Measurement Notés
Note 45

October 1993

BALUNS
for
DRIVING HIGH POWER LEVELS
from

S0 OHM AMPLIFIERS/CABLES
into
HIGH IMPEDANCE ANTENNAS/LOADS

Gary D. Sower
EG&G Special Projects
Albuquerque, NM 87106

ABSTRACT

A BALUN is a special type of transformer for converting a BALanced signal to an UNbalanced signal
(or a BALancing UNit). By reprocity, it can also convert the unbalanced signal into a balanced signal;
by convention it retains the same name in this applicatin. High-frequency, broad-band baluns can be
constructed with transmission lines. In such construction, the turns ratio is limited to the ratio of small
integers, such as 2:1. The transformed impedance ratio is the square of the turns ratio, such as 4:1. The
balun can be driven from the unbalanced side to give a balanced output of some multiple of the input

impedance. Power levels of hundreds of watts can be driven into balanced loads (antennas) with a
properly designed balun.

We consider here the case of a driver balun which is constructed from a pair of coaxial cables (Dual
Coaxial Balun) which are wired in parallel at the input and form a series output connection across the
load (antenna). The characteristic impedance of the required coax is twice the source impedance and half
of the impedance of a matched load. For a 50 ohm source, the coax must be 100 ohms and the matched
load 200 ohms; unmatched loads of varying impedance, such as an antenna, can be driven with a
resulting loss of power due to the impedance mismatch.

The series output is obtained by isolation of the output from the input of the balun: currents must be
prevented from travelling on the exterior of the coaxial cables. This is usually done with ferrite beads,
which act as high-frequency chokes. The normal "back impedance" from an isolated coax shield to the
external world is 200-300 ohms. When the coax is inside another conductor such as the housing of a
balun, the back impedance is that of the transmission line so formed. This is often of the same magnitude
or lower than the impedance of the load being driven, which significantly perturbs the signal driven onto
the antenna. The ferrite beads will greatly increase this back impedance, allowing more power to be
transferred to the antenna. Some power will still be transmitted into the ferrite bead transmission line,
robbing from the antenna signal. This power is absorbed by the ferrite in the form of heat, raising its




temperature, which in some cases be large enough to exceed the Curie temperature of the ferrite, causing
erratic performance or failure of the balun.

The key to building a successful high power driver balun is to make the back
impedance of the coaxial cables used within the balun large with respect to the load
impedance. This is done by maximizing both the characteristic impedance of the
transmission line formed between the coax shields and the balun housing, and the
wave impedance of the ferrite with which it is loaded.
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I. . DUAL COAXIAL BALUN (DCB-1) EQUIVALENT CIRCUIT

Impedance matching networks, known as baluns, are used in electromagnetic simulation antennas to
improve the power transfer between a low-impedance power amplifier and a high-impedance antenna.
The baluns described in this paper are specifically designed to drive the Ellipticus antenna [1], [2], [3],
[4]. The Dual Coaxial Balun (DCB-1) [5] is intended as a "low-frequency” driver, covering the
frequency band from 300 kHz to 1000 MHz (1 GHz). The Balantenna [6] is intended for high-

frequency applications, from one GHz to as high in frequency as possible. Both baluns are for use with
power amplifiers of 200 Watts.

The "back impedance” Z, may be that of a coaxial structure, such as that between the positive output
coax and the tubular housing of the DCB-1, or that of a biconical structure as in the Balantenna , OT some
other transmission line structure.

The structure of the DCB-1 forms a transmission line of characteristic impedance between the outside
of the positive (non-inverting) coaxial cable and the inside of the metal tube of the balun housing, as
shown in Figure 1. The outside of the negative (inverting) cable is topologically equivalent to the
housing (local ground).

The input of the ferrite-loaded transmission line presents the back characteristic impedance Z; which
appears in addition to the output load impedance of the antenna. The back impedance is electrically
located between the output of the positive cable shield and ground, as seen in Figure 2.

The load impedance seen by the positive output cable, top in the figure, is the antenna impedance in
series with the parallel combination of the back impedance and the characteristic impedance of the other
cable, Figure 3:

Z, Z
Z =2z, +2< )
Zy + Z,
This presents a reflection coefficient to an incident signal from the coax:
D, = 4 - Zc _ 2,25 + 2,2 - Z¢ @

QtZe Z,Z,+2,2.+22,2.+ 2

The load impedance seen by the negative output cable (bottom) is the back impedance in parallel with the
series combination of the antenna impedance and the characteristic impedance of the other cable Figure

4:
z - 22 | @)

-ZA+ZB+ZC.

