 0] dA,, 0A,, 9A,
( ) 0 » -&(]g¢q)+§ﬁ 3;(0 q)-a T, a—gg‘q-aa—yq \
z d j A Azq JdA4
é‘zfg‘”q)' T ° S 2 FTy aﬁ‘aﬁﬁ-
j i Ay Ay A
Axg A, Ay, 0A,
\ B e o0 )
dual(X® ) = dual(- [], Apq(rp)+( [, Apq(rp)T) (10.30)

As an aid in this decomposition note that the pq coefficients (in fourth row and fourth
column of the combined field-tensor of (10.19) ) interchange the coefficients p and q in
front of the two terms of (10.27) . Combining the results

Epq(rp) =

.Jc[q(|:|p Ap,q(rp)-( [, Apqrp)D+p dual([], Apq(rp)-( [, Apq(rp)))](10.31)
which evidently is consistent witﬁ (10.26) (self dual or antidual). Thus tfle combined-field
tensor can be derived from the combined 4-potential in a way which generalizes the usual
results (as in (10.14)).

D. Time reversal and magnetic current and charge.

Reversing the sign of p can be thought of as reversing time. In four dimensional
space-time this a reflection, or improper rotation. In a deeper sense,however, one does not
have time-reversal symmetry. While the differential equations have such symmetry the
resulting fields do not. This is because the differential equations do not have a unique
solution. When causality is imposed (fields coming after currents, or equivalently outgoing
waves ) the solution becomes unique and takes the form in terms of integrals over the
currents with an outward going (retarded) Green's function . As in (10.12) and (10.18)
note that the integration is over space (three dimensions) and not time , this variable being
combined with spatial coordinates in the form of retarded time. So in in general there is not
time-reversal symmetry , although there are special cases such as lossless cavities (no
exterior radiation) when there is such symmetry (at least to a good approximation).

Reversing the sign of q can be thought of as reversing the magnetic field and

magnetic current and charge. Upon reversal of spatial coordinates (r— -r or inversion) and

conserving sign on the electric parameters, then there is a sign reversal on the magnetic
parameters, thereby associating q with a spatial inversion , an improper rotation.
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Alternatively one can reverse time in the Maxwell equations (t —-t or p—-p ), another
improper rotation in four-dimensional space-time, again requiring reversal of the magnetic
field (q—)-q) In this sense we note the conservation of the sign of pq in (10.19) and
(10.26) in the combined-field dyadic . Of course , as discussed before , this property
applies to the differential equations prior to imposition of causality.

So causality (initial conditions) breaks time-reversal symmetry . What then about
magnetic-reversal symmetry ? Again consider what happens under spatial inversion . If we
insist on conserving electric charge (no sign reversal), on spatial inversion then there is a
sign reversal on magnetic parameters including any magnetic charge. One could have
adopted a convention of conserving magnetic charge on inversion , at the price of reversing
electric charge. However, one cannot conserve both in this sense. If one is to have spatial
inversion symmetry then one can choose which kind of charge to have and then define this
as an electric charge (merely a question of labelling[9.9]). The magnetic field does not

present the same difficulty since EXH remains outward on both reversal of coordinates
and H , and JxB terms are conserved by reversal in both B and the cross product.

E. Special-relativity groups
Similar to the affine group in (9.1) we have the Poincare group

P={ (Lp&p) | rp—> Lyrp+Ep } (10.32)
where the translation in Minkowski space is
Ep= (§x,§y,§z,§1-p) Erpin imaginary meters (10.33)
A subgroup of this is the Lorenz group
Lp={ Lyl rp— Lp: rp} (10.34)

The important term here is the Lorenz dyadic which can be thought as a complex rotation in
Minkowski space. There are various forms this can take as one can find in the extensive
literature (e.g [9.9,9.10,9.13,9.15,9.22]).

For present purposes consider two reference (inertial) frames , the second moving
ata velocity v (real and constant) with respect to the first. Then defining

= vl , : B—- . Yp=-jpy

B(I—Bz) = smh(\v) = jpsin(yp) | , (10.35)

(1-B2)"*% = cosh(y) = cos(yp)
we have the Lorenz transformation

r? =Ly 1) | (10.36)

The Lorenz dyadic can be constructed in two steps [9.22] as

2).+2) _ 1@ 1 ). 1D )

L®x =L LD 1, (10.37)

The first step is a simple rotation of the spatial coordinates as

0 |
L@ = QM 8 (10.38)
0 0 01

where QM is a rotation dyad (in O;' as in section VII) making the spatial coordinates in rr(,z)

parallel to and in the same direction as the spatial coordinates in rg) , after first rotating the
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z( and z(1) axes parallel to and in the direction of v (a real velocity vector) . The remaining
O space/time transformation is handled via

1 0 0 0 1 0 0 0
@ 0 1 0 0 0 1 0 0
Lp"=1 0 0 cos(yp) -sin(yp) |=| 0 0 cosh(y) jpsinh(y)
0 O sin(yp) cos(yp) 0 0 -jpsinh(y) cosh(y)
1 0 0 0
0 1 0 0
=l 0 0 (1-B2)”* jpp(1-p2)™ (10.39)
0 0 -jpB(1-B2)% (1-p2)™*

-1 T
@) "_p@_7 @
]I‘p - ]L-p - ]I"p

det (Lﬁf’): +1

which is a form of complex proper rotation.

