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Multiconductor-Transmission-Line Model of Balun and Inverter
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Abstract

This paper constructs a transmission-line model involving two conductors plus reference for a
balun (coax to twin-line transition) and an inverter (coax to coax transition). This includes the effects of
the external wave (or antenna mode) in a transmission-line approximation. A special diagonalization
P ure is used for the product of the characteristic impedance matrix and the inverse of this matrix
evaluated at a particular reference cross section. Using exponential interpolatioh for the eigenvalues to
apply to the transition region, a closed-form solution to the wave propagation is obtained. Evaluation at

high and low frequencies gives estimates of performance in terms of the geometric impedance factors
involved. |
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L Introduction

A typical transition between a coaxial cable and a twinline is illustrated for -£ < z< 0 in fig. 1.1A.

This type of balun is used for converting between the two transmission lines over a broad band of
uencies. However, in converting the coax mode (between conductors 1 and 2) incident from the left
both common and differential modes are launched to the right on the twin line. There is also a wave
launched to the left outside the coax. While this is not strictly a transmission-line mode (and is sometimes

referred to as an antenna mode) one can crudely model it as a transmission-line mode by inclusion of
some outer reference conductor, here designated by 0 (with radius ¥ ). Appropriate selection of %
gives an impedance to this mode which can also be thought of as the common mode to the right. Now ¥,
can be chosen as something like a radian wavelength, which of course makes the impedance frequency
dependent, but only logarithmically so. Furthermore, this model does not include the radiation losses.
Nevertheless, this model can give some insight into the performance of this type of transition due to the
ytical simplifications. In the limit of large external impedance (¥, — ), then provided that the
impedance for the remaining mode (coax —» differential) is maintained independent of z, the balun works
for all frequencies with no reflections (in the transmission-line approximation).

Extending the previous transition one can make a similar one for 0< z < ¢ which is like that to the

left (rotation by = about the x axis), making an inverter as in fig. 1.1B. Now the idea is to transition the
coaxial mode (for z < -£) to an inverted coaxial mode (z > £). Again if the external mode can be neglected

(¥o|—> <) this can be accomplished in an ideal sense (no reflections) provided the impedance of the

remaining mode is made constant from one coax to the other (both coaxes with the same impedance).

Note that fig. 1.1 is schematic rather than a scaled drawing. In particular let us assume that the
length (£ or 2¢) is much larger than the cross-section dimensions (which will be introduced later). So at
any| plane of constant z the conductors are approximately perpendicular to this plane. Then two-
dimentional techniques can be used for the local per-unit-length inductance and capacitance matrices.
The transmission-line formalism is accurate for radian wavelengths large compared to the cross section

dimensions. (This restriction can be relaxed in special cases.) So one would like a range of frequencies
where radian wavelengths are less than ¢, but large compared to cross-section dimensions, for which the

present results apply.

Coaxial cables are usually constructed with a dielectric insulator between inner and outer
coniuctors, but air dielectric is sometimes used. For present purposes the outer medium is assumed the
as the inner one and is assumed lossless. Then as in [2, 3] both modes propagate at the same speed
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Fig. 1.1. Two Configurations of Transmission-Line Transitions




1
v=[uelz
i = permeability ) (1.1
€ = permittivity

which can also be the speed of light in vacuum in some cases. Note that the conductors are assumed
perfect for the modes to have this speed. We then can define

2x2

whi

‘7,!5_
v

s = Laplace transform variable (two - sided over time #) or complex frequency 12)
= Q + jo

The resulting nonuniform multiconductor transmission line (NMTL) can be characterized by a
characteristic impedance matrix

(20, @) = Zu(f,. @) = (V.. @)
zZ, = [%]3 = wave impedance of medium (13)

(fs... ( z)) = (fg.'. ( Z))T = geometric - factor matrix (real)

h is conveniently a function of only the coordinate z (frequency independent). Note that reciprocity

assures that there are only three independent matrix elements. This is also related the per-unit-length

ind

ctance and capacitance matrices

(Lo m() = u( foun (z))
(14)

(Com(@) = e(f,.. @)

The propagation matrix assumes the simple form [2, 3]




(7:,,_ (s)) = [(2,',,,,,(2,5)) . (?,:,,,,(z, s))]E (positive r@ (p.r.) square root) O
= [(Lt:,m(z)) ' (C:t,m(z))]i : (1.5)
=Y (In,m)

Note that labelling of the conductors and the associated voltages (l-’,,( z, s)) (with respect to the
reference conductor labelled 0) and currents ( I(z, s)) - As one progresses along the structure from left to

right, 1 denotes the center conductor, but later the outer coaxial conductor of the inverter. Effectively the
labels 1 and 2 exchange roles in going from -¢ to £. The coaxial mode is given by ¥;(~,5) - Vy(~2,5) on
the left, but V,(¢,5) - V;(£,5) on the right. This interchange of the roles of 1 and 2 can be incorporated in
a symmetry constraint for the inverter in fig. 1.1B as

fxu(z) = fm('z)
(1.6)
fxu(z) = fxu(_z)

Here the actual cross section as a function of z is not considered, but rather the geometric factor matrix is \)
constructed in such a way that it is realizable, matches the conditions at z = -£, 0, £, and leads to analytic

wave-propagation solutions.

For good transition performance we will need high external impedance. One way to achieve this
is through external magnetic materials, say in place of an outer conductor at ¥. A finite permeability of
such a medium complicates the transmission-line analysis, but in the limit of infinite permeability one can
consider a magnetic boundary at ¥, along which no current can flow (giving I7 + I2 = 0) and reducing
the problem to a single mode. This is equivalent to letting ¥, — oin the present analysis. The use of

such magnetic materials (chokes) can improve the performance of such transitions; this can be considered
in other analyses.




