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ABSTRACT

Maxwell's equations are established for the free electromagnetic field in two-dimensional space-times. In
Minkowski space they are solved for a pair of uniformly accelerated "plates”. These solutions are quan-
tized and are used to express the regularized energy-momentum tensor of the electromagnetic field.
With the aid of the regularizgd vacuum expectation value of the energy-momentum tensor we derive (as a

O new result) the Casimir force in an accelerated reference frame.
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I Introduction

The inclusion of gravity in a unifying grand gauge theory of the fundamental forces in nature is still
an open and challenging problem. Therefore, every step and every attempt to represent quantum fields
in curved space times or in accelerated reference frames and to describe their interaction with real measur-

ing instruments is an important contribution to the illumination and to the better understanding of the out-
standing problems.

In [1], Unruh describes the construction of uniformly accelerated model-detectors which move
through Minkowski space-time and detect (i.e., they are coupled to) a linear free quantum field. This inter-
action with the quantum field in its ground (vacuum) state leads to an excitation of the detectors as if they
were in contact with a heat reservoir of temperature

Ta=ha/(27rk3c)=2.5-10'2°a(ms"2)K o (1.1)

Here the quantities 7, ¢, and kg denote Planck's reduced constant, the speed of light, and Boltzmann's
constant, respectively.

Another interesting effect was derived by Casimir. In his paper [2] he considers two parallel perfectly
conducting plates (squares of side length L) separated by a distance d from each other and at rest in an
inertial system in an otherwise empty Minkowski space. According to Casimir the fluctuations of the
quantized electromagnetic field in vacuum lead to an attractive force of strength

|Fc|=z2hc1.2/(24044) ' (12)

between these plates. Indeed this prediction was verified to be in agreement with the experiment [3].
Moreover, in a following step, temperature corrections to the above force were included [4], assuming the
electromagnetic field in a thermal state of some temperature T.

The result of the present paper arose when we tried to replace Unruh's detectors by Casimir's two
parallel plates, but in addition accelerated them. The question came up whether the Casimir force
between these accelerated plates approaches (at least perhaps for "very late times") a value which is simi-
lar to (1.1). This paper! deals with the answer to this question.

1 For related "moving mirror" problems which mainly consider the "particle production” caused
by the mirrors consider Ref. [5] and in particular the references cited in the corresponding
paragraph of Ref. [6]. In Ref. [7], the author suggests to compute the energy-momentum
tensor beyond an acceleration barrier in four dimensional Minkowski space.
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The outline of our paper is as follows: In Section Il we establish the "free electromagnetic field" in
certain two dimensional space-times and derive the corresponding field equations. These field equations
are solved under appropriate boundary and initial value conditions (for the electromagnetic field in the
comoving reference frame of the accelerated plates), and the solutions are quantized. Section lllis
devoted to the determination of the regularized expectation value of the energy-momentum tensor
belonging to the "electromagnetic field” in vacuum at the upper plate. This value serves to derive the
Casimir force between the two plates. Finally, in Section IV, we conclude our paper with a short
discussion.




1. A Special Quantized Solution of Maxwell's Equations in a Two-Dimensional Space-Time

Formally, it is straight forward to derive Maxwell's equations in a two-dimensional space-time. On the
basis of physics however, it becomes questionable whether solutions of these equations have a reason-
able interpretation in real nature. Nevertheless, we will deal with a special electromagnetic problem in two
dimensions, and we tacitly assume that the outcome at least gives us some qualitative clue for the corre-
sponding result in the four dimensional Minkowski space.

The calculus of differential forms [8, 9] is most appropriate to formulate the electromagnetic field
equations in a coordinate independent manner. In addition, for the convenience of the reader, we also
present a local description. Let (M, g, u) be a two dimensional oriented and simply connected pseudo-
riemannian C* - manifold with metric g and volume element . Moreover, may

x= (x" x5 ):D(x) — R? be a positive C*— chart for M. We then assume the electromagnetic field
F(:M - T"'M) to be an exact (C1-) one-form and the corresponding Lagrange - density to be given by
L(dA)=—(8mc) \F A+F (2.1a)

(global representation)

L(dA)] = —(87c) ™" g9 FiFj[-lgldx® A tx® (2.1b)
D(x) :

(local representation)

Here the quantity A(e C2(M,R)) denotes the potential for F (F=dA), * is the Hodge - * -operator, and

throughout the paper the Einstein sum-convention is used.