Assuming the spatial coordinates are already rotated to be parallel as above then
LD =L = =(1p.m)

x@ x()
y@ y
2@ |=1? = Lff’- r;” =|  cos(yp)zD-sin(yy)
O Tr(,z) sin(wp)z(1)+cos(\|lp)Tl()l)
x(1)
y( 1
cosh(y)z(D+jpsinh(y)T{" (10.40)
-jpsinh(\u)z(l)-l»cosh(w)T;(,l)
In terms of real time t this is
y@ | _ . p 10.41)
2® cosh(y)zM-sinh(y)ct® (1-B2)“[2D-BetD)] (10.

jpet /- \ jp[-sinh(y)z(D+cosh(y)ctD] /  \jp(1-B2)[ctD-BzD)
Since the Lorenz dyadic is just a proper rotation the other 4-vectors/dyadics transform as

@ @Dy _p 7DD

Joa(Tp ) =Lp-Jp (")

Apa(T5") = Lp-Apo(ry”) (1042
Epa(ry) =Ly Bpo(ry) 1)

where L, can be replaced by Lf,z) for a simpler version if the two sets of coordinates are
O aligned as discussed previously.
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F.Invariances. '

Our concern here is symmetry , one aspect of which is the invariance of the forms
of the various equations (and solutions) with respect to the reference frame (Lorenz
invariance). This can be thought of in the usual 3-vector/dyadic equations or in the 4-
vector/dyadic equations , both of which express duality by combining electric and magnetic
parameters together (and thereby simplifying many of the equations).

In addition to the differential equations (and the solution) there are various
conservation laws such as energy and reciprocity (section IV ) which apply in all inertial
frames. In 4-vector/dyadic form there are related concepts concerning the energy
momentum tensor . A remarkable property of the combined field 4-dyadic

1 0 0O
E _ 01 00
0 0 01
which can be verified by multiplying out the elements in (10.19) . Rotating the above 4-
dyadic to transform from rx(,l) to rf) gives
@ p@)_ ) g
EQED -EQES (10.44)

This says that the dot product of the combined field with itself (loosely the "square") is
invariant to Lorenz transformation as in the square of the combined-field 4-dyadic.
Separating the electric and magnetic fields gives the usual results [9.10]

EQ.ED .ZZH?.H? = EM.ED .Z2HOD.HMD

(10.45)

E@.H® = EO.HD
again showing the compactness of the combined-field notation, and the symmetry inherent
in it. Further consideration of the 4-dyadic gives

det(Bpq(rp)) = [Eq(r,t)-Eq(r,)]

tr(Ep o(rp)) =0
which are also Lorenz invariant . Noting from (10.43) that the eigenvalues of the square of
the 4-dyadic are all Eq-Eq , then the four eigenvalues of E 4 are just

A(Epq(ry) =H[Eq(r.)-Eq(r)] >

with each sign taken exactly twice . These eigenvalues are of course invariant to Lorenz
transformations while the eigenvectors are of course changed (rotated) by multiplication
by Lp. Note that for a TEM plane wave , these eigenvalues are all zero , and the square of
the 4-dyadic combined in (10.43) is a zero dyadic.

In 4-vector/dyadic form ,there are conservation concepts concerning the
energy/momentum tensor . In this paper our concern has been with electromagnetic sources
and fields , and not with associated mechanical concepts of force and momentum.

(10.46)

(10.47)

G. Symmetry in space/time

With the Lorenz transformation one can consider symmetries in 4-dimensional
space/time. One can have a group of general "rotational” form

Grp-{CMN n=1,2,..N} (10.48)

where N can be finite or infinite . One of these elements (say the Nth) is just the identity

O
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1000

1 0 0

P =tym=| 9 L 99 (10.49)
000 1

The Lorenz transformation to some other inertial frame , say G&) has the inverse (y—-y)

as G , forming a three element group . The set of all proper Lorenz transformations

forms a Lie group (infinite number of elements).

Let us suggest some generalization of some of the 2-and 3-dimensional symmetries
discussed previously. For convenience use Ly, to rotate the spatial coordinates in the nth
reference frame to align the z axis with the velocity vector v . Then one might consider an
object with CN symmetry with respect to an N-fold axis parallel to v. To an observer on
the z axis but in a different reference frame (say zero velocity against which v is defined)
the object still has Cn symmetry even though the Lorenz contraction changes the size of
the object in its z coordinates. Note that even if the body is in constant rotation about the z
axis the Cy symmetry is still maintained in the observers reference frame.Points on the
object then proceed to form helices as time progresses . The world line of each point on the
object is a helix, the Cn object forming a set of world lines that generate a body with both
rotational (Cn ) and screw-translation symmetry.