Characteristic Impedance Matrices at z = -f and z = +£

As illustrated in fig. 2.1 the beginning (z = -£) and end (z = +£) of the transition has a triaxial

structure with

0<¥ <¥<¥ <e 2.1)

Note the use of a and b subscripts which apply to 1 and 2 conductors respectively at z = -¢, but 2 and 1
conductors repsectively at z = +£. Define, for use with the geometric-factor (and hence characteristic-

im

ce) matrix

) o 1 , (%
f8 = 2 lﬂ(%)

0« L of %) @2
b

(in) o glowt) _ 1 , %
fs' + fg o h{\f', )

Considering first the left end we have

(in) 4 £(owt) (owt)
(fg.,.. (_l)) = (fg -(:ltftg) {ogul) ] 23)
o A |

The coax mode incident between ¥; and %} on the transition (from the left) is characterized by fg(""), but

due

to our definition of V7 the f, ., parameter is referenced to ¥. These parameters are readily

generated by separately driving with the two currents and calculating the resulting voltages (two in each

case). This matrix has the simple properties

det{(£,, . (-2))) = fim £l
24)

t((f. (-0)) = £ + 25

That this is a positive definite matrix (associated with a passive structure) is found by noting that it is

Hermitian with real and positive eigenvalues.




Fig.2.1. Cross Section of Transition atz = + £




At the right end the corresponding matrix is

( fg(out) fg(aut) J
A7+

(fo.. ()

(2.5)

= (2 o) Gent8) 3 )

which is related to the left-end form by interchange of rows and interchange of columns, corresponding
to reversal of the roles of the 1 and 2 indices. The determinant and trace are unchanged leaving this
matrix positive definite like the previous one.

The special case of large external impedance is described by ¥, — c. At the left and right ends
this corresponds to f{™) — o with f{™ held constant.
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Characteristic Impedance Matrix at z = 0: Differential and Common Modes

At z = 0 the transition assumes the symmetrical configuration shown in fig. 3.1. At this location
1 and 2 voltages and currents are in identical conditions, giving an additional symmetry to the
acteristic impedance matrix. This is treated in terms of differential and common modes for which the
acteristic impedances are known to a good approximation [1, 7, 8]. Note that ¥ can be allowed to
as a function of z if desired, subject to the requirement ¥,(-z) = ¥(z) in the case of the inverter.

For the differential mode we define

Vi(z,s) = Vi(z,s) - Va(z,s)
, 3.1
Lzs) = 3[l(z9) - Ta.s)

which applies at z = 0 for the inverter and for z >0 for the balun as in fig. 1.1. Under the same conditions

the

N

common mode is defined via
- 1r- -
V(zs) = 5[V(zs) + V(a9)
3.2)

I(z,5) = Ij(z,5) + I)(z,5)

the factors of 1/2 used in the usual convention, related to the source driving current from conductor

2 into conductor 1 for the differential mode, and to the source driving current from conductor 0 into the

pa

el connection of conductors 1 and 2 in the common mode.

To convert between the d, ¢ basis and the 1, 2 basis we have in matrix form

(mmf=ﬁ'ﬂ,ﬁ@ﬂ
Vzs)) (3 3) Bz

[fd(z,s)\ _ ’_;_ _%J . [71(2,8)]
Lw)) (1 1) e

33)

Noting that these matrices have unity determinant we have the inverses in

10
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P@ﬂ=
‘.’2(7-' 5)

[T,(z,s) -
I(z,s)

)

1 9 /-

2 _ {Vd(zrs)J
1 V z,8
-3 Ve(z,5)

1 -
2| [lalz.s)
-1 -;-J f,(z,s)

34

The geometric-factor matrix appears in the per-unit-length inductance and capacitance matrices

in (1.4) which appear in the telegrapher equations, as well as in the characteristic impedance matrix in
(1.3). A convenient way to look at this is to consider a wave propagating only to the right (+z) on a
uniform line such as for z> 0 in fig. 1.1A. In this case we have

f‘-/l(z's)\ =z, faua (0) fxu ) . Il(zrs)
kf’;(z,s)J fxu (0) fm(O) fz(z,s)
(3.5)
(Va(zs)) _ z, £ 0 (L(z,s)}
\ACD) 0 f9) Udzs)
In the second of these matrix equations use (3.3) and (3.4) to convert from d, ¢ to 1, 2 basis giving
(1
= 1 @ o 1 1
2 fz 5 "3
f3n(0)) = ' ol (2 2
() Loal e #) 1 oq
\ 2
‘1 g 1 (3.6)
rU R A 7/ 00
1 [3 1 c
LA v

which exhibits the symmetry on interchange of 1 and 2 indices (as well as reciprocity).

-1
eigenvectors 2 (1
have

The diagonal form of (£, _(0)) gives eigenvalues f{ /2 and 2£{) with corresponding normalized

1
, =1) and 27%(1, 1) as one would expect from the symmetry. For later use we also

12
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cony

det((f;,,. (0))) = £

tl'((f Sam (0))) = -;— féd) +2 fg(c)

(3.7)
1 c 1
ng(d)"'fg() .4_&(‘)_"}‘)

s ‘g |1 1
Z fg(d) _ fg(c) _4_ fg(d) + fg(c)

There is a constraint on the allowable values of f}‘) and f}‘). If we drive a current, say I3, into

on;jlconductor and force I2 = 0, then not only do we have a voltage V1, but also a voltage V2 of the same

The physical requirement has

f2,(0) = f,,(0) 2 0
(3.8
fSu(o) = fs:.z(o) 20

Thlsecond of these can also be viewed from a capacitance point of view. A positive charge on one

uctor induces a positive potential on the second. From (3.6) we then have

1
Z fx(d) + fg(c) 20
3.9)
1 ¢
-7 94920

first of these comes from the realizability requirement of non-negative fé‘) and fg(‘). The second

imposes the additional realizability requirement

£ 2 % 920 (3.10)

Aij;litrﬁting case consider the case of two identical coaxes of characteristic impedance Z, = Z,, f}o)

g

13




c 1
£ =20 (0 = 50

(3.11) O

c 1
fx() = Zféd)

The special case of large external impedance can be interpreted here by large common-mode
impedance. This corresponds to f{9) — o with £ held constant.

O

14




V. General Form of Solution

The telegrapher equations without sources are

(Va(z.8)) = ~5(Ls.n(2) - (Tu(z.5))

¥l

(iz5) = ~ACan(2) - (Valz9)

¥lo

Then, as in [4], form

[( (Va(z.5))

o2, (0)) - (Crml(2))

) "[(fg,, ©) - (f.@)
=,{ (O (f..,..(Z))J
(fm(@)”  (Onm)

(fun(@) = (£, @) - (£, @)

(CRCNE —[ 0 {Lin(@) - (2.,,0)"]

Om) (@) - (o)

4.1)

= (@, m(z,s (f’,,(z,s))
Zc“ (0)) . (jn(z' s))] - (( n,m( ’ ))v,u') © [(zc“ (0)) . (f"(z' s)))

Om) )

(0nm)

4.2)

Here the supervectors (divectors) have a total of 4 elements and the supermatrices (dimatrices) are 4 x 4.
The normalizing impedance matrix (which needs to be independent of z) is chosen as (Z,-_ (0)), due to

the symmetry in this problem.