The field equations are derived from (2.1) and become

dF=0; —*d*F=0 (2.2a,b)
(global)

9,B+J9E =0; ai(mg‘ipj)/m =0 (2.3a,b)
(local)




O where the fields E and B are defined by the equation

F_ =Edx°-Bdx°
IP(=) (2.4)

For later purposes we need to have the energy-momentum tensor T (corresponding to F) and its conser-

vation law. Assuming that (M, g) admits a (differentiable) one-parameter group of isometries and
&: M - TM is the corresponding generating (Killing-) vector field then we find the conserved current

(C1-one-form) 7z:M — T*M with the following properties:

te =i(§)T; Ti= (47:)'1[F®F+ ((FA*F))g:I (2.5a,b)

_*d*'tg =0 (2-6)

or in the local representation:

| O ¢ 1pea)

(1.j€{0,3})

o 1
=¢'iax; Tj=(4x)" ( —g;j8 Fsz)
2 (2.7a,b)

( Igg"('rg)) -lel=0 | (2.8)
Here i(£) indicates the interior product which is associated with & (see e.g. [9]).

In the next step it is our aim to find a solution of the field equations (2.2/3) for a certain physical

arrangement. Consider two infinitely conducting "plates” (these are in reality two points) in the two-
dimensional Minkowski space-time (M, g, 1) which are constantly accelerated with respect to an inertial

system (x",x3). The electromagnetic fields inside and outside these "plates” shall be determined. Now

the manifold M = R2 , the metric has a very simple form
g=dr®° ®dx® —dx° ®dx®, (2.9)

the volume element is expressed by

4= dx A de (2.10)
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and D(x)= R?.
Due to their acceleration the "plates” move on the following trajectories:

1:3(c2 / a)for x°<0

lower plate 1/2 (2.11)

X2 = [(x")z +(02 /a)2] for x°>0

x3=d+((:2/a)forxos0
2 2 1/2
x3=[(x°) +(d+(c2/a)) ] forx°>0

The quantity d € (0, «) designates the distance (with respect to x) of the plates for times x? < 0, and the

upper plate (2.12)

magnitude of the proper acceleration of the lower and the upper plate is a€ (0, «) and a/ (1+ ad/ cz),

respectively. The above trajectories of the plates are chosen in such a way that both plates are atrest
(forx° 2 0) in the comoving (hyperbolic) system indicated by the local chart

E= (60,53) : {x eR?::3> |x°|} — R? of Minkowski space which is defined by the following change of

(5 °¢& 3) > (§3+ ey a)(sinh(aéol cz),oosh(aﬁo / 02)) (2.13)

The properties of the chart £ are well-known [10, 11]. In particular the metric is now expressed by

charts:

xo§_1:Rx(—c2/a,.oo)—>{xeR2:x3 >|x°

_ 3, 22 ;00 0 1z3g 23
ng(g)-(1+a§ /e ) dE°®de% - dt3® dt ora

With respect to £ the plates are atrest (for x° 2 0) at 53 =d (upper plate) and 53 =0 (lower plate).
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Finally, the canonical quantization for the field E does not cause any difficulty for imes x° <0. One
has to observe the usual boundary conditions for E on infinitely conducting plates (i.e., E has to vanish on
each plate in its instantaneous rest system), and the following requirements2 have equally well to be met.

E= i‘/"’“"l [a(k,)E, + a*(k,)E;] (2.15)
£=1

8- i,/nhw, [a(k)B + a* (kz) B} | (2.16)
=1

with the definitions

Egp: = (4/d)"2sin (k, (x3 Gl a)))exp(—im,x" /e) (2.17)

By: = —i(4/d)"? cos (k,(x3 S Ga /a)))exp(-iw,xo /) (2.18)

The fields E, and B, are the complex conjugate of E, and By, respectively. The dispersion relation

0 = ke |  (219)
holds, and the boundary conditions enforce the equation

ky=ntld | (2.20)

Now, the Fock space corresponding to the field F is constructed as usual from the vacuum state Q,
(which satisfies a(k; )2, = 0 for all £ & N.) with the aid of the "annihilators” a(k,) and their adjoints (the

"creators") a"(k,) which fuffill the following commutation relations:

a(ke)a*(ky') - a" (kg )alke) = S (2.21)

2 Strictly speaking there are three (ad hoc unrelated) quantizations for the field F. They are on
the closures of the regions (-os, 0) X (-0, 0), (-0, 0) % (0, d), and (-=, 0) x (d, =) {with respect
to x). Since E, vanishes at (x0, x3) € (-.¢, 0] x d .Z (for all £ N,) the above quantizations on
(-e0, 0] X (-o=, 0] and (-==, 0] x [d, =) only become physically after performing the limit d — .