Considered in a general sense one has a symmetric object when the 4-dimensional
representation of an object (world line set) transforms into itself under a Lorenz
transformation (or more generally a Poincare transformation). To form a symmetry group
the set of these transformations need only form a group.

A commonly used kind of symmetry involves transforming the reference frame to
some kind of "average" frame for the set of objects under consideration. For identical
particles and/or antiparticles this is often referred to as center-of-mass coordinates . Our
concern is not with mass but shapes , positions , orientations and velocities of a set of
electromagnetic objects, i.e. antennas and scatterers . Nevertheless, optimal choice of
reference frame can help the engineering problem by bringing out symmetry properties.

Here we have just scratched the surface of the various space/time symmetries that
one may find useful for electromagnetic design. Much more work would seem to be needed
in this area.
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XI. CONCLUDING REMARKS
Well , this has been some odyssey! Beginning with the Maxwell equations we have @
wandered through the symmetries inherent in the equations (duality,reciprocity). Next
geometrical symmetries (rotation, etc.) were explored and combined with duality (self
complementarity). Then going to space/time further symmetries were found in the Maxwell
equations and "geometrical" symmetries in four dimensions discussed . Even with the large
amount of material included here one can think of this as an outline of the subject. Much
more can be done to fill the various parts . Hopefully this has helped define the questions
and pointed to new areas of research.

How far might one extend the concept of symmetry in electromagnetics? A recent
book [9.2] has shown how to extend our usual kinds of electromagnetic fields in euclidean
space (the formal fields ) to other useful cases of inhomogeneous and/or anisotropic media
(ideal lenses). These lenses can themeselves have various symmetries. In the formal
coordinates we can have various symmetries in the fields, antennas and scatteres . When
transformed in a differential geometric sense to the real coordinates (with the lens medium)
these symmetries may not be preserved in a purely geometric sense, but they are still there
in the equations. So general symmetry concepts can apply to objects in such media.

Where else might symmetry be found in electromagnetics? Perhaps you the reader
will help.
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Appendix A : Properties of Finite Groups

Continuing the discussion of groups from section II, let our group G have a finite

number of elements £ ,the order of the group. As a group we already have the_group
operation (symbolic multiplication , not necessarily commutative), associativity , the
identity element , and _inverse element, and inverse defined. The following is a summary
of the group properties. More detail can be found in various texts (e.g. [9.5,9.6,9.8] ).

Isomorphism

Two groups are_isomorphic iff their elements can be put into one-to-one
correspondence including the combinations by the group operations. An example of this is
the multiplicity of matrix representations of a group (as in section II).

Subgroup

A subgroup G of a group G is itself a group of order 2. All elements of G are
also elements of G. Each subgroup has an index.

index of G 5% = an integer (A.1)
S

A proper subgroup has 25 # 1,9¢ and equivalently index # ,1 i.e. is not the group {(1)}
orgG .

Cosets

For any subgroups Gsof G with any element (G), form the sets (complexes)
(6§ Gs = left cosets
Gs(G), =right cosets (A.2)

Commutative Group
A commutative (or Abelian ) group has the property

(@2 (@e=(Pe (G (A.3)

for all # and #' ranging over the group elements.

Cyclic group
A cyclic group has elements defined by

(6)2 =(@F »(Qq, =(1) identity. (A4

All cyclic groups of the same order Lo are isomorphic to each other and have the same

irreducible representation
o B
(@ — e']zuﬂ_o (a scalar or dimension d=1) (A.5)
This is a commutative group. All subgroups of a cyclic group are themselves cyclic.

Groups of prime order
If 2o is a prime number (cannot be factored into a product of integers excluding 1
and 2¢) , then G has no proper subgroups. Furthermore Gis cyclic.

Symmetric group o
This is the group of permutations of m symbols and has order m! . It is said to have degree
m.
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Cayley's theorem

Every group G of order 2g is isomorphic to a subgroup of the symmetric group of

permt;ltations of 2o symbols (order 2¢! ) limiting the possible group structures to a finite
number. :

Order of a Group Element
A group element (G), has order n, where n;>0 is the smallest integer such that

(9,7 =(1) (A.6)
with

% = positive integer (A7)
The set

(§)e =((@5! n=1,2,.....n4} (A.8)

is itself a group of order np called the period of (G),; ,and is the subgroup of G of
smallest order containing the element (G), .

Class (Similar Class)
Elements (G), and (G)¢ of G are called similar if an element (G)' in Gexists 3

(6 (9 (9= () (A.9)

Furthermore if (G)y~ is similar to (G), (say via element (§)") then (G)g is similar to (G)y' .
This similarity relation can be used to separate a group into classes , i.e. sets of elements
which are similar to one another. Elements in such classes are sometimes referred as
equivalent or conjugate (although this invites confusion with complex conjugate) . The term
"similar" is taken directly from the definition of similar matrices. All elements in the same
class have the same order. For commutative groups each element forms a single-element
class . All groups have (1) as a class by itself.

