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Abstract

Skin-effect losses limit the high-frequency performance of cables (TEM transmission lines). In
time domain this limits the rise time that one can obtain for a pulse propagating along such a cable. This
paper extends the model to cases other than coaxial cables to allow for nonuniform surface current
density on the conductors. This shows that there is a significant increase in these losses for cases in which

one (or both) of the conductors has one or more knife edges, as in the case of a thin conducting plate.




1. Introduction

In propagating fast-rising pg\llses élong some length of cable, the rise time may be increased by
the skin effect in the cable conductors. This introduces losses which increase with frequency. A well-
known model for this which is consistent with measurement is given in [4, 5]. This model is based on the
assumption of two circular coaxial conductors separated by a lossless dielectric and skin depths in the

conductors small compared to conductor thicknesses and radii of curvature.

Recently it has been experimentally observed that the rise-time degradation is larger than
predicted by this model in some transmission-line configurations including small-angle TEM horns {11].
This raised the obvious question of how to model and reduce these losses.

Note that the geometries of interest involved one or more thin metal plates with relatively sharp
edges (small radii of curvature at the edges compared to the plate width). Idealizing these edges as knife
edges the surface current density |, (parallel to the edge) is proportional to D™1/2 where D is the
distance from the edge. If one integrates the magnetic energy uH 2 /2, there is a differential-area factor
DdDd¢ in the integrand (surface integral over cross section) canceling the D™ near the edge giving a
finite value for any finite volume. This is a special case of the edge condition [9]. However, if one
integrates 75225’ along the surface of the conductor, where .‘z’; is some skin impedance (assumed

independent of position), then one has an integral of the form JD'ldD which blows up when taken to

the edge. This implies large losses and provides the basis for extending the model to include conductors

with curvatures varying around their circumferences.
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2. Coaxial Cable

As indicated in fig. 2.1, consider a coaxial cable with inner conductor of radius ¥, and outer

conductor of inner radius ¥,." If we first approximate the conductors as perfect we have

fe= %!n(—%—] = geometrical impedance factor

L’=upfg = inductance per unit length

C'= -;;- = capacitance per unit length
8
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Yo=s[LC’] 2o s[uoe]” = propagation constant
~= two-sided Laplace transform over time t
5§ =Q+ jo = Laplace - transform variable or complex frequency

Note that these depend only on the parameters of the dielectric medium with permittivity £ and
permeability 1.

With non-perfect conductors we have an additional series impedance per unit length

1 1 2.2)

Here we have neglected the permittivities of the conductors, assuming that they are dominated by the
conductivities for frequencies of interest. The skin depths have been assumed much smaller than the

appropriate radii and conductor thicknesses so that a skin-depth approximation of the fields in the
conductors can be used. Then we have
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Fig.2.1. Coaxial Cable




Z'=sL'+ ~s' = impedance per unit length (longitudinal).

—~ \ .
Y’=5C’= admittande per unit length (transverse)
1

1
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¥ = [2'?’]2 = [(sL’+ zg)sC']E = propagation constant

At this point we can exhibit the well-known approximate transient solution [4, 5]. Expand the
propagation constant for the case that Eg | <<|sL] as
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As one can see, this is a high-frequency approximation since Z is proportional to s1/2. The cable

transfer function over some distance z is
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Ignoring the delay the other term can be put in the form
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The step response is given by
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If desired the delay can be included by substituting retarded time ¢, for t with

1

ty=t-[L'C) 2= t-[uge]’ 2 , 28)
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Note that [7]

2’ oo 2 ,
erfc(y):l—erf(y):vn-J-y ey dy

erfc(0) = erf(w) =1 29)
. erfc(ss) = erf(0)=0

The important point is that the step response and hence rise time is characterized by the time-
constant 7. The smallest rise time is obtained by minimizing 7. Note that the largest contribution to =
(and hence 7) typically comes from the inner conductor due to its small radius. However, as indicated in
(2.2) the resuit easily generalizes to include both conductors. These can have different conductivities (say

copper inner conductor and aluminum outer conductor), and for good performance one also takes

One can also decrease T by increasing the cable size, but one needs to be concerned about

introducing higher order modes. This is given by a cutoff wavelength (8]

—2-[‘P2 -44] for E modes
n

Ac=
211)
—75[‘{’2 +%] for H modes
n
n=1,2,3,...