This load impedancegives a reflection coefficient of:
_Zz“Zc= ZAZB-ZAZC-ZZ
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Figure 1. Balun Circuit Configuration.
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" Figure 2. Balun Equivalent Circuit.
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Figure 3. Load Impedance seen by Output of Figure 4. Load Impedance seen by Output of
Positive Cable. Negative Cable.
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nitial I ignal: The transmitted current out of the positive cable and into the antenna is:

! |
1,”=E°(1‘p,). ®)

The current transmitted into the ferrite-loaded back impedance is:

Z
F= 17| —=c_|, )
Zp + 2,
and that into the other cable is:
Z, I
17=1 [———"—) =2(T). ™
Zy + 2, 2
A new variable is defined as:
Z
I,=Qa-p) (——B—) . 8)
Zp + Z,

The transmitted current out of the negative cable is:
1,”=%(1-p2). ©)

The part of this that goes into the back impedance is:

J AR ) =1y _%arZe _ (10)
Zp Zy+Zg+ 2Z¢

The part that goes into the positive cable and into the antenna is:

B 4 y/
I L _Z__”___ = 2 (T, (11)
Wt Zpt Zp 2
where a new variable is defined as:
Z
T,=(Q1-p)|——2 . (12)
Z,+ 25+ 2,

The two components of the current into the antenna are in phase, so the total current into the antenna,
by linear superposition, is the sum of equations (5) and (11):
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I .
IA=I.;+IAN=;°(I‘2+I—p,). 13) O

The two components of the current into the back impedance are out of phase, so the total current is the
difference between equations (6) and (10):

Z Z, + 2
18=17’__‘?__11{Vﬁ4+__5'_. (14)
Zp+ Z¢ Zy+ Zy+ 2,
The reflected current back into the first cable is:
I
1R’ =20 - py . 15)
2
The reflected current back into the second cable is:
I
Iy = -29 - ). (16)

The total return current back into the positive cable is the sum of equations (11) and (15):

RP = k) (T, - py) - 17 O

2

The total current back into the negative cable is the sum of equations (7) and (16):

R¥ - % (T, - py). (18)

Multiple Reflections in Balun: The above discussion is applicable for the case where the currents back
into the two cables are terminated in their characteristic impedance. In actuality, each of these 100 chm
cables sees an impedance at the "T" joint of the input 50 ohm cable in parallel with the other 100 ohm
output cable, resulting in a load impedance at this point of 33% ohms. This gives a reflection coefficient
for the backward signals of :

pr=-05. (19)

Multiple reflections occur on the 100 ohm cables because of the impedance discontinuities at both ends
of them. One way to track the reflections and transmissions with such a system is by means of a bounce
diagram as in Figure 5. The input line is on the left, the pair of 100 ohm coaxial cables in the middle,
and the load impedances on the right. Time, and the successive signals, progress from the top to the
bottom of the diagram. :

The input signal from the source on the 50 ohm cable sees the two 100 ohm cables in parallel at the first O
boundary, which gives a matched load of 50 ohms at this point and no reflection.
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Figure 5. Bounce Diagram for Multiple Reflections in DCB-1.
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The two 100 ohm cables are shown as two lines on the diagra{m. In actuality, the timing of their outputs
is identical, so they really occur at the same point in time on the right side of the diagram, but physically
separated. The reflections from each of these cables back into itself are also shown as solid lines. The
signals coupling across from the other cables are shown as dashed lines. These are schematically shown
to converge in the actual cable at the other side of the diagram.

The reflection coefficients at the outputs of the cables are given above in equations (2) and (4) for the
positive and negative outputs, respectively. These reflection coefficients and their associated transmission
coefficients are the same for the initial signal and all subsequent bounced signals.

The total reverse-propagating signal R, on each cable are thus given by equations (17) and (18), with the
incident currents for each bounce I, replacing the incident values of Iy2:

RT=17(T, - p), (20)

RY = 1N(T, - p)). (1)

The reflection coefficient for each signal component at the "T" joint is the same, given by equation (19).
The reflected current on each cable is the incident current (20) or (21) times the negative of (19). The
current transmitted into the 33% load from each cable is 1.5 times that of (20) or (21), of which one-third
goes into the other 100 ohm cable and two-thirds into the 50 ohm source cable. The signals transmitted
to the other cable are out of phase with respect to the self-reflected signals, so the signals going back
toward the output load from the first bounce are:

VA | »
11P=E°_2_(r1_1"2+pl—p2)cfn‘=£2'1A0? (22)
I ) A
11N= ‘-22 -;—(P; - +py - Pz) e /i = "Zng = 'pr- 23)

The exponential factor is the phase difference for the two-way propagation over the 100 ohm cables of
length ¢ and wave number k, and a new variable is defined as:

A, = l(r, - T, + py - py) VB, (29)

N

The next reflections at the cable outputs give:

R =K'Ty - &py = -4 (T, + py), @29)

R2N= llprl _ 11Np2 = ]lp(rl + pz) . v (26)

The reflections and transmissions from the cable inputs then give:




1 .
I IP (I' + pl) IIN ;(I‘ + p) e Tk2¢ =IIPA1 = —IZN,

with the new variable:

A = —(T; +T, + p, + p,) e/

Nl—-

For all successive bounces, it is apparent that:

If=1h A = -1V,

T -1 1

@7

(28)

(29)

The total incident current at the output of the positive cable is the sum of the initial current plus all of

the bounces:

Similarly, the total incident current at the output of the negative cable is :

L Y 1"[1- A

3 l'll 2 l _Al '

Equation (12) can now be modified to give the total current into the antenna:

Zy+Zg+ 2,

Likewise, the total current into the ferrite back impedance is, from equation (13):

I =1P.i__ _Iﬂ_é_:ﬁ?__ .
? Zy+ Z, Z,+ 2y + Z,

(30)

31

(32)




The total current lost back into the 50 ohm source cable (presumably reverse terminated in its

characteristic impedance) is given by: O
Is = (1 - py) i%(RiP +R"), (35)
or:
I = % (Fy+ Ty -py-p) + (T -Ty - p, + pz)(l {&OAI]]' (36)

The expressions for the total current driven into the load impedance, into the ferrite-
loaded transmission line, and reflected back down the drive cable to the source have
been derived for the DCB-1. All reflections and multiple reflections have been
included. These expressions will later be used to give the current and power
delivered into the Ellipticus antenna.
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I.  BALANTENNA EQUIVALENT CIRCUIT

The Balantenna [6] was designed as a balun structure which mitigates the high-frequency ringing
associated with the use of dual coaxial cables. The 100 ohm cables have been shortened to zero length
and the output of the 50 ohm cable drives a pair of 100 ohm transmission lines which are on the exterior
of the Balantenna structure, and which transition gradually to the impedance of the cables which form
the Ellipticus antenna [4].

The first version of the Balantenna, Figure 6, has the equivalent circuit shown in Figure 7. There are
not any 100 ohm coaxial cables in this balun, so no multiple reflections occur within the cables. The
two 100 ohm sections are the input to the transmission lines on each side of the drive point. The ferrite-
loaded back impedance is located directly in parallel with the two halves of the output antenna impedance,
directly across the output of the 50 ohm coax. It is contained within the conducting metal sheets which
form the disc or "hub” of the Balantenna.

The load impedance seen by the drive cable is the parallel impedances of the two halves of the antenna
and the back impedance:

z, -[L.2,2) . _Z& &)
Yz, oz, z, Z, +4Z,

The reflection coefficient is given by:

2425 - 2,2, - 42,2,

P . (38)
Z,Zg + Z, 2.+ 42,72,
The current into the load impedance is:
I =LA -p). (39)
The current into the antenna is then:
Z
1, = |-=2|, (40)
and the current into the ferrite is:
4
I, = | —2|. (41)
4Z,
The current reflected back down the drive cable is:
Ip=-pl. 42)
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Figure 6. Balantenna Configuration.
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Figure 7. Balantenna Equivalent Circuit.
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II. TRANSMISSION LINE IMPEDANCE

The ferrite-loaded back impedance is a transmission line, terminated in a short circuit. The impedance
of this transmission line, without its ferrite loading, should be of constant value, at least in a linear piece-
wise fashion, as given by the distributed inductance and capacitance of the line:

j WL
z, - |12 @3)
JwC,
For the coaxial line this is:
z-1 g,,(é) , (44)
2r a
with b the diameter of the housing and a the diameter of the coax jacket. x is the free-space wave
impedance:
n = ’ﬁ = wec, (45)
€o
where c¢ is the speed of light.

The impedance of the biconical transmission line of the balantenna is given by:

o]
2

When the transmission line is terminated in its characteristic impedance, there is no reflection from the
far end of the line (at the load), and the input impedance to the line is identically equal to the
characteristic impedance. When it is terminated in a generalized load impedance Z,, the input impedance
is: '

4=ﬂen.
w

where 0, is the half-angle of the cone.