Invariant Subgroup
For G; (order 2, ) a subgroup of G (order £) form the set of elements (or complex)

(6), 61(9; ={(Dy(GVHN 2'=1,2,....01 } (A.10)
for any ¢ = 1.2,....2¢ . This is itself a subgroup of g . If for all (), we have
6), G1(6); = Gi (A.11)

(i.e. all such subgroups are the same , the group elements of G; merely being permuted
with one another ) , then G is called an invariant subgroup or self-similar subgroup or
normal divisor of G .Since we also have

(8, G1= G1(G), (left coset=right coset) (A.12)
one can regard an invariant subgroup as one which as a set commutes with every element
of G .If none of its invariant subgroups are commutative it is called semisimple.

Factor group
For an invariant subgroup G consider the cosets as in (A.12) as elements of a

group known as the factor group or quotient group G/G; with order 29/2; , the index of
G-

)
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Homomorphism

A group G is homomorphic to another group G if each element of G can be
mapped into a (corresponds to) an element of G' with group operation preserved . This is
distinguished from isomorphism in that several elements of G may correspond to single
element of G' . So homomorphism is a one way mapping whereas isomorphism is
symmetrical (i.e. homeomorphic in both directions or one-to-one). Actually equal numbers
of elements of G are mapped onto each element of G . The set that maps onto the identity of
G is itself a group, say G; ,which is an invariant subgroup of G. G is also isomorphic to

the factor group G/G; .

Direct Product of Groups
Let G contain proper subgroups G, , for 1<n<ng, each of order ¢,,. We can write
Gn as the direct product of the subgroups

g

G=61® G® - ®Gn=Y Gn (A.13)

provided the elements of different subgroups commute and every element of Gcan be
written in exactly one way as

(6),= (G1%; (G2, (Gag)y (A.14)

(with order unimportant since these commute). The G, are called direct factors and are
invariant subgroups , the only common element being the identity . Note that we can also
write

Gn® Gn'=Gn ® Gn (A.15)

This a special form of direct product , not to be confused with the direct product of two
arbitrary groups which forms ordered pairs of elements from the two groups as the new
elements. As for order we have

20 =[[2n (A.16)

Faithful Representation
Continuing the concept of matrix representation_in section II ,note first that this is
itself a group . While one can homomorphically map the elements of a group G of order

%0 to a group of square (dxd) matrices , one can define a faithful matrix representation as a

group of 29 matrices which is isomorphic to G under matrix (dot product) multiplication .
Note that this is not unique since a similarity transformation will map one faithful matrix

representation into another group of o matrices . The identity takes the form
1 . 0
(1) - - (A.17)
0 b

and all the matrices are nonsingular.
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Dimension of Representation
A group of square dxd matrices has dimension d. This may come for example from
rotations in three dimensional space , in which case d=3 is a natural choice.

Unitary Representation
For finite groups every matrix representation is similar to a unitary matrix
representation. Let our matrix representation be unitary dxd so that

(@) —( n’}ﬂ) , = group element
G207 = (69 )1 = group element (A.18)
T =adjoint = T* = transpose conjugate
Such unitary matrices have both rows and columns as unit vectors with rows and columns
conjugate of each other forming a biorthonormal set (dot products zero except for same row

and column ). As unitary matrices , when dot multiplying a vector a new vector of the
same magnitude (Iength )is produced . Defining eigenvalues and eigenvectors as-

T) _
(Qfl'm)p - (XI'\)Q'B - XQ,B (XI'I)Q‘B
3 *
(), 5 = columns of (657, (A.19)

* = f ]
(%) g =TOWS Of (G '),

%
(0)y g, () g, = Igy,8 (biorthonotmal)

we then have the general properties
-1 »
I)‘B,9|=1 , AB,Q = 7‘8,9 forall B, 2

d
Idet((é;}m)p )N = I ImB ,|=1forall 2 (A.20)
B=1
d
(60, ) < zlxM|=dfor all ¢
B=1

Note that for the identity the eigenvalues are all 1, so the determinant is 1 and the trace is d.
If the order of the £th element is n, ( a factor of 2¢) then we also have

(gf:)m)’;”=(lnm) forall 2

xg% =1 for all B, 2 (A.21)

restricting the eigenvalues to certain roots of 1.



53

If the unitary representation is also real (real matrices ) then the eigenvectors and
. eigenvalues occur in conjugate pairs (except for the case of real eigenvectors and associated
O real eigenvalues). In this case the determinant and trace are also real.

Eigenvalues of Representation

Noting that similar matrices have the same eigenvalues , then for finite groups every
matrix representation has the same constraints on eigenvalues as in (A.20) . Since classes
of Ghave all elements similar , then the corresponding matrix representations (in the same
dimension d) all have the same eigenvalues . The same applies to functions of (only) the
eigenvalues such as trace (or character) and determinant.