a(ke)a* (ke )~ a” (kg )a(ke) = Sper (2.21)
alke)a(ke) - alke )alke) = a* (ke)a®* (ke ) - a” (kg )a* (k) = O | (2.22)
(forall ¢, & e N,)

Next we have to extend our solutions for times x° > 0, i.e., we have to consider the time evaluation
for the operator F in the regions

Rq:= & (Rx(0,d)) (inside the plates)
and

Rp:= &1 (Rx(d,)) (outside the plates)

of the Minkowski space. R4 and R have the trajectory of the upper plate as a common boundary. We

assume the time evolution of F to be governed by the field equations (2.2/3) under observation of the
above stated boundary conditions for F. Then for times x® >0 F is obtained via equations (2.15/16)

where we have to replace the functions E, and B, by (operator-) solutions Eg“) and éﬁ“) which are

required to be solutions of the following initial-value and boundary-value problem (for convenience now
stated with respect to &):

@ E‘ﬁ“ ) and éﬁ“) are elements from C°(X,C) and their restrictions to R4(a & {1,2}) belong to
C(Rq.C)

(b) They are constructed out of the solutions of the field equations

(A more elaborate study on wave propagation in certain media and non-initial systems can be found
in the paper of Tse Chin Mo [12]).

JE ag3) 3 ag3) ) 2.23
(550)+[1+ . ]353 ((H . ]B] 0 (2.23)

7] a§3} ( aéa]( aE] |
—_— 1+T B i+ 1+-—§- —3 =0
ag"{[ c ] ¢ N0 (2.24)

(@ E{*) and 3{*) satisty the conditions:




(e1) £§"(0.6%)= (47 @)"2(1+(ag® 2))sinfke°) (2.25)

5o, £3)=-i(414)"2 cos{k&°) (2.26)

for every &3 [0, d]
EP(0,6%)=(a/a)” 2(1+ (ag® /cz)) sin(k,£°) (2.27)

B2(0,6%)=-i(4/a)"2 cos(ke£°) | (2.28)
for every £3 e [d, )
(initial-value conditions)
(c2) E"(¢°.0)= £{"(¢°.4)=0 , ‘ (2.29)
and
EEZ)(50’4)=9 (2.30)
forall £ €0, )
(boundary conditions)

The Cauchy problem corresponding to equations (2.23/24) can easily be solved (for c1-dataon
{0} x(—(c2 / a), ). We present slightly generalized solutions

EBe c‘(nx (~(c2 / a), o), c)

of (2.23/24):

e )= (60 +(2) ol 2)-(21)

| O . fg((§3 ‘+(c~°- /a)Jexp(ag 1¢2)- (21 a))] (2.31)




B(¢° §3) = (2(1+ (ag® /02)))—1[ ﬁ((és +(c? /a))exp(—a?,‘o /¢)-(c? /a)) O

—fz((éa +(é? /“))e""(“go 1%)-(c2/ “))] (2.32)
(60’ 53)5[0' oo)x(_(CZ /a),00)

with the initial - values

£(0.£%)=3[ A(¢%)+ 22(¢°)] . (2.33)

oo 2)-[e e )] (4(e°)-le%) e

where the functions f1 and f2 are arbitrary elements from C1 ((-czla, «) C). Of course, these solutions
have to fulfill the conditions (2.25) - (2.30). This is established by the usual method [13] choosing the data
inside and outside the plates such that the boundary conditions are satisfied. This implies e.g. that the
initial values for £(*) and B(®) are obtained from (2.33/34) with -otherwise arbitrary- on [0, d] continuous

complex-valued functions f1, f2. These functions are expected to be continuously differentiable on (0, d)
{respectively on [d, )) and to satisfy the consistency condition

f1(0) + f2(0) = fi(d) + f2(d)=0 (2.35)
(for & =1) ‘
or
fild) + fald)=0 : (2.36)
(for a = 2)

With the aid of the functions f1 and f2 we construct (continuously differentiable) functions

Fe c"((—c2 /a,d},C) and f> € c°([o,oo)) which are defined on a more extended domain. In the case of

a=1

{(5250(£%) Jror £ €[ (s152)" ) (5152)"(@)|

-f2(51(5251)"(€ 3))f0r e3e [31(3231)"(‘1 )v31(5251)"(d)] O
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neN and &2 e(~c? / a, d] (2.37)
f2((5152 )"(53))for e [(52S1 )*(0).(s251 )"(d)]
fz(és)i =
~A(Sa(si52)"(8%) Jror 83 [s2(s152)" (@) 52(s152 ) (0)]

neN and &3 €[0, =) (2.38)

The functions S¢ and Sz are the following (C*-) diffeomorphisms:

(
(_02 /a,oo) - (-02 / a,co)

| \53H(Cz/a)[(1+(a£3/c2))-1_1]) (2.39)
e
Gl “)[(‘*(““ / 2)) (1+(ag?12))” _1] 240

/

In the case where a = 2 it is sufficient to extend f1 to a function f1 € CO((—C2 /a, oo), C) which is con-

tinuously differentiable on (-c-2 / a,oo)\ {d}.