Z, + Z, tanh(y @
Z, + Z tanh(yd)

AN, = Z, 47

where v is the propagation constant and d is the length of the line. If another transmission line, of a
different characteristic impedance, is connected to the input of the first line, then its load impedance is
that given by the above expression. The input impedance of this new section is then given by an the
same formulation, with the impedance parameters modified as: :

z + 2N, tanb(y,d)
ZIN, + Z, tanh(y,d)

amy, = (48)
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This cascading process can be continued indeﬁliitely.

The DCB-1 is constructed with two discreet sections of ferrite loading: 21.6 cm of nickel-zinc (Ni-Zn)
ferrite followed by 43.2 cm of manganese-zinc (Mn-Zn) ferrite. The Ni-Zn ferrite acts as a high-
frequency impedance, and is the first impedance seen by the back currents. The Mn-Zn ferrite is a low-
frequency impedance. The above equations are used to obtain the back impedance for this configuration.

The Balantenna is constructed with a single section of Ni-Zn ferrite, 10 cm in radius. Future calculations

and models may incorporate ferrite powder (perhaps in a dielectric matrix) exterior to the solid section
in order to provide extra impedance.

14
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IV. . FERRITE INTRINSIC (WAVE) IMPEDANCE '

The frequency-dependant intrinsic properties of any material are given in terms of the complex
permittivity:

eX(w) = glel(w) - je(w)] , (49)
and the complex permeability:
p¥(@) = plpi(w) - ju(w)], (50)

where the asterisk denotes the complex quantity, and all of the primed quantities are the dimension-less
ratios. The imaginary parts represent the losses within the material, including those due to the
conductivity. The dielectric loss mechanism described applies to a material which has only bound
charges. For a material with appreciable charge carriers there exists an ordinary conductivity which
relates the current density to the applied field:

I=0F. (51)

At any given frequency, this loss and that described for the bound charges add directly, so it is common
to include it in the " term, or to define an equivalent conductance which describes all losses:

o=we. (52)

The complex intrinsic impedance in the material is given by:

Z(w) - pX(w) _ n \j p(w) - (o) ’ (53)
e*(w) €(w) - je'(w)

and the complex propagation constant by:

Y(®) = joypX()eX(®) = ¥, VIr(©) - 1(@)] [(w) - (@) . 4

The propagation constant in vacuum is given in terms of the free-space properties:

. W
Yo = Joiio€ = % : (s5)

If the complex permittivity and permeability are known, then the complex intrinsic impedance and
propagation constant can be accurately calculated. Unfortunately, these properties are not well
characterized for ferrites, especially over the frequency ranges of interest for high-frequency, high-power
baluns. The permeability and loss properties of magnetic materials are usually furnished by the
manufacturers, but not for very high frequencies. The highest frequency for which we have seen data
is 1000 MHz, recently extended from 100 MHz, but 100 kHz is more typical.

Approximate analytical models of the ferrite can be constructed using the Debye equations [7], [8]:
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2 .
e*(m) =€, + ST € €, + (& - e)(@, - jo, @) R (56)
1 +j(l)‘7" (A)f + @2
(T ®’ -JO,w
pX(w) = — =, —- B (57
1 +tjoT, "’12: + 2

where ¢, is the static permittivity (approaching zero frequency), e,. is the high frequency permittivity, and
7, is the dielectric relaxation time constant. 7, = 1w, describes a material with a single dielectric
relaxation time, and 7, = 1/w, describes a material with a single magnetic relaxation time; the two are
unrelated because they are due to totally unrelated physical processes.

Typical ferrites seem to exhibit a mxture of two or more magnetic relaxation times, perhaps because they
are indeed mixtures of different materials or different phases of the same material.

Manganese-Zinc Ferrite; These equations are plotted in Figures 8 and 9 for a hypothetical Mn-Zn
ferrite with the parameters shown. This is a low-frequency ferrite with high conductivity and a resulting
large imaginary permittivity. For a homogeneous mixture of different ferrites with different static
properties and relaxation times, the properties of each part add proportionally to give the properties of
the whole.

With the model given by the Debye equations above, the wave impedance and attenuation within the
ferrite can be calculated, as seen in Figures 10 and 11. The propagation ¥ into the material may be
defined as: .

T, (58)

where d is the depth of propagation. Only the real part of the attenuation is shown as:
Ie-yel = et 59)

where a is the real part of v, and multiples of a unit length of one centimeter are plotted.