Character of a representation
One of the convenient eigenvalue-related properties of a matrix representation is the
character or trace as

d d
(r) - § n _ z
x((gn'm)p ) - gn'n;p = lB,Q (A.22)
B=1

n=1
Similar sets of representations have the same set of characters. Similar elements of the
representation have the same eigenvalues and hence the same character . So dividing the
representation into classes (sets of similar elements ) we have one character for each class

and hence at most v separate characters X, where v is the number of classes, More

generally one can speak of v separate sets of d eigenvalues . Note that different
representations (not similar ones) can have different characters (distinguished by
superscript) . For example , one can have representations with different dimensions d.
Note also that

O X607 )=X"(60,) (A.23)

Reduction of Representation
The representation { (G ), 18'=1,2,....,8¢ } of a group Gis said to be reducible

n,m

or decomposable if it can be put in tphe form (by a similarity transformation)

(D, 0

(60,
O ;“o)
\ ek

= (g, ® (62, @ (54,

(Gom)p =

up
=@ gV
=B Goo), (A.24)

@ = direct sum
where each diagonal block (G, )m)Q is square dyX dy with

O
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ugy
d=3'dy (A.25)
u=1

Note that the same block decomposition (same ordered set of d, ) is required to apply for all
. Then each matrix group

= {6, 19=1,2,.....20 } (A.26)

is itself a representation of G of dimension d,. If the representation cannot be decomposed
into two or more such diagonal blocks by a similarity transformation the representation is
called irreducible, The representation is fully reducible or fully decomposable to the form
in (A.24) when each representation as in (A.26) is imreducible. Among the irreducible
representations some may not be distinct in that they may be similar (applying of course
potentially to representations with the same dimension). Then by a similarity
transformation such representations can be taken as the same and we can write

_l @ (s & (@ W )
(ghm)Q '[v@l (gn.m)p ® vejz ((jn,m)p S v@l (Gn’lm)p
ui Vu (u)
= 9 [v@l (gn,m)p] (A.27)

v,= multiplicity of each ((j;u)m )

u;= number of distinct irreducible representations

d=uzlvu dy
u=1
ul
X((Gom)p) = ) va XG0,

u1
det((G ), ) = I-Ivu [det(((J'(,:l,)m)ﬂ,)]vu

u=1

The character x((gl.m)rz ) of a reducible representation is called a compound character,

The characters X{(( gf,“')m)p ) of the irreducible representations are called primitive characters

or simple characters, Note that the similarity transformation of the matrix representation can
be thought of as an appropriate selection of the d coordinates (variables) which the matrices
multiply to give the various symmetries (invariances) associated with the group
representations.

Orthogonality of Representations _
For all non-similar irreducible unitary representations

20

' 9
29‘(;,)-“;9 g(u Y, = Euo' lyw lon Inm' (A.28)
2=1

n',m';2
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Character Orthogonallty
The _nummyg_q_mg_tm of the non-singular irreducible representations sansfy

—Zx« ) XY = Luw (A.29)

ThlS is applied to a reducible representation to find (with symbols as in (A.27))
20 Lo

1 1 2

o« Zx( (Gumlp) X (Gumlp) = 7o Elx« G|
9=1 Q:l

u]

=) V221 (A.30)

u=1

with equality iff the representation is irreducible . To find the number of times v, an
irreducible rcpresentation is found in a matrix representation we can use

——Zx« ) X ((Gom)y) = —Zx*«g‘“’ ) X((Gom)p) (A3D)
2=1
The above formulas can be also written in forms which explicitly account for the v classes
of G Noting that each class has the same character , say X; (for i=1,2,...v) one can sum

over the classes with weights v; as the class multiplicity (number of elements). These
properties can be summarized in a character table in which the columns are the characters

for each element of (ghm)p and its irreducible representations (ﬁ") ), , each representation

corresponding to a row. Note that not all irreducible representations need be faithful.

Regular Matrix Representations of an Abstract Group
An abstract group
G= {(g)p | £=1,2,...0,} (A.32)
admits a regular representation_in terms of 2,X2, permutation matrices (dimension £, )
This is given by
{1 if (6);' (§)2(&)m = (1)
Gnm;2 =

0 otherwise

x((gh,m)p) = 2o for ((G)n,m)e= (ln,m) _ (A.33)

0 otherwise

Irreducible Representations of an Abstract Group
An abstract group

6={(g), 1 2=1,2,...2,} (A.34)
can admit a number of m‘edumble matrix representauons Let unax be the number of
distinct (non-similar) irreducible representations .Then we have

Umax=number of classes (of similar elements ) in G
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Ymax
to= D d2 . (A.35)
u=1

d, = dimension of uth irreducible representation (distinct)

ai = integer (positive) for u=1,2...umax
u

Also the regular representation contains the uth irreducible representation exactly d, times.



57

Appendix B. Properties of Infinite Groups

Letting the number of group elements 2, become infinite introduces some new
features in groups. In particular the order ng of a group element (as in (A.60 need not be
finite or even exist , i.e. as we take an element (G), and keep multiplying it by itself we get

group elements of the form (g)’;l but no value of m may give the identity (1) . This can be

referred to as a lack of closure. In a matrix representation this admits cases in which the
group does not have a unitary representation , the magnitudes of the eigenvalues perhaps
diverging or tending to zero. Furthermore the representation may not be fully reducible or
fully decomposable to the direct sum form in (A.24) and (A, 27) . It may still be reducible
in the sense that there remain matrix blocks on one side (upper or lower, but not both) of
the diagonal blocks.