15

gz-((ﬁ"""(z'z""s))u,u') = ((ﬁ,,,,,,(z,s))v,u,) ® ((ic,,,,,,(z,z,;s))v'

The solution of this equation is cast in the form of the supermatrix differential equation

v)

((ﬁ,,,,,(z,,z,;s))v’”,) = ((1,,,,,,)0’”,) (boundary condition)

4.3)




The solution of this differential equation is referred to as a matrizant (or supermatrizant if one prefers).
The columns are independent vector solutions of (4.2). Given the supervector (voltage/current) at z = z
we have |

(ws) ) (Valzar5) |
[( Z,_‘ (0)) . (in (z, s)) = ((un,m (z, Zy; 5))0,.,.) O] ( Z,_,_ (0)) . (}" (2o, s)) 4.4)
Note that z can be greater than or less than 2o. The matrizant has some important properties

(unz2),) = (Enntel) ) © ((Ennter ),
4.5)

((ﬁn,m (z,,z))o'v,) = ((ﬁ""" (22 ))v,v')_l

which allow one to express the solution as in (4.4) in various ways, including breaking up the matrizant
into products of various numbers of matrizants, each representing a portion of the NMTL of interest.

Considering the section for -£ < z < 0 we have

(09) ) 00 [ (7u-t9)
((zc_‘_ ) - (L(0.5)) ((""""(0' “ ))v,v') ® (2. 0) - (Tu(-2.9)

(Vn(‘l's)) ) (= ' ( ("'/u(o’ s))
{(zc" (o)) . (7,.(-!, s)) ) = ((“v(x,;)n(-t,o,s)).,,o.) © \(Zc,,, ( 0)) . (f,, (O,s)) 4.6)

((ﬁ.(.;’..(—z,o,-s))v’w) = ((ﬁ'(l-’)u 0, l;s))‘w)-l .

Here a - (minus) superscript is used to designate this left section of the transition, this having a special
form of the geometric factor matrix, distinct from that on the right. Similarly for 0 < z < £ we have (witha

+ superscript)

16
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2.,.0) - (lnle9)

(V,,(O,s)) ) _> N |
[(zc,,_ ©) - (f0.9)) ~ ((uf.,.’..(o,z,s))vlv')

(#r00),,) - (eos),, )

zc,,,. (0)) ' (I,,(l,s)) )

Z.,.0) - (Tn(-49)) )

17

[( (7ate, ) \ = ((agj),,(e,o,-s))w) ®

y

(7a(0.9)
(2..0) - (1.(0.5)))

- \
[ (o) “

[( (f'..(—t,f)) = (Fm(-t.2:9),,) ©
((uu m(=4,£; s) ) ((u,, m(l—t; s))o y ) N
(o), ) o (#2009,

- (#a0-t9), )"

(2..0) - (1te),

For the compound transition (balun) for -£ < z < £ we have

[( o) |- (unteeo,,) ©

[ (W-49)
(2., 0) - (In(-29))

[ (7le9) ]

\(zc'_ ) - (i(c,s))

© ((l.ls,'f,),(l,();s))”’v')-l

s is then described in terms of the matrizants for the two sections.




V. Interpolation Matrix for Negative z

case for-£<z2<0, as

(#2) = (fn @) - (£ @)

Before considering the functional dependence on z, we have the constraint
- -1
(F2-0) = (£n-0) - (£,... @)

. 1 . 1
1 ( fx(m) + fg(md) fém) 1 fé‘) + fx( ) v f}d) - f}‘)

) fxd fy) (out) (out)
fz fi

\

1 c 1 (3
-1 A

,1 ou in)] 1 1 out in 1 c
°fg( t)f:g(d) +f8( )[_féd) +f8(‘)] _fx( )fx(‘) + fs( )l:... fg(d) "fg( )]

8

1 -1

f("'“) 1+c, 1+c
f(ﬂ) 1

(m) T ()]
¢ = +2
fg(M) i 2 fg(d)_

AL
|27 @

M 2 (i) ¢ (out)
det( ,s,-,),( l)) [ f(c):| [ Cz] = ff(g)ff(c)

18

From (4.2) we have to consider what to which one may refer as an interpolation matrix, in this O

(5.1

S




= 010
) o
o{(£5(-0) = 2+ al = -0+ (-0

f‘g')(—l) = eigenvalue of (f,fl',),,(-t)) for f=1,2
To diagonalize this matrix, first define normalized eigenvalues as

77 = 24 f(,,,,, 5@
where our emphasis for the moment is z = -£. Then we have
[1va-gf? (—e)] -7 9]-1-c =0

(‘) (-0 -[2+a]ff (-t) +c—c; =0

f}') (-9 = 1+£21-:|:c3

1
2 B
C3 8[[14-221'] -0 +C2]

1 .
= 8= 2 respectively
Consider, by completing the square,

c§=[1+-‘-:21-]2—c1+c2=1+-cj4i+c2
mPr; fOF @[ g
=14+ [}fm] [-Z + ?zzy ?(e;"j 2;2;;
- - i

19

(5.2)

(5.3)

(54)

(5.5)




which is evidently positive so that c3 can be taken as the positive square root of this expression, thereby
assuring that the eigenvalues are real. Furthermore, from (3.10) we have

N f(f) % f(l'n) 1 f(M) sg
c3 '}j;y Z(’;,,—,; 2?5_7 (5.6)

so that c3 is strictly positive making the two eigenvalues distinct, and assuring the diagonalizability of the
matrix. We also have

2 2 f(t"l)f(‘)
c2=[1+c—‘] -c +c2=[1+-cl]—4-i-—3-
3 2 1 £ (@)

63 <1 +a (5.7)
f,ﬁ"(-z)=1+%1:tc3 >0

so that the eigenvalues (both) are strictly positive.

