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Abstract

An approach to the problem of quantifying confidence in conclusions
cd~awn from results of experiments is presented, given three conditions,
viz., 1) dichotomy has been imposed upon the members of the population,
2) the cardinality of the population is finite, and 3) sampling is done
randomly from distinguishable subsets which form a partition of the
population. Some discussion is devoted to calculated numerical results.



PREFACE

Experiments are conducted in order to suggest and justify conclusions
about the subject experimented upon. The greater the amount of supporting
experimental data gathered, the higher the confidence one may reasonably
have in conclusions drawn from that data. Thus, confidence is a monotone
increasing function of the amount of experimental evidence supporting the
conclusion. It is possible to quantify this confidence precisely.

In this paper it is shown by reasoning directly from this idea how to
quantify confidence in the case where the population has been dichotomized
and is finite and sampling has been done randomly within each of several
distinguishable subpopulations. The only other assumption made is that
prior to testing one is wholly ignorant of what fraction of the population
is in either class of the dichotomy, meaning that he has equal confidence
in all possible values of that fraction.

The analysis presented here assumes the reader is familiar with that
in the paper, "“Confidence and Reliability in a Finite Population" (cf.
the Reference cited on the last page of this paper). If the reader is not
familiar with the contents of that note, he is advised to read it before
beginning to read this one.

A condition for applicability of the theory developed in the Reference
is that the samples be selected randomly from the population as a whole.
In some experiments this condition may not be satisfied. A sample miaht
instead be random only within a particular subset of the population. If
the sizes of the two dichotomy classes within the subset are independent of
the sizes in the rest of the population, then the sample may give information
about the composition of that subset only, and none about the rest of the
population. The theory developed in the Reference may then be used to
evaluate the information given about the subset, but a more general theory
is needed in order to evaluate the implications of such sampling for the
population as a whole. The present paper is intended to develop this more
general theory.

(Between these extreme cases intermediary models may be more
appropriate. For example, the sample might be random from a subset which
was itself largely, but not entirely, randomly constructed relative to the
dichotomy of interest. Then the sample would be random from the population
as a whole to the same degree as was the subset, and so would give some
lesser amount of information in addition about the rest of the population.)
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More Notes on Confidence and Reliability in a Finite Population.

1. Let N be the number of elements in a certain set, and assume that N < o ,
An example of such a set is the set of Minuteman missiles. Assume also that
the set has been dichotomized, i.e., that a criterion has been established
which each element either satisfies or fails to satisfy. An example of such
a criterion is that a Minuteman missile should be able to complete its
mission despite an electromagnetic pulse environment. Assume it is

possible to ascertain by test whether any particular element in the set

is "good", i.e., satisfies the criterion, or not. Let L be the number of
elements in the set which have been tested. In another paper (cf. the
Reference cited on the last page of this paper) a detailed development of

a theory is available covering the case in which the L tested elements

were selected at random from the set as a whole. In this paper we wish

to treat the case in which the elements were instead selected at random

from within certain subsets, where the subsets partition the whole set.

The number selected from within each subset need not be random; for

example, all L may be selected from a single subset, perhaps the subset

of those elements which are most cheaply accessible for testing. It is
required only that, when once it was decided that a selection would be

made from within a particular subset, then the se]ect1on was random

from within that subset.

2. Let n be the number of subsets within each of which the selection
for testing was random. Let N be the number of elements in the 1th
subset, L the number chosen for test from the 1th subset, and M the
number wh1ch failed the test from among the L Thus

0 s Mi-s Li < Ni < N

for all i ¢ {1,2, ... ,n}. From these definitions it also follows
immediately that
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- and

n
Ly = L
i=1

b

Let K be the (unknown) number of unsatisfactory elements in the set as a
whole, and Ki the (unknown) number of unsatisfactory elements in the ith
subset. Assume the partitioning was done in such a way as to leave the
ki independent. Thus

n
K o= DK (1)

i=1

Hence the number of elements which are satisfactory in the fleet as a
whole is N-K, and the fraction of the set as a whole which is satisfactory
is Eﬁﬁ . We desire to know, in light of the available experimental data,
how confident we can reasonably be that this fraction is greater than or
equal to a reliability value R. This confidence is of course a function
of the value we choose for R. Therefore we seek an equation giving
confidence C(R) that

N‘,\',K > R (2)

in teri.s of n, Ni’ Li’ and Mi for i e {1,2, ... ,n}.]

. A complete description of the "real" state of the whole set, for our
purposes, is given by the n-tuple {KI’KZ’ oo ,Kn}, since with this much
information ‘and the value of N we can use equation (1) to determine the
truth or falsity of inequality (2). Pursuant to the approach developed in

1. For n =1 this equation should of course reduce to equation (4) in
the Reference.
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the Reference, we note that Ki might have any of the Ni+] values between

0 and Ni’ inclusive. Thus there are n

A (NHI)*(N+T)* L. %N 41) =TT (Ng#1)
1 2 n i=1
possible distinct n-tuples, and therefore A possible distinct states of
such a partitioned set. For any one of these states we can calculate the
number of ways in which we could have realized our experimental results
{N],L1,M],N2, LZ‘MZ’ cee ,Nn,Ln,Mn}. This we now do.

