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Abstract

An approach to the problem of quantifying confidence in conclusions
drawn from results of experiments is presented, assuming only a finite
number of elements in the set from which the samples are being taken and
assuming dichotomy has been imposed. The approach is applied to a
hypothetical fleet of 1000 Minuteman missiles as an example. Confidence

in reliability of such a fleet is discussed. Some calculated values are
presented.




Preface

Experiments are conducted in order to suggest and Justify
conclusions and predictions about the subject experimented upon. The
greater the amount of supporting experimental data gathered, the higher
the confidence one may reasonably have in conclusions drawn from that
data. Thus, confidence in a conclusion is a monotone increasing function
of the amount of experimental evidence supporting the conclusion. It is
possible to quantify this confidence precisely.

In this paper it is shown by reasoning directly from basic
principles how to quantify confidence in the case where the population
has been dichomotized by the experimenter. mo further assumptions are
made regarding the distribution of the population.

The reasoning begins with intuitively acceptable statements about
confidence and proceeds without recourse to devices, such as Bayes'
rule, use of which would be second nature for the statistician but which
are foreign to many engineers. It is hoped that this avoidance of
specialized terminology will make quantification of confidence more
accessible and acceptahle to the conscientious.wnrber wha Yacks. ..o
familiarity with the concepts of probability and statistics.

Page 2 of 12.




Summarx

It is assumed that the experimenter is confronted with a population
of N elements (where N is finite), of which K are in one class and the
remaining N-K are outside that class. The experimenter knows the value
of N, but does not know and needs to estimate the value of K. He makes
his eétimate by testing a random sample of L of the elements and finding
that, of these L in his test subset, exactly M are within the class.
Thus, M/L is the fraction of the test subset which is within the class.
The theory developed in this paper can be used to show that M/L is the
fraction which the experimenter can be most confident is the fraction of
the total population within the class. More practically, the theory
provides expressions for precisely quantifying the confidence which the
experimenter may have that K is L(M*N/L)+.5] , or that K is any other
value between 0 and N of interest to the experimenter.

As a particular application, a hypothetical fleet of exactly 1000
Minuteman missiles, each of which can be ascertained by test to be
either "defective" (unable to complete mission) or "non-defective" (able
to complete mission), is used.

Finally, the concept of system reliability is discussed. The
example of a system of 1000 Minuteman missiles is continued. The paper
ends by providing an expression for calculating the confidence, in any
value of reliability of interest to the experimenter, as a function of
the amount of experimental data available.
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~ Some Notes on Confidence and Reliability in a Finite Population.

1. Your friend Sam has two barrels which contain 100,000 marbles each,
all identical except for color. You know that all the marbles in one of
these two barrels are white, and that the other barrel is evenly divided
between 50,000 white marbles and 50,000 black marbles, all stirred up
well together. Sam puts one of these barrels in front of you, but he
‘doesn't tell you which one. You reach in without looking and pull out a
great big double handful of marbles. If this double handful of well
stirred marbles, say 100 of them, was solid white, didn't contain a
single black marble, then you'd be pretty convinced that you'd had to
deal with the barrel that had nothing in it but white marbles.

2. Another example which is even more obvious is two barrels of sand,
in one of which all the grains are white and in the other of which only
half are white and the other half are black, but otherwise identical.
If the mixed barrel is thoroughly stirred, so that any grain you choose
bTindfo]ded‘is truly random, and the barrel as a whole has a salt and
pepper appearance, . than a double handful which was perfectly white and
showed not a single black grain would pretty much persuade you that
you'd been offered the homogeneous barrel to choose from.

3. Now let's quantify. Recall the barrels of marbles. If you drew out
only one marble and it was white, then you'd take that as a more mild
indication that it came from the pure white barrel. The reason is that
there are twice as many ways for you to pull a single white marble out
of that barrel as out of the mixed barrel, so it would be twice as
likely you'd draw a white marble from the white barrel. (Read that
sentence again.) In fact, we say your confidence in having had the
white barrel set in front of you was in this case precisely twice as
great as your confidence that the mixed barrel had been. Numerically,
you'd be 66% % confident that you'd had to deal with the white barrel.

4. Now consider Minuteman. Assume there are exactly 1000 missiles in
the fleet, and you have no idea beforehand what the number of defective
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missiles is before you begin to test. So you pretend that someone has
1001 different fleets of Minutemen (each fleet analogous to a barrel in
the example above), and that in each of his fleets there is a different
number defective, from 0 through 1000 . And you pretend that he has put
one of these fleets in front of you, so that the number defective in the
fleet you have to deal with could equally likely be any number from 0 to

1000 . You conduct a test of L sites and discover that M of these L are
defective.

5. Your reasoning then goes as follows. How many ways could I have
chosen L different sites with M defectives from the fleet with 0 defectives
in it? How many ways from the fleet with 1 ? How many ways from that
with 2 ? And so on. If from the fleet with i defectives you could have
done this in I ways, and from the fleet with J defectives you could have
done the same thing in J ways, and I was twice as great as J, then the
Tevel of your confidence that you'd in fact had to deal with the fleet
with 1 defectives would be twice as great as the level of your confidence
that you'd had to deal with the fleet with j defectives. (Read that
sentence again.) To get your net confidence that the fleet you had to
sample from had exactly i defectives in it, you'd add up all the ways

you could have tested L and found M defective in each of all 1001 of the
-possible fleets, and you'd divide that sum into the number of ways in
which that could have happened with the i-defective fleet.