Discrete Infinite Groups

A group may have an infinite number of elements as

G={(G)gl 2=1,2....,00} (B.1)
This kind of group can also be referred to as a countable or denumerable .Examples include
the discreet space groups (section VIII) and discrete similarity groups (section IX).

Continuous (Lie) Groups

Introducing the concept of an J_ﬁ_gmmalgh_mgg_ in a group element to give
another group element we have a continuous group or a Lig group. A g-parameter
continuous group has elements as functions of g real continuously varying parameters as

G = {G(a1,az....,ap) } (B.2)
The number g can be finite or infinite. The g parameters are called gssential if the group
elements cannot be labelled with a smaller number of real parameters. The range of the
parameters may be finite or infinite . If the range is finite for all the parameters the group

manifold is closed or compact,

Compact Continuous Groups

A compact continuous group ( g real parameters of bounded variation) has certain
properties of finite groups . In particular it is similar to a unitary group so that a matrix
representation has eigenvalues and determinant with unit magnitude. Every representation
is fully reducible or fully decomposable to a direct sum of irreducible representations . The
orthogonality relations as in (A.28) through (A.31) also go through as before except that
the sum is replaced by an integral over the group manifold with a multidimensional volume
element corresponding to the parameters being integrated . Examples of such groups are C.

(or 0'2" ) and O;' consisting of proper rotations in 2 and 3 dimensions , respectively , as

discussed in section VI.
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Appendix C. Illustrative Example : Antenna Array with C3, C3, ,and Cj,
Symmetry.

In order to put some of the forgoing group theory into perspective let us consider a
simple example , an antenna array ( introduced in section VI) . Schematically indicated in

fig. C.1 . Here we have three antennas located at common radius ‘¥q but at three angles
¢'n =g_§£7 R = 1’2v3 (C.l)
These antennas need not be symmetric with respect to the planes P, defined by these angles,

but can be oriented at some directions Dy, at common angles o with respect to these planes ,
perhaps with common z components as well. Each orientation can characterize the direction
of some antenna element or the pattern (not necessarily symmetric about the Dy ). In any
event the antenna array has C3 symmetry , invariance on successive rotation by 2m/3.

The group can be expressed as a 1-dimensional matrix representation (irreducible
and commutative with three classes)

2r0
Cio {3 10=123} (C.2)

with characters the same as the group elements . There is also the commonly used 2-
dimensional form (as in section VI) given by

cos(2—§75) -sin(“%)
C3- 207 207 £=1,2,3

sin(T) cos( -3—)

(1 V3)
(C3)1=(C3)y' > é 1_2
\2 "2/
(1 V3
(C3)2=(C3)]' - jg 12 (C.3)
"2 " 2/

1 o0
€=M - (; 1) =(am)
This gives the following character table

Table C.1: Character Table for Faithful Two -Dimensional Representation of C3

(Three Classes)
(D=(C3)3 (Cn (C3)2
C; (d=2) 2 -1 -1
(1) 2n0 ArnR
G5 (di=1) 1 3 e 3
(2) _.21'[9 _.47'!9
C3'(d2=1) 1 eT3 eT3
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Figure. C.1 Example Antenna Array
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Note from (A.29) through (A.31) that the two dimensional representation is fully

decomposed with Q
up=2,vy=vy=1 A=)
d =2, di=d;=1

2nR
e 3 0
(Cs)g=(C§”)pea(C§2’)p "( ’ .21:9]
0 elJ73
(D, 5 o2 (C.4)

2 .2ne
(CP)y»eis
One can also arrive at this by constructing the eigenvectors of the matrices in (C.3) and

form
= L(l ]
Knm) == (1 ) (C5)
the rows of which are the eigenvectors common to all three matrices. Noting that
-1 _ r_14¢1 1
K™ = Ko = = (5 ; (C.6)
we have the representation
207 . 20m 210
cos(==) -sin(=) ) e 0
Knm)| . oo o [Kam) = €2, [fore=123 C.7)
Sln(T) cos( T) el 3
from an explicit similarity transformation. Note that the eigenvectors used in (C.5) are O

complex. Thus the simplicity obtained in the representation in (C.7) is obtained at the
expense of rotation to complex coordinates.

Next increase the symmetry by setting o=0 and requiring each antenna in the array
to be symmetric with respect to the associated symmetry plane P, . This, of course makes
each of the antenna patterns symmetric with respect to the associated symmetry plane.
These symmetry planes are all axial (contain the 3-fold rotation axis, the z axis) giving Cs,
symmetry.

There are various ways to organize the six elements of this group . In a two-
dimensional representation let

(C3), for 2=1,2,3

(C32)p = { (R),. for £=4,5,6 (C.8)
where (R), represents reflection through P as
_LY3)
1 2 2
R);=(C3); R3) (C3); - N
T2 2 J
L V3
(R);= (C3), R3) (C3)3' - | 4"’-3 ’ (€9
2 2 )

®,- (§.7) O
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and that these three elements form a class . Furthermore we have

(R)g(C3)1 Rp)! =(Ca), (C.10)
so that (Cz); and (Cs), now form a class in (Cs,) . The group (Cs,) has then three
classes.