ﬁ(.§3)z=- fg(s2(§3)), for €3 e(-—czla,d] (2.41)

Now we are prepared to estimate the (operator-) field F, especially at the position of the upper plate.

11




I Regularized Energy-Momentum Tensor and Casimir - Force on the Upper Plate

Since we are interested in the Casimir-force acting on the upper plate it is sufficient to know the éﬁa)

at the position of the upper plate. These quantities can be derived applying equations (2.31/32),
(2.37/38), and (2.41). We find (for all £e N,.)

’exp(—(2a/ 02)(50 - 1cT, ))

for ;,:0 € [ncz‘o,(n+ -;-)cro],n eN

[5§0(z0.) = (41

exp((Za/cz)(go —(n+1)c1,'o)) (3.1)

for&%e [(n + -;—)c'ro, (r+1)er, ]n eN

[B2(&0.d) = (%)exp(2aee 12), £°20 3.2)
Here the time constant z, i§ defined by . C)
L
Tpi= a(c/a)en(1+(ad/c2))' (3.3) - -

Now, we assume the field F to be initially in the vacuum state on both sides of the upper plate (compare

the second footnote) and obtain for the vacuum expectation value of the energy-momentum tensor at the
upper plate the formal sum (depending on the region R,,)

R —,

i,je{0,3},&%20 (3.4)

where the brackets ( | ) denote the scalar product corresponding to the Fock space of the field 7. Next we
have to regularize the divergent formal sum

O
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DY} C(-1)=-(;’5) (3.5)

2=1

(¢ denotes the riemannian zeta function) and eventually derive from (3.1/2) and (3.4) the final result

(QolT(a) 50 ) ),¢g=-24d ( |B1(“)(.£° )Iz] 3.6)

(i.jef0.3} . ae {12}, and §° 20)

. 2
The magnitude 'Bf“’(é?,d)l is given by (3.1/2). Using (3.6) we find that the upper plate experiences in

its instantaneous rest system a (proper time-dependent) Casimir force fc(r) which is directed towards the
lower plate and has the magnitude (72 0)

[exp(-—(Za / c)(1 + (ad /2 ))_1(7- nty )]

forte 1d~[n,n+—;-]

o) ) ~
exp((Za/ c)(1+(ad/cz)) (t—(n+1)rd)] (3.7)

for te rd-[n+-;—,n+1],neN

where we have introduced the abbreviation
‘rd:=(1+ad/02)‘ro ' (3.8)

Equation (3.7) represents the central result of our paper. We will briefly discuss it in the next section.

13




IV.  Discussion of the Result

The Casimir force (3.7) in the accelerated system has some special features. As expected |ﬁc(r)|
depends on 7 and varies periodically with the period 7. Moreover, it decreases exponentially in the first
half of the period from the value mhc/ (24d2) to nhc/ (24d2 (1+ad/ 2 )2) and increases to the former value

in the second half of the period. The time constant of these decreases and increases tums out to be
c(1 +ad/c2)/(2a). In the case that we choose d=1um and a=10 m/ 52 we obtain for the oscillation

period 7, =10""45 and for the time constant 1.5-107 s = 0.5 year.

Furthermore one can easily show that 7, is the proper time which elapses at the upper plate
between emission and reception of a light signal sent out from the upper plate, being reflected at the

lower plate and finally again received at the upper plate. Therefore the periodicity of Ifc(r)l probably is
caused by the special choice of the (in magnitude different) proper accelerations of the plates.

An interesting case derived from (3.7) can be obtained replacing the quantity a by the new accelera-
tionb:=a/(1 + ad/c2) (which is the absolute value of the proper acceleration of the upper plate) and then

taking the limit d — 2/b (==1 light yearforb=10m/ Sz)_ These replacements correspond to the situa-

- tion where the acceleration of the lower plate becomes infinity and, moreover, t; also approaches infinity.

(But still the boundary conditions for the electromagnetic field at the lower plate influence the Casimir
force at the upper plate). Performing the above mentioned limits we find '

|Fe () > mn0? 1 (24c%)exp(~2b7/c) , 720 - (4.1)

Hence, in this case the Casimir force (at the upper plate) exponentially decreases with increasing proper
time 7 to zero with the time constant ¢/(2b).
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