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Abstract
This investigation considers a technique that mitigates dispersive skin loss effects due to
enhanced currents near sharp c&ges in TEM transmission lines. By replacing the sharp edges
with high-voltage rollups, the longitudinal currents near the edges are decreased (along with the
dispersive skin losses). Approximate solutions for the current distributions on the TEM
transmission line + rollup are obtained by patching together the conformal transformation
corresponding to the TEM transmission line without the rollup and the conformal transformation
corresponding to the high-voltage .rollup at the end of a semi-infinte plate. The two current
distributions are matched asymptotically to determine the appropriate transition location, thereby

allowing the benefits of using high-voltage rollups near sharp edges to be determined.




I. Introduction

The dispersive effects of skin losses on the propaggtion of fast-rising pulses on coaxial
cables have been known [1,2]. Recently, those results were extended to include the case of non-
circular coaxial geomet?ies [3,4]. For geometries with one or more knife edges, dissipation due
to skin losses near the edges can be unbounded, resulting in severe degradation of the rise time of
transient signals [3].

In high—voltage engineering applications, the cdgés of plates that serve as electrodes are
sometimes rolled up to prevent electrical breakdown by reducing the magnitude of the fields at
the edges of the conductors. Such a geometry was studied previously in [5], and is depicted in
fig. 1. In certain applications, use of a high-voltage rollup may also be desirable in order to
decregse skin losses near the edges of TEM transmission lines. In this investigation, the skin
losses are examined for the cases of a plate with and without a rollup at the edge. The current is

examined near the edges, and the skin losses for these two geometries are compared.




A. Conical Roll B. Cylindrical Roll

Figure 1: Two possible rollup configurations in a conical sheet.
Figure after Giri and Baum, SSN 294, figure 3
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Figure 2: The isolated flat plate with the contour of integration
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IL Degradation of Rise Time due to Skin Losses
For a TEM transmission line, the characteristic impedance is given as

Z'=sL'+Z s =impedance per unit length (longitudinal)

astl

'= sC'= admittance per unit length (transverse)

B[

V4 Tl sC

Z. (1)

= characteristicimpedance
¥ = [Z 4 ']% = [(SL'+Z p ')sC'] = propagation constant

where L' is the inductance per unit length, C' is the capacitance per unit length, ~ denotes the

two-sided Laplace transform over time, s is the Laplace transform variable, and
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is an additional series impedance term due to skin losses in the non-perfect conductors. The
parameter E is determined by the geometry as will be seen below. For the case of IZS '| <<|sL|,

the propagation constant can be expanded as [1,2]

~ ~ 2 o~

8 5\ y 12 ((Z Z,
=|(sL+Z VsC'|”? =s[L' C' — =1 hn 28 3
7 =[(sz+Z,)sC)? =L CV% + 27T ~ -0 3)

L'
where Z,, = \/E is the characteristic impedance for perfect conductors. The cable transfer

function over a distance z is given as

Zc
7(5) = expl ) = exp| o[ L' T4 _é_s_). 4
(s)=exp(- 7z) exp( s[L'C] Z)fxp[ 27 @)

The first exponential on the right side of (4) is a non-dispersive delay term, and the second

exponential can be put in the form
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The step response of the cables is given by
: %
- exp(— 2[37]}é ) - erfc[[;:-] ]u(t) (6)

where u(?) is the step function and [6]

erfc(x) =1-erf(x)
erfc(0)=1 . )
erfc(e0) =0

It is clear from (7) that minimizing 7 results in a minimization of the rise time.