The right eigenvectors are now defined by

1 1 _ -
(?1+Q](U)-ﬁW@@W
[1+c, - (—t)]g +[1+c2]g2 =0

s +[1- 47 coleth = 0

5]

ZI=PH() Tép+qﬂ$%ﬂ-1-ﬂ

20




Siny
The

) (-)
g =

pf,') = normalization constant

nilarly the left eigenvectors are
x 1+C1 1+C2 . (-
(), - (157 )= o (),
[1 +e - ff (-z)] K + K5 =

[+ ek + [1- 47 o] ) =0

hl;ﬁ

1
), -8 a

)

g’ = normalization constant

biorthonormal property has

(), - (),

1s,.8,

3 1
r5) a5 =t

The eigendyad can now be written as

1

)00, - 2 2320 gl

1

k. ’ 1
= "’ ) -1-¢=[1+ cz][fp (-o) - 1]-

(5.8)

(5.9)

(5.10)

(5.11)

which is purely real. The diagonal representation of the matrix can now be written in dyadic form as

21




(#2-0) - Sca(e), 1), | O

(5.12)
(c) (c)
£(0) = z}f(!—y £ =2 éz_) [1+%26]50
At z =0 we have (from (5.1)
(#20) - () - 365, (49,
B=1
(5.13)
(') £0) =1
Then we can select forall - £ <z <0
2 )
(£3@) = 2873 (e87), (1), (5.14)

wh

e the eigenvalues f}')(z) can be selected to match the values at z = 0, -£ as above. This allows us to O

constrain the f )(z) as purely real and positive. For convenience we can also make these monotonic

functions of z over the range of interest.




LS A

where

whi

Interpolation Matrix for Positive z

For positive z (0 < z < #) we have another interpolation matrix as

(M) = (£..@) - (£, )" 6

constraint at z = £ gives
(£240) = (£ () - (£, @)

1 9 1 ¢
L[ A ) [0 0

B0 o) o), oy | |1 1
fs 5+ 1 2 £ - £ 2 £+ £0

1
1 2 f(m) f(‘) 3 fg(M) fa(")

f(a) @1 f("‘“) f(") f('")[ 1o f(c)] % o) £l fém)[% £ + f§‘)]

f(”“‘) 1
f(c 1+ Cy 1+ ¢

(om (in) ¢(out)
det( f ) (4 ) [f (c)] [ 61— ] f f(d{f(c)

= (9 %)

h’(( }2(‘))) = ﬁﬂf— [2 +q] = +)(t) + fz('*)( ) 6.2)

f(*)(t) = exgenvalue of (f(") (t)) for p=1,2

the cns are the same as in the previous section. The eigenvalues are evidently the same as before

allows us to set




Simi

Asb

50 = 50 = 285 47 0 >

f(M)
90 = (- = 1+ ey >0

1
t= 8= 2 respectively (as before)

The right eigenvectors are now

1 1 {
™) = £ (+)
(1 +C, 1+ CI) (g" B fﬂ (l) (gn )p

(+) )

(*') (+) = |81 = |82 ]
&), = v ey, | = = | &
( ’ (2 iq;) (3g+)]p [8; )

= of?
larly the left eigenvectors are

+ 1 1 ) +
(), - (1+c2 1+c1) =17 (K e

(h$+))p - q'(;) [—%’Ii Ca) [:;3] (8)
4’ = qf

efore the biorthonormal property is

24

6.3)

6.4)

InstEad of going through the details (as in (5.8)) we can observe that the matrix is as before except that
rows and columns are interchanged. This is the same as interchanging the two vector elements, giving

(6.5)

(6.6)

o




(h’('+))p1 ‘(357)),,, = L5

6.7)

@ g 1
pp qp 2C3

The eigendyad is now

1 (.1 )[-4
R O A o
which is again purely real. The diagonal representation of the matrix in dyadic form is

(£20) = Zfé“’(l) (s8), (1),

B=1
6.9)

(c)
(+)(l) = 27{;;#*)([) = 2?&;‘7[1+£21-:tc3] >0

8

At z =0 we have (from (6.1))

(#20) = o) = ,(s“’) (),
(6.10)

0 - 1

Then we can select forall0<z< ¢

(#22) = 2 57 (8), (kS (‘*’) ©11)

B=1
These eigenvalues can be chosen real and positive as before. Preserving symmetry let us set

£ = f7(-2) ©612)

and both sets of eigenvalues have the same desirable properties.




VII.  Eigenvector Matrices

Using the eigenvectors for the left section (-£ < z < 0) we can form
(65h) = ((s,‘,"), , (35.")2)

(HE)) = ((hﬁ")l , (h.‘.")z)

where the eigénvectoxs are taken as columns here. Then the biorthonormality relation becomes
(HR) - (G52) = (tum)

which in turn implies

(G2 = (HEL) . (HEA) = (6B

We also have

(GEA) - (HEL) = (tum)

( 2
Y)Y el

p=1 p=1 [1 oJ
S 0,0 0T

ZXz;n "z(,p Z&;p 2:8

\A=1 B=1 J

thereby giving some additional orthonormality relations.

The eigenvector defining equations now become

26

(7.1)

(7.2)

(73)

(74)




(B - (f-g) = (60 0 )] (HQ)

L0 e
g -~ N 0
() - (62e0) - (02)- (09 o) -

_) _
(#2e0) - (682) - (719 e, ) - )

The foregoing can be reinterpreted for the right section (0 < z < £) by replacing - — + for

su ipts and -£ — £, and for the special case of the inverter (to be introduced later) by use of 2 for the
suﬂ::‘:pts.

27
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I. Geometric-Factor Matrix

Choosing first the left section (-£ < z < 0) we begin with

(£2(-2)

(e 8) - (5on @) = 3 590(68), (),

B=1

() = 3 (88, (1), = 3 (1), (s59),

B p=1

8.1)

M, noting that the two geometric-factor matrices are symmetric, we have (dot multiplying on the right

he identity)

(hon ) = ; C0(e0), (), - (5..0)

i ? 00 (eR), (1), - (5..0) - (), (s),

+ 1760 (88), (), - (£..0) - (42), (8),
+ 190) (68, (), - (@) - (). (s9),
ing this equal to its transpose and subtracting common terms gives
700 (69), (), - (£..0) - (), (87),
+ 0 (9), (1), - (£..0) - (1), (s8),
= 1960 (69), (), - (f.©) - (), (s8),
+ 190 (88), (), - (£ @) - (1), (9),

multiply on the left by (h,(,') )1 and on the right by (hf,'))z to give

8.2)