The (Cs,) group has 4 proper subgroups

Cs={(C3)1, (C3)2.(1)}

(C3)1 (C3), = (C3),(C3); = (1)

Ry =( (D), R), } (C.11)

(R)%=(1)  fore' =123 |
Of course one of these reflection groups is needed with C3 to generate the full Cs, group
due to the similarity of the (R), . The character table follows.

Table C.2 Character Table for the Faithful Two-Dimensional Representation of C3,

(Three Classes)
(1) =(G3); (C3)1, (C3) R)y
(weight 2) (weight 3)
Csa(d=2) | 2 -1 0

How interesting! Per (A.30) this is , as it stands , an irreducible representation of the Cs,
group. An alternate form is given by application of a similarity transformation via (Xn,m)
from (C.5) as used in (C.7) giving

<

[ .2nR 0
3
.21:9]&"' 2=1,2,3
0 el3
€=y~ L, (C.12)
Ll
0. ¢03 ]for 9'=0-3=1,2,3
L &3
3

as a simpler looking form of a matrix representation.

The (C3,) group is also isomorphic to the diehedral group D3 . This can be seen by
replacing reflection through P, by rotation of the figure out of the z=0 plane about an axis
formed by the intersection of P, with the z=0 plane. One can go even further by
considering reflection through the z=0 plane (z—-z) with a group element (R), to give a
group Cs,; (or D3y) of order 12. This kind of reflection commutes with all the previous
elements . Physically this additional symmetry corresponds to making each antenna in the
antenna also symmetric with respect to the z=0 plane (and thereby the pattern contains such
symmetry depending on the excitation of the array elements)

Let us now shift gears and consider another kind of symmetry in our antenna array
problem. As indicated in fig. C.1 each of the three antennas is driven by a voltage V,and a
current I, . These are related via

(Va(8)) = Zam())(Tn(s))
(Zn,m(s)) = impedance matrix (3x3) (C.13)

(Yom(s)) = (Znm(s))! = admittance matrix
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As is well known in circuit theory reciprocity implies
Zam)'= Zam®) s Tam®)'= (Tam(s) (C.14)

This kind of symmetry is not in the geometry but comes from the Maxwell equations
(section IV).

C; symmetry implies that as one successively rotates the array by 2n/3 , the labels
on the voltage and current can be cyclically permuted with no change in the impedance
matrix . This means that the matrix elements Z, , are only a function of m-n (modulo 3) .
This is a special kind of circulant matrix. As discussed in [4.15] in a circulant matrix each
row is the same as the previous row shifted one to the right (with the last element going to
the beginning). Furthermore the matrix symmetry makes the matrix bicirculant such that the
row shifting properly also applies to the columns. The matrix elements are then only a
function of Im-nl (modulo 3). For the C3 example there are only two independent elements

of the impedance matrix . All diagonal elements are the same as Z1 1, and all off-diagonal
elements are the same as Z; 5 . Note that no reflection symmetry in the array is assumed

for this result (i.e. in general a0 and the D, can have z components in fig. C.1) .
However, the electrical symmetry is such that it does not matter whether one counts around

the antenna ports in a +¢ or - ¢ sequence. This reversal of port ordering is like a (P),
reflection symmetry , but not a reflection in the geometry or antenna pattern. This inclusion
of reciprocity can then be designated as Cs, symmetry.

Applying the results of [4.15] we have

Zenm®)(x)p = () “Lonm(s) = Za©)(xa)p
(xn)Bl'(xn)Bz = lBl.B2
Zu(s) = Z11(5) +2 Z12(5) cos(F) (C.15)

2i8)= Za(s) = Z11(8) - Z12(9)

Zy(s) = 211 () +2 Z12(5) o
exhibiting the eigenvalue degenaracy (only two distinct ones). Note for C; symmetry the

3x3 impedance matrix has only two distinct elements. This degeneracy also affects the
eigenvectors which can be taken in a real form as

(cos(z?”)\ 1\
(Xn)1 = ’\/? cos(%’i) = %6 [—1
\ 1)\
fcos(23—“)\ { 1\

2 |
2=\ | cosci®) [= |1 (.16
\on ) Y

1
(Xn)3 = %3 [1]
1

The first two eigenvectors are not unique due to their having the same eigenvalue. The third
eigenvector corresponds to a common mode. Refering back to fig. C.1 these eigenvectors
can be thought of as patterns for the voltages and currents exciting the array with
impedances related to the eigenvalues (eigenimpedances).