Nickel-Zinc Ferrite; The Debye equations for a typical Ni-Zn ferrite are plotted in Figures 12 and 13.
This high-frequency ferrite has a very high resistivity (10° ohm-cm) which results in a near zero value
for the imaginary permittivity. The value given for the real part of the permittivity ranges from 10 to
20; the value of 16 is arbitrarily used here. Figures 14 and 15 show the wave impedance and attenuation
within this ferrite.

16
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V.  IMPEDANCE WITH FERRITE IN TRANSMISSION LINE

The characteristic impedance of the transmission line with the ferrite is given by:

Z_!R+ij
(ol . >
G+joC

(60)

where R and L are the series resistance and inductance per unit length, and G and C are the shunt

conductance and capacitance per unit length.
The series impedance per unit length then becomes:

R+ joL =joLily - ju" = joLpXw),
and the shunt admittance per unit length:

G+JjoC=juGle - jé'l = jo GeX(w) .

The wave impedance then becomes:

7 - Iwaou*(w) %z
c - . * - ’
Jw G e (w) n

The propagation constant is given by:

Y = VIR + jo L] [G + jo Q = y,/p¥(w)eX(w) .

where
=-im1'L0q = L:)—

is the propagation constant of the empty fixture.

The results of this section are very sxgmficant

The characteristic impedance is directly proportional to the impedance of the empty
transmission line times the wave impedance of the ferrite. Both of these need to be
made large in order to obtain a large back impedance to the unwnated currents.

The propagation coefficient is just that of the ferrite and is mdependent of the

transmission line geometry.
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VI.  COAXIAL FERRITE BEADS IN TRANSMISSION LINES

When homogeneous mixtures of different materials are used, the permeabilities and the inverses of the O
permittivities are proportionally additive to give the bulk properties:

1 - E 4q; (66)
X)) T XNw)

BN@) = Y u(w),

where the g, are the proportional ity coefficients. For beads of different ferrites coaxially placed over each
other within the transmission line, these equations approximately apply (in actuality, the wave equations
must be solved within each ferrite and the boundary conditions at the interfaces matched). When the
ferrite properties are measured as in Section VI, the measurements automatically give the correct
results. The DCB-1 is constructed with two nested sets of ferrite beads which both have outside
diameter/inside diameter ratios of two, so the value of % is used for the a; .

VII. CASCADED TRANSMISSION LINES

The ferrite transmission line within the balun is terminated at its far end in a short circuit.The low-
frequency ferrite material model of the above figures then gives the input impedance of this terminal
section shown in Figure 18. The resonances of this line occur at very low frequencies because the O
velocity of propogation is very slow, a result of the large permeability and permittivity at low frequency.

A high-frequency, high resistivity ferrite material is then used for the input section to the transmission
line, which has the wave impedance of Figure 10. The high resistivity results in a purely real
permittivity (over the entire frequency range of interest), equal to the DC value.

The characteristic impedance of this material in the transmission line is shown in Figure 16. The
resulting input impedance to this cascaded transmission line is shown in Figure 19. The resonance at 3
MHz is due to the electrical length of the Ni-Zn ferrite.




VII. TECHNIQUES TO MEASURE FERRITE PROPERTIES

The above analysis is based on a priori knowledge of the ferrite complex permittivity and permeability.
These quantities are usually not known for the particular ferrite materials of interest. For the analysis to
be subsequently presented, the required properties are the wave impedance and propagation constant.

If either pair of these complex quantities are known, the other pair is readily obtained from equations (63)
and (64).

Transmission line fixtures can be used to determine these properties [9]. When the ferrite section of

impedance Zy(w) is driven from in input characteristic impedance Z, and terminated in an impedance Z,,
the total reflection coefficient is:

+ p,e2vd + p. P2
S, = Py * P _ - Py Py ’ 67)
1+p,pe® 1+0pp,7?

where §,, is also the input scattering parameter as measured with an S-parameter test set on a network
analyzer. The reflection coefficient into the ferrite is:

o =224 (68)
Zg + 4
and that out of the ferrite into the load impedance is:
Z, - 2,
p, = b ' (69)
Z) + 2

Inserting these two reflection coefficients into the expression for the total reflection gives:
_ 4w 4

= . (70)
Zy+ 4

which is the total reflection coefficient given by the usual impedance relation. This can then be solved
for the input impedance to the ferrite-loaded transmission line:

()

| ite: When the output of the ferrite is directly
terminated in a short circuit, the load reflection coefficient p, is -1, and the input impedance reduces to:

Zgp = Zf{w)tanh(y d) . (72)

When it is terminated in an open it becomes:
Zye = Z4w) coth(y d) . (73)
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Data sets can be taken in these two configurations and processed to give the open-circuit and short-circuit
input impedances (some network analyzers do this internally as a menu function), and then solved for the
characteristic impedance and propagation constant:

Zy(w) = yZoe * Zge (74)

Z
y(@) = L Arctann | 256 (75)
d oC

Because of the large variation over frequency of the intrinsic ferrite properties, measurements may be
required for different lengths of ferrite-loaded transmission line in order to obtain adequate signal
strengths for data processing and display. This is particularly true for the determination of the
propagation constant because of the division process.

Ferrite Section in Coaxial Line: Another configuration that can be used to obtain the ferrite parameters
of interest is that of a transmission line filled with a ferrite material for a length d, [10]. Most ferrite
beads are not of a dimension that fit within and fill a 50 ohm air transmission line (unless they are
specially machined), so the empty impedance of this section may be made to be different than that of the
reference lines (50 ohms) on each side. Care must be used in making the transitions in the geometry at
these points so that reflections from the resulting impedance discontinuities are minimized.

The total transmission coefficient (ratio of output voltage signal-to-input voltage signal) is given by:

(1 - Pyl -p)¥
1+p,p, ¥

Sn = (76)

The input reflection coefficient is the same as the general expression obtained above, except that the load
impedance is now that of the empty transmission line of impedance Z,, and the reflection coefficient at
the output of the ferrite is:

pz = —pl . (77)
The input reflection coefficient is then:
1 - 92
PRRES -

The transmission coefficient reduces to:

20
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1 - plw
SZI=-(-——p2L. (79)
1 - p1Y2

Note that these two S-parameters do not add to unity, because of the losses in the ferrite.
These results allow for the calculation of the coefficients p,, ¥, S,,, and S,, for a line with a material of

known €* and u*. The parameters which can be measured are S, and S,,, so the above equations must
be solved for p, and ¥, giving:

pp=A+yA2 -1, (80)

Syt Sy - Py

¥ = 5 (81)
1 - (Su + 85,)P1
with
2 2
P T . (82)

Note that nulls in the measured values of S,, will result in discontinuities in these parameters. Great care

must be exercised in the data acquisition and/or filtering or smoothing techniques employed to prevent
such nulls.

The intrinsic parameters are then:

y(@) = —f"—f}) = joypR@)eX(w) , (83)
_,lvm 4 .5 | pXw) (84)
Z(©) = 4 1 Pr M @) 7 N eXw)

This results in the complex permittivity and permeability as:

eX(w) = V@) (85)
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_ 1(0) Z(w)
jo '

pX(w) (86)

For measurements resulting in accurate determination of the intrinsic parameters, the ferrite must exactly
fill the test fixture section of the transmission line, with all voids filled with liquid metal or some other
technique. For the case of interest here, the determination of the properties of practical transmission lines
with commercially available ferrite beads and air gaps in the lines, the measurements that give Zg and
v under these conditions is preferable.

Two alternate techniques are formulated for measuring the characteristic impedance
and propagation constant of a ferrite-loaded transmission line. These two
measurement sets can be acquired using the same measurement instrumentation and
only slight differences in test fixtures. The results of the measurements and analysis
can then be directly compared.
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IX. ANTENNA IMPEDANCE

The impedance of the ferrite-loaded transmission line in combination with the antenna impedance give

the total load impedance at the balun output, Figure 2. The antenna impedance must be accurately known
for subsequent signal analysis.

Previous Data: Figure 20 shows the measured impedance of the earlier Ellipticus antenna [S]. This is
not the impedance of the present antenna with the smaller cable diameter and resistively-loaded ferrite
chokes [7]. It is, however, the only measurement presently available and so is used here with the
knowledge that it is of limited accuracy.

The load impedance for the positive coaxial cable, Figure 3 and equation (1) is shown in Figure 22, It
is dominated by the large impedance of the antenna. The reflection coefficient, equation (2), is Figure
23.

The results for the negative cable, Figure 4 and equations (3) and (4) are shown in Figures 24 and 25.
These are dominated by the back impedance rather than the antenna impedance.

Analytical Antenna Model: An analytical model for the ELLIPTICUS antenna with the ferrite/resistive
loading described in [7] is also used. Figure 21 shows the real and imaginary components of this
impedance. It is significantly different than that of Figure 20: The resonances at and below one
Megahertz from the antenna dimensions are not included, and the magnitudes of the components are
larger at the frequency extremes. The imaginary part is mostly positive instead of negative, except at
the highest frequencies where it is modelled as a capacitive element due to the geometry of the connection
to the positive antenna wire (dummy cable).