For a geometry described by an arbitrary conformal transformation

W(¢) =u(¢) + jv(¢) = complex potential

8
§ = x+ jy = complex coordinate ®)
the parameter Z is given by [3]
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where the summation is carried over the two conductors in the geometry with equal and opposite
(i)

currents, y” and o are the permeability and conductivity of the i™ conductor, Av is the change

in v going around one of the conductors, C is the contour around the i™ conductor and

hy = lg‘% on the i"™ conductor . (10)




II. Skin loss effects for an isolated flat plate
In this section, the risetime attributable to the skin losses on an isolated flat plate is

investigated. The geometry under investigation is shown in fig. 2. The plate has width 2a, is

“held at a constant electric potential, and is assumed far from all other conductors. The

distribution of fields (as well as longitudinal currents for a TEM transmission line) is given by

the conformal transformation

{ =acoshW| _,
x=acosv,y=0 . (11)

d
by, = |d_Wc—‘ = avcosh? u— cos® v = alsin v|

Use of (9) to determine the parameter X yields [3]

1
X= 7 Km=1) (12)

X =00
where K(m=1) is the complete elliptic integral of the first kind, which diverges at m=1 [6].
Equation 12 implies that the rise time is unbounded for this structure. (Note, however, that the

approximation of a TEM mode breaks down in this limit.)




IV. Use of a high-voltage rollup to reduce skin loss effects

The problem of diverging risetime as predicted by (1 2) may be alleviated by replacing the
plate with sharp edges by a plate with high-voltage rollups of radius p. The modified geometry is
depicted in fig. 3. The relative widths of the rolled-up and unrolled-up plates are chosen in fig. 3
based upon a previous study that determined the appropriate rollup size necessary to match the
impedances of the structures in figs. 2 and 3 [5]. While the exact conformal transformation
corresponding to the structure in fig. 3 is unknown, the field (current) distribution can be
approximated (for p << a) as shown below. The value of X for the modified structure is given

by

oy 11
X =(Av )thw(v)dv_m jh & +th( 5 (13)

where the contour C has been split into four subcontours as shown in fig. 3. The location where
the contours meet (xo) will be determined later.

First, we attempt to approximate the integral over C;. For p <<aand x<<a, the fields

at location x are not affected by the rollups at the ends of the plates (this assumption will
constrain our choice of x, later) , and the field distribution is approximately given by the

transformation in (11). In this case [7]

n/2
1+
[A—av=2 | 2 dv=11n(lﬂ}. (14)
G hw v) a arccos(xy/a) sinv a =X /a

The integral on C, can be approximated by appealing to a second conformal transformation that
gives the field distribution on a semi-infinite plate with a high-voltage rollup. The

transformation given by
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Figure 3: The modified geometry and modified contours. The dotted line indicates the additional
width of a plate without rollups that would have the same impedance [5] (an extra distance p).
The drawing at the top is a blowup of the boxed region
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Figure 4: Semi-infinite plate with rollup and contour C,". The origin is assumed
to be at the center of the rollup
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results in the geometry depicted in fig. 4 that has been previously described in [5]. Note that in
(15), the expressions for x” and y’ are solved for u’=0, which corresponds to the electrode in fig.
4. The parameter o is introduced to ensure a field match at the transition point chosen below. In

order‘for the transformation in (15) to be appropriate, p<<a and p<<x,' must be satisfied.

The relationship between xo and x,” can be inferred from figs. 3 and 4. The distance from xo

(or X, ') to the edge of the plate (without the rollup) is equal for each case so that
a—x,=x,"+2p. | (16)

For the geometry depicted in fig. 4, u'= 0 and the parameter hy,.(v') is derived from (15) as

o BT )

1 1 4p --;_ 1 4p % W)
== 1+ 1- —|l1=-— | [V/e|>2yp"
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The two regions correspond to the straight portion of the conductor and the rollup respectively.