(8.3)




1760 (1), - (£..0) - (1),
= 60 (1), - (f..0) - (1), 84)

0 = [0 - 0] (), - (£..) - (&),

Then since the eigenvalues are distinct we have

5.1

(K, - (£..0) - (1), = 0 = (1), - (£,.0) - (), @5)

Now in (8.2) dot multiply on the left by (k{" )p giving

(1), - (- -0) = £7C0(), - (£,..0)

= BCOW), - (h.0)- (), (), e

(€9), = [ (), - (5..0) - H)] W), - (£ )

ThTs we have two vectors related by a constant coefficient. Recalling the normalization condition in

0), we still can choose one of the eigenvector coefficients (pf,’) or q;')) at will. So we set, as another

convenient normalization condition,

(6, = (), - (5 @) = (5..0) - (),
| 8.7)
(h'('-))p ) (fx.,. (0)) : (h$") 5 = 1

which constrains qf,") and thereby p},'). In terms of previously defined quantities we have from the first

of (

8.7) (vector equation)
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Wit]

(55, = (325 - (a0) - )

(1 c 1 c
LA

1 1 _&
\... Z fs(d) + fs(c) .Z fg(d) + fx(‘) —ZL b o C3

ng(d) 1+£21-;C3] + fx(c)[l—ﬂz'iC3:|

1
\fo(‘) —1 -é-j:c;,] + f(‘)[ 5 iq;]

-) -1
P,
= [‘%‘iCa] -f(d)[ 2 :FC3] + f(c) [1 'é'i'Ca]]

= %f(")[ I—EZLica] + fx(‘)[l-%’:tca]

h (5.10) this gives
2 _,.1]c 171 4 c c
7 -:i:z[-zlztc.,]- [—Zf,()[u-zl:ca] +f;=)[1-.21ic3]]
. 1[“)[-1-flztc] + fOl1-Lxc
2; (478 277 2 3
i) = 1
* 'ﬁ'f
ther form can be found from the second of (8.7) (scalar equation) giving
2 1 c 7 c T
qg-) = [ng(d) [1+—2L:FC3] + fs(c) [1—‘%1C3] :| >0
_ 1
p(p) =t —

(8.8

89)

(8.10)




4

real.

Then from (8.2) we have

2
(6t0) = 3 1 0(60), (65,

(1), - (fn-0) - (), = 570

and from (8.1) we have

(5o @) = (£2-0)" - (f,-0) = 3 (s8), (5),

Similarly the inverse geometric-factor matrices can be constructed as
(000" = 3, (), ),

(8°), - (fea @)™ - (87), = 1

(o)™ = SO0, (49,

(gv(u.))p ’ (fg,.,,. ("l))-l ) (gn)p = fé-)-l(-‘)

which can be verified by multiplying to produce the identity.

The geometric factor matrix can now be extended to all -£ < z < 0 from (5.1) and (5.14) as
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alIe that qf,') is real, and with sign chosen from the square root then p,(,’) is consistently chosen and is

8.11)

8.12)

8.13)




(foun (@) = (£32) - (£,...0)

S50 (s0), (), - (.0)

= Ef‘ '(2)(s0), (), 8.14)

B=1

(%.. (z))” = “’(z) (+), (1),

This generalizes the foregoing results and reduces directly to them at z = 0, -£. The eigenvalues now can
be expressed as

matrix.

CO!

give

156) = (1), - (fu. () - (1),
(8.15)

[, - (5" 68, ]

Per the discussion in Sections II and III the geometric factor matrix is realizable at z = 0, -£. The

general form in (8.14) is evidently symmetric, i.e.

(fon @) = (£,... @) 316

thereby satisfying the reciprocity requirement. Furthermore, as discussed in Section V the ( f,‘))p and

K{)) are real and the fé')(z) can be selected real and positive over the entire interval. Hence the
P po

etric factor matrix is real (as required). While an impedance or admittance matrix (passive) needs to
sitive real (p. r.) this reduces to the requirement of non-negative definite for the geometric factor
While the vectors in (8.15) are not eigenvectors (in general) of (fz..- (z)) they can be used to

truct any two-dimensional vector (span the space). Using the (h,(,') )p form (with real coefficients to

a real vector)
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curn

Sind

[51(’1;(.'))1 + 52("5:))1] ‘ (fs.,. (2) - [g‘(h’('-))z * §2(h,(,‘))2]

2
= pz:fé-)(Z) &5 > 0 for at least one & #0
=1

since the fé’) (2) are both strictly positive. Hence the geometric-factor matrix is positive definite.

lesser of [fg,; (z)'fgu (z)] 2 fgu (z) = fgu (z) 20

geometric-factor matrix is written out as

(5. (2) = 3870 ), (66),

B=1
C. 2 C [+ 2 C
[—-21+c3] D1q, [—l—c3] 4,
. 2 . \2
= 12 + )2 )
521'+C3 1 521'—03 1

e the p‘(,')2 and f,g')(z) are all positive, then we have

fxu(z) >0, fgu(z) >0

as required.

Atz

The off-diagonal term is
& )2 _ 2
s ® = fa® = T [ res] + A [ ]

= 0 this is non-negative (per Section III), so we have

33

8.17)

Another physical requirement has been introduced in (3.8). In our problem this means that if a
rent is injected in one wire (for an incremental length of line appropriately terminated) the voltage in
this wire will exceed that in the second wire, which though retains the same sign. This means that

(8.18)

8.19)

(8.20)

8.21)




which can be substituted into (8.21) (noting positive eigenvalues) to give
- _ 32
fou@ 2 [0 - 0] [ Lvs]

This is non-negative provided

@) - =0

8.22)

(8.23)

(8.24)

which we now make a constraint. Note that this is satisfied at z = 0, -£ as discussed in Section V. So let us

require that the interpolated eigenvalues satisfy this constraint forall -£ <z <0.