Unless one takes special precautions (e.g., no bends or use of special lenses) to avoid such other modes
then the first H mode with 1. about one circumference at the average radius can give a high-frequency
limitation. This can be used to choose a cable size (for a given length) which matches the bandwidths for

the two effects: skin losses and overmoding.




3. Cable with One Inner and One Outer Conductor

Let us now generalize the results for a coax to a cable of arbitrary cross section as indicated in fig.

3.1. For this discussion consider the TEM mode as described by a conformal transformation given by

w({)=u({)+ jo({)= complex potential
) (3.1)
{=x+jy="Pe/ = complex coordinate

The two conductors (inner one enclosed by outer one, but not necessarily so) are given by constant values
of u with index 1 referring to the inner conductor and index 2 referring to the outer conductor. In general

we have
Au
fg T Av

Au=ujy —uy = change in u between conductors (3.2)

Av = change in v in passing around (circumnavigating) center conductor

This can be substituted for fg in (2.1) to obtain the cable parameters for the case that the conductors are

perfect.

As discussed in [2, 10] let us regard the cable cross section as a jacket (small Au) comprised of N
ducts with boundaries between adjacent ducts given by constant values of v. For this purpose define

A= BT

N
vy =vg+nd’ , n=0,12,...,N 3.3)
UN —TQ = AD

where vy and 7p are the two values of v corresponding to the same boundary which we take as the

branch cut in the conformal transformation. The nth duct is then between Up—1 and v,,.
For each duct define appropriate transmission-line parameters

Ly=up %-s inductance per unit length

Ch= 52— = capacitance per unit length 34)
u

'z“;n = skin impedance per unit length




{ ) nth duct (one of N)
up -uy = Au
Va-Vp1 =4

-7V, @ T <
- A& “n T ~
/ N
/ N\
/ \
/ \
I \
T’
\ X
inner /
\ conductor
\ /
\ /
N /7

dielectric

~ outer conductor -

Fig. 3.1. Cable with General Cross Section Divided into Ducts




To evaluate Z;n ‘we need the width of each duct on the two conductors. The line element for the confor-
mal transformation is [1] { ' )

(d0)? = (dx)? + (dy)? = e

= 13 [(@)? + (d0)?] = 13 | o (35)

Then we have for small duct widths

Z(m) & h_w’")

3.6

1= inner conductor
m=
2 = outer conductor

with the approximation becoming exact in the limit of small A’. With this we have
Zr _ZAD | FA2)
Zs =2 s +an
1 (3.7)

Zr(m) 521(’") Hm (2
cm

In combining the duct parameters to form the jacket or cable parameters consider the parallel

combination of the parameters in (3.4). First we have

L'= [iuﬂr = “OA“E: A'r = pp 2%

n=1 n=1

c- Y- Yol

n=1

(3.8)

which is in agreement with (3.2) as one expects for the case of perfect conductors. In this case all the
ducts have the same propagation constant 7j as in (2.1). Note that equal currents (equal A’) are flowing
through each L and equal voltages (common Au) are across each C,, thereby justifying the simple

paraliel combination above.

Now consider the problem of the additional series impedance per unit length for non-perfect

conductors. We first assume that the field distribution in the dielectric is very nearly that of the ideal




TEM mode. As the E;n vary from duct to duct this can introduce higher order modes, so the high-

frequency restriction in (2.11) should be recalled. Now the restriction of the cutoff wavelength can have
the largest A (giving lowest cutoff frequency) estimated as one mean circumference in the dielectric.

With ]g;") as the surface current densities and If,m) as the current for each duct on inner and

outer surfaces we have (signs taken positive)

i.

D=1 =12 0D 2D L 69

The longitudinal voltage drop ;;er unit length for each tube inner and outer surface is

7 1 1 1 1
, ~ > 2 52 2 1 '
Vi = Z{mp, =52 [%I]ﬁ"" = m[?ﬂ 5 (3.10)
n

which is nonuniform around the boundaries in the general case, thereby making a small perturbation in
the TEM mode as discussed previously. Seeing that V,;('") is a function of n, it raises a question of how to
combine the Z ;("‘) (not simply in parallel) to form the 25’('") for the per-unit-length model of the cable

(jacket).