The actual antenna impedance probable resembles neither of these figures. Only
actual measurements will give the true value. At high frequencies, the antenna
impedance for the Balantenna will differ significantly from that for the DCB-1
attached to the Ellipticus antenna because of the differences in the balun geometries.
Both of these systems need to be characterized with the antenna.
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X. POWER LEVELS

~

The power dissipated in any impedance by the current flowing through it is the square of the magnitude O

of that current (or the magnitude of the square of the current) times the real part of the impedance as
given by equation (36).The power delivered by any of these total currents into their load is the square
of the magnitude of that current times the real part of the load impedance:

P = |I?| %2} . (87)

The current into the antenna from the DCB-1 is given by equation (32), and is shown in Figure 26. The
antenna impedance used here is that for the previous Ellipticus antenna measurement, Figure 22.The
current rises to the source current value (two Amperes) at low frequencies because the antenna impedance
becomes very nearly zero at these frequencies.

The current into the ferrite is that of equation (33), and that lost back down the source cable is equation
(35). The respective powers into these three impedances, assuming a source power of 200 Watts, are
shown in Figure 27. The three power levels add to give the incident power at all frequencies. The
antenna impedance used here is that for the previous Ellipticus antenna measurement.

The power is attenuated as it propagates into the ferrite, equation (58). The power levels remaining at
one-centimeter increments into the ferrite are shown in Figure 28. It is observed that most of the power
is dissipated within the first centimeter.

XI. THERMAL ASPECTS

The power attenuated by the ferrite results in energy being deposited in it. For each incremental section
of ferrite, this is the input power minus the output power, times the duration of time that the power is
deposited. A one-hundred second sweep across the frequency band of Figure 28 (typical for Ellipticus)
gives the energy distribution into the ferrite shown in Figure 29.

This energy results in a temperature increase of the ferrite. The specific energy of the ferrite is about
5.0 cal/gm and the density about 3.0 gm/cm®. The temperature rise per sweep is shown in Figure 30.
The Curie temperature of the ferrite is about 125-130 degrees Centigrade, which can be exceeded in just
a few sweeps for the model balun just described (that of the first prototype unit used in Ellipticus). The
temperature rise at the surface of the first ferrite bead is printed on Figure 27 , the plot of the power
levels.
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XII. OTHER RESULTS

Analytical model of the ferrite-loaded new Ellipticus antenna: The antenna current and power levels
for the analytical model of the ferrite-loaded new Ellipticus antenna (Figure 21) are in Figures 31 and
32. 'This model gives much broader and flatter drive into the antenna, particularly at the lower

frequencies. The performance at the higher frequencies is somewhat diminished due to the higher antenna
impedance values.

Prototype DCB: A prototype DCB had been previously constructed which exhibited erratic performance
and failures which were traceable to excessive temperatures. Temperature markers placed on the ferrite
beads showed that the first beads did indeed exceed their Curie temperature. The power levels for this
balun are shown in Figure 33, with the calculated temperature rise indicating that excessive heating
indeed occurred, the Curie temperature being reached in just a few sweeps.

This prototype had a lower characteristic ferrite impedance, as well as a smaller ferrite mass per unit
length by a factor of five, than does the DCB-1. The insulating fiberglass housing of the prototype unit
was eliminated from the DCB-1, leaving the bare aluminum balun housing exposed to the ambient air,
underneath a sun shield, for better cooling.

Balantenna: The analytical results for the first model of the Balantenna yield results that are not
encouraging! Figure 34 shows the projected power into the antenna, which is much lower than that from
the DCB-1, Figure 27. Significantly more power is absorbed by the ferrite than goes onto the antenna.
This inferior performance can be attributed to the low transmission line back impedance of 17.6 ohms
compared to the 83 ohms of the DCB-1.

The temperature rise of the front face of the ferrite of this balantenna is more than one hundred times that
of the DCB-1, more than enough to exceed the Curie temperature in a single sweep. This is because of

the small frontal area of this balantenna design, 4.2 square millimeters vs 475 square millimeters for the
DCB-1.