The integral over C, is approximated by evaluating the integral over C;” (shown in fig. 4) as

[ 1 1 e Vi) |
WE Jo—oSdV'= | s=dVi+2 | dv'= 1+, 18
Czhw(v) Cz'hW’(v) _2;':/;}1 (V) ZaJ\'/,._)h (v) 1 2 ( )

By making the change of variables o = v//ar, I; is evaluated as

o2 2Jp
L=—— [Jap-c?do=a’s. (19)
2p 7
and I, is evaluated as
v‘(xo')/a -
L= | o'[1+3(1-9" +101- "] do (20)
2/p

where s=4p/c? . The bracketed expression in (20) can be written in Taylor series form as

F@O=1++01-9)" +1(1-5)" =2(“ibnS")

@n-3)1 b
2n-3)!
TR
with the notation
1
nll=nx(n—2)x(n—4)x-x1=—=2*21(2 4 1), n odd
(n=-2)x(n-4) Ny (3+1) , @2
nll=nx(n-2)x(n—4)x--x2=n2"221(2), n even
where T'(-) is the Gamma function [6]. The reciprocal of the Taylor series is given as
1 S - S
S)=—7——={1+2b,s" | =1-2 c,s" (23)
TR ( % ) 2
where the relationship between the sets {b,,} and {Cn} can be determined by evaluating
19 (1
-Cc, =" . 24)
nlds"\ f(s) ) _,
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The results presented below will depend upon E, which has been evaluated over the first several
terms (using Mathematica v2.0) and has an approximate value of 0.1120. Substitution of (19)

and (25) into (18) yields

, ' 2
X = —L{lln(l—ﬂi)mzmw 1n[£°—}—“—5] (26)

2r?|a \l+xy/a 2Jp) 2

where the approximation V' (xo') = a,/xo' (applicable for p << x,') has been used. Either xo or

xo” in (26) can be eliminated using the relation in (16).
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V. Selection of the normalizing parameter and transition point

- As discussed above, the conditions (a - X, )/a <1, p/ (a - xo) <<1, and p/x,'<<1
must be met for the approximations to be appropriate. As a preliminary step, we choose

a-x,=pp

. 27
xo'=(ﬂ-2)p @D

The value of x,” is chosen as in (27) to match the physical transition locations in the two

geometries that are not exactly the same width. At the transition location, the complex potentials
Wand W, as well as the current distributions given by hy,™ and hy, ™', must match to first order.

Given the above constraints, the potentials and current match when

B cos™!(1- Bp/a)
“=TBo(-vp) @)

Substitution of (27) and (28) into (26) gives a result for X that depends only on choice of B.

A measure of the skin-loss efficiency of a current carrying conductor is given by the ratio
of the actual circumference to the effective circumference (X "1) [3]. The efficiency is defined in
[3] as

v=[xe?, (29)
where £ is the circumference of th; electrode. The value of v is plotted as a function of  for

various rollup sizes p/a in fig. 5. As predicted above, for sufficiently small p/a the

transformations can be patched together over a large range qf B. The appropriate value of B will

be chosen where

—=0. (30)
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Equation 30 was solved numerically for several values ofp /a , and the resulting values of B are

plotted as a function of rollup size in fig. 6. This data appears linear on a log-log plot, and using
a least squares fit, the functional dependence

a)—O.SO

B =363(p/ (31)

is obtained. Using the fitted form for 8 in (26) results in the curve for v as a function of p/a

that is plotted in fig. 7.
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Figure 5: The skin-loss efficiency as a function of transition point x, for various rollup sizes.
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Figure 6: The fitted transition point (Bg) as a function of rollup size. The fitted point
is the location at which the rate of change of the efficiency in figure S is zero.
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Figure 7: Skin-loss efficiency as a function of rollup size
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VI. Conclusions

Previous work has ihdicated both an‘alytically [3] and numerically [4] that the presence of
sharp edges can degrade the rise-time of ultra-wideband pulses propagating on TEM transmission
lines. Many UWB applications, such as launching transient signals via a TEM horn, necessarily
involve propagating fast-rising pulses down TEM transmission lines with one or more sharp
edges [8]. In these cases, methods may be developed to limit skin losses, which degrade the
risetime. The concept of a high-voltage rollup has been employed to prevent electrical
breakdown near sharp edges, and in this investigation, high-voltage rollups have been shown to

also limit skin loss effects that result in risetime degradation.
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