One way around this difficulty is to look at the power associated with the skin effect and sum
over the powers associated with the Z ;("’) to form the Zj’“’ - So define

Bm) _ yAm); _ Sdm) 12 _ S Am) (m)? (m)2
P =V, =Z "I =Z] N

1 .
1 LR, ‘ (3.11)
___Szl:#m]z I5

Om lﬁ,m)

This is a complex power of the form V(s)] (~s) (or like E(s)x H (=s) [3]). Intuitively one can see how to
add real powers for s=jw. The above formula includes an equal inductive part as well, so this includes
the stored magnetic energy which we can also sum. One can also view (3.11) as an analytic form of
power which is associated with an impedance function which is conjugate symmetric corresponding to a
Laplace transform of a real-value time function, and which is analytic in the right half s-plane, as wellas a

positive real function due to passivity.

Now form
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B(m) S 5 5[ b IZN,()“
P™ = tim Y P™ = lim 52 (—)2’"
s bJ—-)ao" 1 s s {Um] N 1 n
= . n= -

N—oe
\
1 : 2 N
= 2
— I -2
= 1i 2| Hm 2(_) A'-z (m) m)
N_Tms {cmjl N z b lﬁ,
n=1
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= 53[.“.’.“_]2 sz(m)
m
(3.12)
(m) 2% (m)2 ,(m)
m) _ . ! 1 (m m
X “A}T“(AU) Zh’w 4y
n=1
2 (m)2 2 dw(m™ :
=(Av) é ke de=(Av) # T 0]
c(m) c(m)

(o2 P W k=0

clm) c(m)

where C™ is the contour around the inner or outer conductor as indicated in fig. 3.1. Note that hg")

and »™ are also given to indicate evaluation on these two contours. Then setting

‘}‘;s(rn) = ‘z‘sr(m) 12

(3.13)
we have
i
Z{m < 52[“—"‘} xtm (3.14)
Om
This gives our skin impedance per unit length as
1
Zi=Z;W 1 Z D =522
1 1 (3.15)
== [}_‘1_]2 x@ +[£2_]2 x@
91 o2

With = one can now go to (2.6) for 7 as used in the cable transfer function and step response as discussed
in Section 2.
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As a simple example let us revisit the coax discussed in Section 2. An appropriate conformal
transformation is —

1Y

= ._C_ = _‘_i q
w(C)—ln[ l]-—t’n( 1]+1¢
(3.16)
= ¥ -
Au—ln[ l) , Av=2rm

in agreement with (2.1). Then (3.12) gives

1 .
w _|dw ™) ¥,

X(ﬂl) = (A‘D)_z é h(m)_l ld.al = [2711}1’"]"1 3.17)
c(m)

1 1

3=[£1_J2Xm+[ﬁ]2x(2)
G2

in agreement with (2.2). So the X{™ represent some kind of inverse effective circumference of the
respective conductors, i.e.,

-1
xm™ 2 effective circumference of mth conductor

J2dt
el

(m)
fﬁ Jode

Qm) (3.18)

where the conformal transformation derivative dw/d{ as in (3.12) can be interpreted as above in terms of

the 2-directed surface current density (or electric or magnetic field at the conducting boundaries).

We can define

12




£m < {ﬁ dt= @ KMo

c(m) C(m? .

A

= circumference of mth conductor (at interface with dielectric) (3.19)
and then define
-1 -
v = [ m)] _ (320

as some efficiency for the shape of the mth conductor. For the coax (circular C{™) these are unity; for
other shapes we expect these to be less than one due to the nonuniform surface current densities around

the contours.
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4, Elliptical Cable

Consider the conformal transformation [6]
\

;:_jasinh(w)=—asin(jé)=x+jy , a>0

i . 2 cos(:
t—i—Z% = —jacosh(w) = —ja cos(jw) . “v

, W=u+jo

1 : -
=— ja[l +sinh? (w)]i_ =- ja[l - 2—2}2

with appropriate attention to the choice of branch-cut location. Expand this into real and imaginary parts
(7 ‘

x+ jy = —jasinh(u + jv)

= —ja[sinh(u)cos(v) + j cosh(u) sin(v)]

4.2)
x = acosh(u)sin(v)
y=—asinh(u)cos(v)
Surfaces of constant u (which include the conductor surfaces) are now found as satisfying
. P 2 ,
[a cosh(u)] * [a si:h(u)} =1 “3

which is the equation of an ellipse. Letting 4 — 4o this becomes a circle of radius ae* /2. For u— 0 we
have

y=0 , x=asin(v) “@4)

which gives a straight line of length 2a on the x axis noting that v varies from 0 to 2x for a contour circum-
scribing the inner conductor (for one convenient choice of the branch cut). Choosing two convenient

values of u to define the conductor surfaces, we have as before

f g Av 2r
The scale factor is [7]
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hyy = a|cosh(w)|= alcosh(u + )|