Similarly we have

At z = -£ this is zero (per Section II) giving

. 2 -~ g
0 = FU0PT [1-%-a |+ 00k [1- L]
From (5.5) we have

c? o P
= 1+Tl+c2 = [1-?’] + c+ey

RN
2 fx() 2

c3 >

I—Ezll (positive square root)

(8.25)

(8.26)




1--C—2’-+c3 >0

8.27)
1- le-—ca >0

Substituting from (8.26) in (8.25) gives

N 9 4 g ”
f222(2) = f,, (2) [—f; (\)f( N2) + f§ )(z):l (- [1—%“3] (8.28)

Noting the positive coefficient (from (8.27)) this is positive (as required) provided

h @+ 20 (8.29)

Noting that (from (5.4) and following)

L3 4  (830)
A

then (8.29) is satisfied at z = 0, -£. Accepting (8.29) as a constraint it can be combined with (8.24) to give

> £, £

')(z) £)(=e) 8.31)
Thereby giving both upper and lower bounds for the ratio of acceptable interpolated eigenvalues.
We also need to consider
= {0 g_)z a,.J 1 (=)(2) s“)z a_,T 1 (8.32)
fgu (z) -fgz,z (Z) = fl (Z)p 2 + C3 - + 2 (Z) p 2 - C3 -
Using the results of (8.27) we have
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-5+ [g-oe fg-o-

- 10 [2-

2
c
[21+c3] —1-[5—+c +1][2+c3—1]
“) (-2) [ +ey- 1] 0
Then (8.32) becomes, with the help of (8.26),

@ = fpa@ = [0) - O] [[%m]z —1]

With the coefficient positive then

fxu (2 - fxu("') 20

provided the constraint of (8.24) is met. So provided (8.31) is met we have (for -¢ < z < 0)
fx;; (Z) 2 fgz‘z (z) 2 fs;; (Z) = fgz; (z) 2 0

whi%ch is sufficient for realizability of the transition.

(8.33)

(8.34)

(8.35)

(8.36)

- Theright section (0 <z < £) is now also realizable, all the results of this section applying, provided
we *eplace the superscripts - — + and replace -£ - £. Together with the symmetry condition in (6.12) the
con#tramt of (8.31) is satisfied. Note in (8.36) the indices 1 and 2 need to be interchanged, consistent with

the T:hscussnon in Section VI.




IX.

O

Exponential Interpolation

We are now in a position to select an appropriate form for the eigenvalues matching the required

values at the ends of the sections of the transition. Various forms are possible as dlscussed in[4]. A
convenient form for present purposes is exponential as

) = i

9.1)
fp(+)(z) = eh}, )z = fs-)(_z)

1 =
of) = = m(f7(8) = -af

where symmetry between left and right sections is enforced. The constraint of (8.31) is now satisfied since

(for

and

-£<z<0)
> £2@) _ fa-ai) » £200)
e * 19y
of -of) = [b(:;i:g) 0 | | ©2)
z(as") - ag')) <0
similarly for the right section.

From [4] with z¢ = 0 for our reference coordinate we have the general form of the matrizant as

((1'4,,,,,, (z, 0;5))0'.’,) =
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(, )

Ze"‘ﬂ' cosh[[af, + 72]%2) - ——a-p——l- sinh([aﬁ + 7_2]%2’) (gn)p (P )p
B=1 [af, +7’JF |

_ie“ﬂ Y ; sinh([az +7’2]%ZJ (8x) (1)
B=1 [a;‘; + YZF ’ : o

2 1

I e A sinh([af, +77]2 z) (8n)p (1a),
B=1 [ag + yZ]E

9.3)

ie"’a' cosh[[afg + 72]%2] + '—aLT sinh([aﬁ + 72]%2) (8n)g (a),

\ B=1 [ag + 72]3 )

Here 2 can be positive or negative, so one has to interpret this result in terms of the -/+ superscripts
depending on negative or positive z. To simplify the above for later use define

Ag = —af)t = afe
2 : 2 T
I.‘p = [ag’) +72]Et = [a},") +72]7£ 94)

= [43+ b

It is important to note that (9.3) applies to the case that the normalizing geometric-factor matrix is taken at
z =0. If another reference coordinate is chosen another set of eigenvalues etc. can be developed to handle

the case. Nevertheless, by appropriate manipulations (9.3) can be manipulated into forms where other
starting positions (e.g. z = + £) can be used, such as via (4.5).

Considering negative z first, we have




B=1

B

\

2
Ze"“.lsinh
g1 T

(#26-209), ) -

B=1

(5)(et?), (W),

B=1

($ o [cosh(f,) 2 sinh(f,,)] (6, (),

3 et L sinn()(56) (7).

Ty

3 comlf 42y ), 1)

/

(9.5)

Define an impedance-renormalization supermatrix (or geometric-factor-renormalization supermatrix) as

(2),..)

(0n.n)

B=1

(0n.m)

B=1

3t (sf?), (1),

2
S H0(s0), (),

/

'
.
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9.6)




(€. o (saceon..)-

(2 oA o, . \
S coml) - g[8, 06, S Zsunly) ), )

B=1

3t Esinn(Fy) (a87), ("), ge" [wsh(f“ ﬁ)*%fsi“"("“ ,)] (), (), )

2

\ B=1 P

S Eunln)s0), (), Sen|onln)- L)), 60,

EM | ' ©7
_((C.‘;).).,,.,.) © ((a.‘.tl.(-z,o,—s))w)]' -
pr: A [cosh(f' p) + —4; smh(I"p)J ( Pax )) (h,(, )) _ ge"‘# % smh(fﬁ) (g,('.)')p (h,(r));

The inverse can be checked by multiplying the two supermatrices, using the biorthonormality of the
eigenvectors, the definitions in (9.4), and an identity for the hyperbolic functions, thereby obtaining the
supermatrix identity. Using (4.5) gives

((as,jz,(o,-z;s))w) = ((ﬁ.‘ilz("'o’s)).,,v')—z
o) o (€3.,) o (cenn), ]
(e, o (&2e0), )] o (621,.)-

B |(9.8)

St ol 6), B o), ),
B ), 0), e o)) 66, (47),
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Considering positive z second, we have

(2e0:9), ) =
( . A T- A : r- + + 2 . = + | + )
S o) -l s, ), - Fom a9, ),

L(9.9)

\-;18 A ;.;smh(l‘ p)(s), (K), Ze "n[cosh(r,,)+_ps1nh( )] (59), (s (+))ﬂ}

This is the same as (9.5) except for the change in eigenvectors from - to + type (which as discussed in
Section VI corresponds merely to an interchange of the 1 and 2 elements of the eigenvectors), and the
change of some signs. Carrying this through we have

((es2),..)