5
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So how do we relate this 3x3 matrix and associated 3-dimensional eigenvectors to
the previous group structures? One way to do this is to think of what these electrical
O~ symmetries represent . The invariances are to certain interchanges of the labels (1,2,3) on
the antenna ports . These can be written as permutation matrices . For our matrix

representation then let us take 3X3 permutation matrices. For rotation we have
001
(C3) - ( 100 j

(C3) - ( ) (C.17)

——ocoo
Coor—r—
Co~o0co0o

(c3)3=(1)_>(0 1 0)
001

These correspond to rotation around the array in the sense that (C3); moves vector
components (of volltage ,current, eigenvectors) around the array as 1- 2,253,351
and similarly for other such matrices . As these stand in (C.17) they give an acceptable
matrix representation of Cs . ( This can readily be generalized to Cy for an N-element
array.) Similarly the reiciénroocity condition gives a set of reciprocity -reflection matrices as
R) - (0 01 ]
010

[R), _{ ] (C.18)

oO—O0O

—_-o = O

oCOO
N——

(R)s _>(100
001

Here the reflection is of antenna-port labels (not geometry) about the plane Py in fig, C.1.
(Again this can be generalized to an N-element array.) Now we have the 6 elements in a 3-
dimensional representation with 2N elements.) Again the (P), form as class asdo (C3),
and (C3), . The character table follows.

C

Table C.3 Character Table for Faithful Three-Dimensional Representation of Cs3,

(Three Classes)
(1) =(C3)s (C3)y, (Ca), R)p
(weight 2) (weight 3)
Cs(d=3) 3 0 1
C{P(di=1) 1 1 1
CP(d=1) 2 -1 0

Note that this consistent with (A.29) through (A.31) with
u=2,vi= vp=l1
d=3,di=1,dz=1

(G - (C), ® (CD), | (C.19)

O
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(CP), = (1) > 1 for 2 =1 through 6
(€2, = (G,); — 6 matrices (2x2) in (C.3) and (C.9) or in (C.12)

The irreducible representation (Cg)) ¢ is a homomorphism of 6 elements onto 1 (the group
consisting of the identity). As such this is not an isomorphism or faithful representation (a
faithless representation ?). However the irreducible representation (Cg)) ¢ is a faithful 6-

element representation with the same 2-dimensional representation as (C;,) discussed

previously.

The similarity transformation to this form is found by constructing the common
(right) eigenvectors of the (C.17) matrices in cyclic form (with first element as 1 for later
convenience) as

1
2n8 218
(yoe=—=|e3 [, Ag=ei3 .B=123
‘/—3— 478
eT3
*
(Yn)Bl‘ ()ln)B2 = lg,p' (C.20)

the left eigenvalues being conjugate to the right . Form the matrix from the left
eigenvectors as rows ( with order for later convenience)

*
1 1 1 (Yn)5
1 2% 2% *
Yom =4[ 1 &3 €J3 [ =|(yn),
\/3 _j2_n_ 2% *
Leds e/ |,
Yom) "= Yam) T =((¥a)s» (Vo) (Yn)) (C.21)
Applying this to the matrices in (C.17) gives
1 0 0
21 R
(G~ |0 &3 0 for £ =1,2,3 (C.22)

2n0
0 0 el3
and to those in (C.18) gives

10 0
©o2nR-1)
Rypo |0 0 ei5— | forg =0-3=123 (C.23)

2m(2"-1)
0 . 3 0
exhibiting the simultaneous block diagonalization of all the matrices in the group to form a
fully reduced representation . Note that Cﬁ,) occupies the upper left 1x1 block while )

T

(2)

. are notin

occupies the lower right 2x2 block . The reflection matrices (2 =4,5,6) in

the same order as in (C.9) and (C.12) , but this is not an essential difference since the set of
group elements is the same.
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One can find all the irreducible representations of the Cs4 or C3; group based on the

regular representation (6X6) as in (A.33) . In this case we have from (A.35)
Umax =3 (number of classes)
3

2
6= d° (C.24)

u=1
di=1, dp=1 ,d3=2
The character table follows.

Table C.4 Character Table for Irreducible Representation of Abstract Cs, or C3; Group

(1) =(C3); (Ca)1, (Ca), R)p
(weight 2) (weight 3)
{1} 1 1 1
(d1=1)
{1,-1} 1 1 -1
(dz=1) |
(? or (2r) 2 oA 0
(d3=2)

Here there are two non-faithful irreducible representations . The identity group has already
been encountered in which all elements are homomorphically mapped onto a single element
1. One can also map the (R), elements onto -1 to obtain a two-element group.

So (33(r2 ) (as well as Cs;) is isomorphic to Cs,, all having the same 2x2 faithful

representation. Both are also isomorphic to the symmetric group of degree 3 ( all
permutations of 3 symbols).

We have thus found an interesting interchange between physics (reciprocity) and
geometry. Axial reflection symmetry adjoined to two dimensional rotation symmetry Cs
produces C3, symmetry in the fields radiated by an array. Reciprocity (the usual condition
in antenna problems) adjoined to Cs rotation symmetry produces Cs, symmetry in the
antenna-port signals. However, both have the same group structure. The reader can note
that while the example here is based on Cj3 , the procedure applies to Cy , so that Cy, and
Cnr are isomorphic with 2N elements each. However, they are not isomorphic to the
symmetric group of degree N (for N>3) , being isomorphic to a proper subgroup of this.
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