6. The next question is, therefore, how do you calculate the number of
ways of drawing L elements at random, to contain M defectives, out of a
population with a total of N elements among which are K defectives?

(That is, how do you get the I and the J of paragraph 5, above?) We

know that there are E (the symbol for a binomial coefficient) distinct
subsets of M defectives available to be drawn if there are a total of K
defectives in the fleet. Similarly there are ﬁ:ﬁ distinct subsets of

L-M nondefectives available to be drawn from the total of N-K nondefectives
in the fleet. The product of these two numbers is the number of ways of
doing both at once, i.e., of drawing M defectives from K and L-M

nondefectives from N-K, for a total draw of M+(L-M) = L , since if each
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selection of a site is indeed random then the event of drawing the M
defectives is independent of the event of drawing the L-M nondefectives.
So if there is a total of K defectives in the fleet of N missiles, then

there are ﬁ ?:ﬁ ways of drawing L missiles from the fleet for test

of which exactly M are defective.

7. Let us now fix N, L, and M, and let I(K) be the number of ways of
drawing L, among which are exactly M defectives, if the fleet contains
a total of K defectives. Then

I(K) = (ﬁ)(’d_ﬁ) (1)

By the reasoning in paragraphs 3 and 5, above, if I(K]) is twice as
great as I(KZ)’ then your confidence level that the total number of
defectives in the fleet was K] would be twice as great as your confidence
level that the total number of defectives was KZ' From this we see
that, in general, confidence level in some feature of a population,
given certain test subset characteristics, is simply the probability,
before drawing the subset for testing, that such a subset would be drawn
from a population exhibiting the suspected feature if one were drawing
the subset at random from among all subsets of that size in all possible
populations of that kind. If we let C(K) symbolize the confidence level
that K is the total number of defectives in the fleet of N, after
testing L and finding exactly M of the L defective, then in general

cK) = K :

D 1(9)
J=0

A Tittle thought will show that I(J) =0 for J <M, since there
obviously have to be at least M defectives in the fleet (you found that
many). Similarly I(J) = 0 for J > N-(L-M) , since there have to be at
least L-M nondefectives in the fleet. So we might as well write at once
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Substituting from equation (1), this becomes

é(K) - N_Lgﬁ)(ﬂ:M)
> (6]

J=M

(2) .

8. Now, you aren't generally interested in whether the number defective
in the fleet is exactly some number K . You are rather more likely to
be interested in whether gt least K of the N missiles could be expected
to perform their missions. If you can rely upon it that no more than a
fraction of the fleet will fail to perform its mission, i.e., that

at least a fraction 1 - %- will perform its mission, then we say the

=Z|x

fleet has a reliability R of 1- K, i.e.,

Solving this equation for K, incidentally, yields

K = N(1-R) (3)
The confidence level you have in the reliability R of the fleet, then,
is the sum of your confidence levels for each possible number of

defectives from 0 to K. If we let C(R) symbolize your confidence level
that the fleet reliability is R, then

K
C(R) = DL T(D)
1=0
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Again, C(I) =0 for J <M, since there must be at 1east M defect1ves
in the fleet, so we might as well write

'C(R)

i

K

2.t :
I=M

By equation (3), this is

N(1-R)

>t

I=M

C(R)

1}

By equation (2), this becomes

TR I 0 (=

Since the denominator is formally independent of I, we may rewrite this
as

N(1-R) .

2 ()

- LM L-M_
CR) = piro— - (8 .

),

SRV .

9. It would be optimistic to assume that you would in general be able
to evaluate this expression with no more help than from a pencil and
paper. So there now exist digital computer programs for evaluating it.
For example, for a fleet size of 1000, if 5 missiles had been tested and
it had been concluded from the tests that exactly 1 of these 5 would
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have failed to perform its mission, then we would have N = 1000 ,
L=5,and M=1. If we were interested in reliability of 65%, then
R = .65, and the computer would tell us that C(R) = .68284 . That is,
we would be justified in having a confidence level of 68.284% in fleet
reliability of 65%. (The attached graphs give further values.)

10. Note that equation (4) is in five variables, viz., the population
size N, the size L of the tested subset, the number M of those that
failed the test, the reliability R, and the confidence level C(R).

The confidence level C is offered as a function of the other four
variables; we could write C(R,N,L,M). It is not always the case that

Ry N, L, and M are the independent variables in a particular app]wcat1on
and C the dependent variable. In a particular application, for examp]e,
the problem may instead be, "I have a fleet of N missiles. If no more
than one missile failed in test, how many would I have to test to achieve
a confidence level of 95% in 90% fleet reliability?" In this case L is
the dependent variable and N, M, R, and C are the independent variables.
We would then need an algorithm for finding L(N,M,R,C). It may not be
perfectly obvious at first glance how equation (4) is to be inverted to
yield L(N,M,R,C). Fortunately, however, there already exist computer
programs for solving such other permutations of the problem.

11. Finally, such formulas as equation (4) can be used in any problem

where N is finite and dichotomy is possible. These are sometimes called
hypergeometric problems. You could, for example, apply equation (4) to

Sam's marbles (surely you remember Sam, from paragraph 1), or to a .

well mixed container of sand the top surface of which appeared entirely

white, or to other aspects of Minuteman missiles than complete defectiveness. -
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