( A

(Tm)  (Onm)

On) 3 (6), (49),

\ p=1 /

( \
(m)  (Onm)

0ur) - S0(60), (),

\

(#2029),,) = (20e09), )"

ze-ﬁ‘[cos’h(r )"—s“‘h(r )] (g(+)) ("57)) Z"A' %:-Sinh(f’ )(gS,*’)p (h,‘.")); (9.10)

B=1

S Banln)s), (), B[t om0, 00,

\ B=1 Iy b B=1
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In (4.8) the matrizant for the compound transition, involving both left and right sections, is
introduced. This involves products of the separate matrizants already exhibited in this section. The
representation is straightforward, but unfortunately the eigenvectors are different in each case (due to the
1,2 interchange of the conductors), and they are not in general mutually orthogonal. So products of left
and right eigenvectors appear, and instead of a single summation over f, a double summation (over say
B. B’) appears.

Consider first the scalar products for the same s, for which we have

(), - (e27), = (1), - (sF),

1 1
= p§ ¢
—EZL + C3 —% - C3
2
= ) qg,) [1_%”3] 9.11)

1
= i) g [2+¢,) = i-z-ga—[2+c2]

These pairs of vectors can be orthogonal provided

£ g e
0= 2+C2 = 2+}§’—“7[5—2;3;y:|

%.12)
fo)
e

i.e. for a certain relation among the geometric factors. Let this relation define a special case for the balun.
For this special case the roles of the two Ss are interchanged on passing through z = 0 and one has a
common set of eigenvectors for the entire balun. Note that the two vectors above can never be parallel
sincec] andc3 are both positive.
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For the scalar products with different Bs define

B. = 3—-B (complementary eigenindex)

B={i=p={

so that we now have

where the coefficients are found in (8.9) and (8.10). The common factor is

The

(), - (&), = £ af’ :
) \-%— tey 221- Fc3

2
= i) af 1-[5211%] ]

(), ), - 7

2
- Ao 1-[§ 0] |

2
1—[—‘:21-ic3] = [1+£21-:tc3] [1-521-13@]

first factor is non zero (and strictly positive) from (5.7). Furthermore

1
2 2
c3 = [[1—521] +c + czI # 1--52L
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(9.13)

9.14)

9.15)

9.16)




f(in)

c,+c2=7(7;;>0 9.17) O
s .

Hence the products in (9.14) are non zero.




Special Case of Inverter

A matrizant can be constructed for the entire inverter (-£ < z < #) as a single section through the

construction of an interpolation matrix via

(£208) = (o) - (fun(-0)”

( ou
. fg(ou!) fé t) fém) _fg(out)
= ) floun) , ' .
fe f3 S g gl | g gl glow)
( (in) £ (out)
1 0 fo'fg
) £ fm) | o) (@2 , o glin) plout)
\‘fg fg fx +2f3 fg

0

:

u

1

|

+ 1 = cosh(c;)

2,

e
(10.1)
det{(£2(0) = 1 = £2@) £

r((A200)) = 22 = 20 + 220

where a superscript 2 is used to distinguish this special case. The eigenvalues are

with

2
B0 -2+ 1=0
féz)(() =c ¢ ci—] = % (10.2)

fl(Z) (l) = eZc;
£3()

h both evidently strictly positive. Exponential interpolation of these eigenvalues gives
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) = 8 [z+4]
of) = Len(sf() = s ' (103)
- =1

which are also strictly positive. Note now that z = -£ is taken as the reference coordinate, although z = + ¢
would do as well. The form at z = 0 is constrained (not specified a priori) by the interpolation.

The right eigenvectors are
0 1
(69), = 0 (),
-1 2,

- 50 + 8 =
-8 + [254 2 (l)]g(z) =0

() A
&3; -1
o = 0= - )

,

1 1

(104)
(s9), = ol Py .
fp (0 et

p§ = normalization constant .,

The left eigenvectors are
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Bior

Nor

0 1

@W,L ]=ﬁmwm

1 ZC‘
- 0 WY - ) -
Wp + 220 - 2] WG

At -
iy = 80 = <[ - ]

1 1
( h,(,z)) = 41(32) = q‘(’z)
P e

q},z) = normalization constant

=t

thonormalization gives
( (2)) (8(2)) =15

(1), - (&), = 7§ 4§ [I—féz’z(l)] =1

P2 g = [ - (,)] = [1-e2*

= F 2% sinh™ (c5)

inbics) = [ -1

malization via the geometric-factor matrix gives
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(10.5)

(10.6)




(52), = (42), - (fen-0) = (50 (-2) - (8 W),

1

(35'2))13 i [ﬂz)(l)J = (fen(-0) - (57),
P

. [fx“'"*ff}"‘" ) (1
= 45 .
fg(M) fg(out) _ f§2) ( l)

fg)_ (in) , ¢(owt 2)
= £+ £ [1- 1200

s
5 1
7’7@[ -5
@7 _ f(md)
e e e

o B ()[1 0] [1+4, O Y

So both normalization coefficients are real as are the eigenvectors.

As before the interpolated geometric-factor matrix is constructed as

2
(fun @) = 2570 (s), (),

B=1

390

2, g () [ ! fé”(z)}

PO 0 g i
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(10.7)




(10.8)

The terms in the =1 matrix evaluated at z equal the corresponding terms in the =2 matrix evaluated
at-z. Summing these two matrices gives an even function, i.e.

(foun <2) = (£,.. ?) (109)
consistent with the previous two-section balun.

Considering the realizability conditions, besides the positive eigenvalues we have all positive
elements. Furthermore we have

1@ = St
2cosh(75) B=1

_f& i:p e‘[“"‘ﬁ;'] smh(.ci)

¢ 2
h{ =5 | p=1
cosh( %
.. [c
- 9 w{oon(3 )
(10.10)
20
|a,,z| < -Cis- for-£<z<¢
with a similar result giving
fe,(D-f3,,(2) 2 0 (10.11)

so this interpolated geometric-factor matrix meets the realizability conditions discussed in Section V.
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At z = 0 the geometric factor matrix is O

(f,... (0)

3 [ J

2coshi -Czi l?-:-d 1 &%
N/ ) (cosh(c5) 1 '
coshi Cs ] 1 cosh(cs)

2

This has equal 1,1 and 2,2 elements as required by the symmetry in (3.6). In addition we have the ratio of
elements which can be related in each case to give

(10.12)

O
f1a(0) L
fua®) ~ ) = S+ 1= 4 1
2
(10.13)
f(w) _ f(¢) 1
= O

which is precisely the relationship in (9.12) for the special case of common eigenvectors in the left and |
right sections of the inverter. This is not enough by itself to uniquely specify f}‘) and fg(‘) in terms of

) and f{™). These need to be scaled so that the exponential interpolation (for the entire -£ < z < ¢£)

gives the parameters at z = 0. Alternately one can use two different interpolations for the two sections of
the balun to obtain another degree of freedom.