4. From equation (1) of the Reference we know that the number of ways of
drawing Li elements from the ith subset, among which exactly Mi are
unsatisfactory, given that Ki,altogether are unsatisfactory in the Ni

elements making up that ith subset, is

N.-K. K.
(k) = (’ ’)*( ’)
Li'Mi Mi
Therefore the number of ways of getting the total experimental results

{N],L1,M],N2,L2,M2, eee ’Nn’Ln’Mn}’ given the set state {Kl’KZ’ cen ,Kn},
is just

—

—_
Pa
=~

-
~

~

1]

-I; 2, LAY n = I-I(K]) * IZ(KZ) * LRI * In(Kn) =

" =K\ /K.
gl L) 09 1
j=1 LA\LiM/ A,

i

~
[}

(using the assumption that the Ki are independent).

5. Summing over all A possible states of the set, we have that the number

of ways our experimental results could have been had from the set of all
possible set states (i.e., the cardinality of the confidence sample space)
is

Page 5 of 10.




Ny o N N,
D= T T e T HKpKy e oK)
Ky=0 K,=0 K =0
NN No om No=K, K
=X X - Xz -(L.-M.)* M,
Ky=0 Ky=0 K,=0 i=1 T !

This will be the denominator in the confidence expression. However, as in
paragraph 8 of the Reference, for a numerator we don't want to use the

sum over all possible states, but rather the partial sum over all states
{Kl’KZ’ . ,Kn} such that equation (1) yields a K satisfying inequality (2).
That is, the numerator is the partial sum of terms (given by equation (3))
over all values of Ki such that

n n
ZKi < (1-R) * N = (]-R)ZNi
i=] i1

6. Therefore C(R) is given by equation (4), on the next page. Computation
time can be saved by noticing that the ith factor in the product can be
factored through the summation signs up to the ith index of summation. We
can also make use of the reasoning leading up to equation (2) in the
Reference. Thus we obtain equation (5), on the next page. The reader may
notice that equation (4) on p. 7 in the Reference is Jjust the special case
for which n = 1 of this more general expression.

7. Next the problem arises of evaluating equation (5). Paraaraphs 9 and
10 of the Reference discuss this problem briefly, and offer one example of
a computational result for the case in which n = 1. To evaluate the more
general expression offered in equation (5) of this paper one might start
by writing a function subroutine B such that

(NI-KI) (KI)
*
LI-MI MI
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B(NI,MI,LI,MI)




‘0L 40 £ abeg

n-1

(1-RIN - (1-RIN-K;  (1-R)N-K, =K, (1-R)N- 2 K5 n
=1 " /N.-K K.
L X 2 ") ]
. L.-M, M,
K,=0 K.=0 K= K =0 =1 11 1
C(R) = 1 2 3 n , (4)
N] N N3 Nn n -~ N-"K- K
K70 K70 K3=0 K =0 j=1 L\Ly-Mi/ My
n-1
(1-R)N (1-RIN-K, (1-R)N- 2K; -
) L=/ A\ M, - A U R AR VAL oA L VA UM
Kl- 1 KZ' 2 L ' Kn'Mn i
CCR) N,-L . +M N, -L+M N -L +M ] )
121 1 (N]-K] (K]) 2-LotM, (Nn_rKn_l)(Kn_]) nz:n n (Nn-Kn)(Kn)
- L,-M, /\ M - LK M - L-m_J\m
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and

doing it is:

10

10

case in which n =

LI-MI > NI-KI vV MI > KI ={> B=0

To avoid overflow from large factorials, excessive computer time from
automated cancellation of common factors, and error from approximations, it
is helpful to employ logarithms in programming this function. One way of

COMMON ZERO,FL(1000)

ZERO=0. at beginning of
DO 10 I=1,1000 | main program
FL(I)=FL(I-1)+ALOG(FLOAT(I))

FUNCTION B(NI,KI,LI,MI)

COMMON ZERO,FL(1000)

IF (NI.LE.0.0R.NI.LT.LI.OR.LI.LT.MI) STOP
ND=NI-KI

LD=LI-MI

IF (ND.LT.LD) GO TO 10
B=EXP(FL(KI)-FL(MI)-FL(KI-MI)+FL(ND)-FL(LD)-FL(ND-LD))
RETURN

B=0.

RETURN

END

With B available by such means as the foregoing one may write a function
subroutine which returns C(R). An example is shown on the next page for the
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FUNCTION C(R)

COMMON N1,L1,M1,N2,L2,M2,N3,L3,M3
NB=(1.-R)*(N1+N2+N3)

U=0.

D=0.

MA=M1+1

NX=N1-L1+MA

DO 30 KX=MA,NX

KX-1

M2+1
N2-L2+MB

20 KY=MB,NY
KY=1

" HOOoOMnN

oomn

C=M3+]

NZ=N3-L3+MC

DO 10 KZ=MC,NZ

K3=KZ-1

BT=B(N3,k3,L3,M3)

IF (K1+K2+K3.LE.NB) W=W+BT
10 F=F+8T

BT=B(N2,k2,L2,M2)

IF (K1+K2.LE.NB) V=V+BT*W
20 E=E+BT*F

BT=B(N1,K1,L1,M1)

IF (K1.LE.NB) U=U+BT+*V
30 D=D+BT*E

C=U/D

RETURN

END

ZTNMEXRXROZIM<< X
H HNO<O U i ~—

(This programming can be shortened if it is known beforehand that Mi will

not be zero. Under some circumstances it can also be made more efficient if

a table of C(R) vs R is desired, instead of C(R) for only a single value of

R, by computing entries in the table first for small values of R and then Just
adding to the partial sum which is the numerator instead of recomputing the
existing partial sum and the entire denominator.)
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