One obvious way in which to improve the performance of the Balantenna is to make the incident face of
the ferrite much larger, which increases the impedance of the transmission line and reduces the current
that flows into the ferrite, and increases the volume of ferrite into which the energy is dissipated.

hm D : Figure 35 shows the power driven into a 200 ohm resistive load. Such a
load, constructed from low-inductance resistors with 50 of the ohms being a coaxial cable into the
measurement port of an analyzer, is useful for characterizing the balun. The results shown here are very
similar to measurements performed in Reference [5].
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XIII. CONCLUSIONS and RECOMMEND;XTIONS

The results presented in this paper are based upon theoretical models for the ferrite used within the baluns
and for the impedance of the Ellipticus antenna. These results tend to agree with the limited data
available. They also generally agree with the field-mapping results in the Ellipticus simulator with the
new ferrite-loaded antenna and the DCB-1 driver. The models used for the analytical ferrite properties
thus seem to be reasonably accurate.

These results allow for the parametric design of a balun by the variance of ferrite
types and sizes, therefore predicting the performance of a balun before it is
constructed. Comparison of alternate balun designs can be performed, and relative
behavior studied. :

The models used within this paper need to be replaced with actual data. Section VI details a method with
which the complex impedance of the ferrite loading of the DCB-1 and Balantenna can be measured, so
that Figure 8 and all subsequent figures can be replaced with calculations based on actual ferrite
properties. Actual ferrite geometries in transmission lines can then be analyzed, specific to particular
balun designs.

The impedance of the antenna can be measured in the time domain with a high voltage TDR system to
over-ride the radio frequency noise induced onto the antenna by local radio stations. A Fourier transform
of the TDR waveform will then give the actual complex frequency domain impedance of the antenna, so
that Figure 20 and all subsequent figures can be replaced.

The ferrite and antenna measurements need to be performed so that accurate
analysis can be performed before the balantenna is re-designed and constructed.

The Balantenna can then be designed and constructed with acceptable performance, with significant power
delivered to the Ellipticus antenna, low power and heat dissipated in the ferrite, and without the high-
frequency cable resonances as in the DCB-1.
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Figure 26. Antenna Current (Old ELLIPTICUS).
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Figure 31. Antenna Current (New ELLIPTICUS Model).
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Figure 32. Power into Ferrite, Antenna, and Reflected back into Balun (New ELLIPTICUS Model).
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Figure 34. Power Distribution for the Balantenna.
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Figure 35. Power Distribution for the DCB-1 (200 ohm load).

40




O

(1]

2]

K}

[4]

(5]

[6]

(8]
9]

[10]

[11]

REFERENCES
C. E. Baum and D. P. McLemore, "Topology for Transmitting Low-Level Signals from
Ground Level to Antenna Excitation Position in Hybrid EMP Simulators," Sensor and
Simulation Note 333, Phillips Laboratory, September 1991.

C. E. Baum and D. P. McLemore, "Topology for Transmitting Low-Level Signals from
Ground Level to Antenna Excitation Position in Hybrid EMP Simulators," Proceedings 1993
Zurich EMC Symposium, Zurich, Switzerland.

D. P. McLemore, J. Martinez, G. D. Sower, C. E. Baum, T. Tran, and W. D. Prather "The
Phillips Laboratory Broadband, High Frequency CW Simulator," National Radio Science
Meeting, Boulder, CO, 1993.

G. D. Sower, D. P. McLemore, and W. D. Prather, "Ellipticus Ferrite/Resistive Loading,"
Measurement Note 41, Phillips Laboratory, February 1993.

G. D. Sower, D. P. McLemore, and W. D. Prather, "Quad Coaxial Balun (QCB),"
Measurement Note 44, Phillips Laboratory, August 1993,

D. P. McLemore, G. D. Sower, and C. E. Baum, "The Balantenna: An Integrated Impedance
Matching Network and Hybrid EMP Simulator," Sensor and Simulation Note 355, Phillips
Laboratory, January 1993.

A. J. Dekker, Solid State Physics, Prentiss Hall, 1962.

P. J. Harrop, Dielectrics, J. Wiley and Sons, New York, 1972, ISBN 0-470-35580-8.

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, "A Nonlinear Least-Squares Solution with
Causality Constraints Applied to Transmission Line Permittivity and Permeability Determina-

tion," IEEE Transactions on Instrumentation and Measurement, Vol. 41, No. 5, October
1992,

W. Hartung, D. Moffat, and T. Hays, "Measurements of the Electromagnetic Properties of
Some Microwave-Absorbing Materials," SRF-930113/01, Cornell University.

C. E. Baum, "Multiconductor-Transmission-Line Model of Balun and Inverter," Measurement
Note 42, Phillips Laboratory, March 1993.

41