= a|cosh(u)cos(v) + jsinh(u)sin(o)|

' : 1
=a [coshz(u)cosz(v) + slinhz(u) sinz(v)]s
1 (4.6)
=a [sinhz(u)-i- cos? (‘a)]2

1
=a [cosh2 (u)-sin? (v)]_z—

The circumferences are

b4
12 1
z(m) = @ h&;m)ldvl = 4ap(m) 2 J-[-l _ p(m) sin2 (v)]—idv
ctm 0
A1
= 4ap(m) 2 E(p('"))

4.7)

™ = cosh™2 (m) , 0<p™ <1

(™) is called the parameter of the elliptic integral [7]. Note the use of symmetry to reduce the

integration interval to 0<v<x /2. We then also have

where p

1%
_1 (m); 2 1
X<'">=(Av)‘2§ B faof =2 Hl~p("’)sin2(v)] 2do
n“a

cfm 0
1
(m)2

22 4.8)

o= [ |

Now look at what happens concerning the inner conductor. For large ¥ we have

2
e f] e

E(P(l))= %[14— O(e—zul )] - —;i asuy — oo
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K(p(l)) = —725[14- O(e—zul )]—) g- asuy — oo

u : 4.9)
1 .
4= 2me—2—[l+ Q(e'z“{ )] —27¥) asu; -

where the conductor is approximately circular (radius *#1 in this limit). The same then applies to the

outer conductor since u > 1 (and hence ¥, > ¥), thereby giving a simple coaxial cable.

For small u; we have for the circumference

P

pgl) = tanhz(u1) = ui)‘ +O(u§) as uy — 0

E(p(l)) =E '(pgl)) =1+ O(pgl)ln(pgl) )) as pgl) -0

=1+ O(ulzln(ul )) asu; -0

gl) =1- p(l) = complementary parameter for elliptic integrals

—1asu; -0

: 4.10)
s . 4a[l+ O(ulzln(ul))] asu; -0

—4a asu; -0

which is just the perimeter of a strip of width 2a. For the effective circumference we have
O\ g,V 1, | 16 (1)]
K0} ) L 2 o)
71
= ln(ill-f O(ui" ):I asu;—0
U
—1 4
m_J[ 2 4 2
XM= [7: a] ln[ul ):l-«- O(u1 )]

—o asu; 0

“4.11)

2@ = 1%2_ [E.(Pgl )K( p{n)]—l
2

- __"T[Ho( 2£n(u1))]
m(—_) :

u

-0 asu; >0
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From (4.3) we have the semi-minor axis (half thickness) of the thin ellipse as
L _ 2 o
O Ymax = asinh(uy ) = ayl[l + O(ul )] asu;—0 4.12)
\ .

which can in turn be used in (4.11) to show the effects of a thin sheet which in the limit has two knife
edges. As expected from physical arguments the X and hence = and 7 blow up in this limit.
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5. Concluding Remarks

As the elliptical center conductor of the cable goes toward a strip with two knife edges, we can
see in (4.11) that the losses inicrease logarithmically. This is similar to an integral of the form J-D'ldD

where D is not taken to zero, but to some distance of the order of the conductor thickness 2au; from
4.12).

Keep in mind the approximations used in developing this model. These in turn limit the domain
of validity. The assumption of a TEM mode limits the highest frequencies to those which do not allow
other modes to propagate as discussed in Section 2, due to variation in the Z;ﬂ in the various ducts
around the cable cross section as discussed in Section 3. Furthermore, the skin-effect model assumes that
the skin depth is small compared to the local radius of curvature, an assumption which is violated at a
knife edge with zero radius of curvature. In addition, the skin-depth has been assumed small compared
to conductor thicknesses, an assumption which is violated for a zero-thickness conducting sheet. So one
cannot apply these results in the case of ideal zero-thickness sheets with two knife edges. However, they
do indicate what happens as one approaches such a case, namely a significant increase in loss and rise
time.

Considering various transmission-line cross sections it is apparent then that a coaxial circular-
cylindrical structure is good from a low-loss standpoint. However, various applications, such as for some
kinds of antennas, require other geometries such as two conductors with neither surrounding the other.
In such cases one may need to consider rounding the edges to a sufficiently large minimum radius of

curvature.
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