To complete the specification of the parameters at z = 0 for the single exponential interpolation
we have




f(tn)

COSh(C5) -Z—frm +1
g
- 1 1
cosh(fi) _ | cosh(cs) + 1]3 - [c4 + 1]} .
2 i 2 2 (10.14)
- (i) 1
f" 2
= 1

Comparing (10.12) to (3.6) we have

So t

inte

C5)+1

cosh| =
2

~

f;
= £ [z;mr
cosh(cs
79 = 2[f,,,0)- ,,,0)] = 26 i o)
2 (10.15)
(@) -1
in 2
_ | s
the beginning and ending conditions (z = ¥ £) constrain f}‘) and fg(") at z = 0 for the exponential
rpolation for the entire inverter to apply. For large ratio of outside to inside impedance we have
(€) _y flout) ~ ld) _, ¢(in) fél.n_)_
&£ o fg as f(m) -0 (10.16)

|
{

93

ch is a kind of constant-impedance condition through the inverter.

With this exponential interpolation as in (10.3) the matrizant for the inverter can be written from

) as
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A = 200 = 1%5, AP+ AP =0 : O

1 1
I-.éz) = [[20!,(;2)!]2.4.[27[]2]3 - [A‘(,z)z . [27!]2]3

(( Ch(t-t:s)) )

\

(2 i AQ - , , )
Euﬁn[cosh réZ))_ Kliz)sinh( réz))J (gslz))p (h,(.z))p _Z:leag) K)f) sinh(l“(z))( g(z)) ( (z))

TGN, G|l o), ),

\ B=1 =1
(10.17)

where the starting point (boundary condition) is taken at z = -£ instead of z = 0, a simple shift in (9.3). As
in Section IX define an impedance-renormalization supermatrix as

(@).) O

( \

(Zm) (On.m)

(0"‘") Z ezA(z) (g(z)) ( (2))p

\ B=1 y

( \

(Znm) (On.m) 1019
On) 320 (69), (49),

\ p= J

from which we obtain
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\A=1

ie"“g) 2

—-(7-:)- sinh

2

(3 @
| Ze"‘g) [cosh(f‘éz)) + As sinhi
B=1

=(2
g

)6, ), S

| ((1'4,(3-(-1,1;5))0’”,) = ((ﬁff,),(l,-g; s))v,,,,)-z )

(fé”)} (62), (49),

B=1

53

)

Ze" smh(ry)) (6), (42,

[cosh(féZ)) A:: s mh(l'(z)) g(z) (2))p

(10.19)




XL Boundary Condition at z = -¢

At the input to the transition section (z = -£), one can define an input-impedance matrix (2 x 2) via
(Vu(-4.5)) = (Zam(s)) - (Tu(-2. ) ‘ (11.1)

with current convention to the right (increasing z) as indicated in fig. 1.1. As the particular form of this
impedance matrix depends on the details of the transition section (to the right), the superscript is here left
blank, to be specified later by the particular case under consideration. In this section the same convention
is used for other related parameters corresponding to the transition section and load to the right.

Consider a wave incident from the left (z < -£) as
(7)z.9)) = Zu(f;,..(-0) - (1¥)(z.5)
= (V) 0,5)) > 112)
(1(z,9)) = (i%)0,5)) e
Here the excitation takes the form of a wave in the inner coaxial region (¥, < ¥ < ¥, infig.2.1) as
V®)(z,s) = Ve™* = Z, £l 1@ (2,5) (11.3)
The current is interpreted in the sense of I7, and voltage in the sense of V1 - V2, i.e.

V)(z,5) = Vi) (z2,5) - 7" (z,s)

(114)
1®)(z,5) = 1™)(z,s5) = - I§™)(z,s)
and since there is no incident wave in the outer region
Has) = 0, 1¥as) + 1*zs) = 0 1)

In vector form this is

O




Vi) (z,5) = V,r® (g)

(11.6)

=(ine 1 , = 7 {inc or# 1
(19%e9) = 2 oun ) (H09a) = 325 ()

At the input location (z = -£) there is a scattered wave going to the left given by
V,S“’(—t,s) = (En,m (s)) ) (‘-,’SW)(-LS))
(5',,,,,,(3)) = scattering matrix at input 11.7)

(V)z,9)) = - Zu (f,.. (-0) - (1%)z.5))

Thé total voltages and currents at the input are

(7u(z.9) = (74-2.9) + (7-t,5) -
= [(tm) + (Sum®)] - (7(-2.9)
= (Zam(s) - ((-29)
i = (Zam(s) - [ -25) + (-2.9)) 118)
’ = (Zunt®) - [(tm) = (funt) " - (Sune) - (s 1) - (12)

'I'hei scattering matrix is related to the input-impedance matrix in the usual way [2] as
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- [(1,,‘,,,) +(2,,.(-0) - (2"'"'(5))-1]. |

JSRCRORCROY

in any order in (11.9). This can be rewritten as

with the right-side terms commuting as before.

(Zum) - (Zetn 0) = [(m) = Bum®)] [(m) + (Bume)

(11.9)

Noting the commutation of the “numerator” and “denominator” matrices, the above factors can be taken

(11.10)

Included in the scattered wave propagating to the left is a wave in the outer region
(¥, s¥ < ¥,). This propagates into a resistive load Z,, £{™, and is the only wave (i.e. no incident

wave) in this region. The effect of this wave is included in the scattering matrix introduced above.

A scattering parameter of interest concerns the wave to the left in the inner coaxial region

(F, s¥ < ¥)as
VU -t.5) = U t,5) - AP -t,9)
= 8(s) V(0,9
= 8(6)[™-t5) - 7(t,5)

16)(=t,s) = 1{*(=s,5)

— §(s) I)(—g,s)

- 3(s)[1{™-t.9)

(11.11)




O

This is the scattering directly back into the source which is driving the transition. At the input then we

also have for the inner coaxial region
‘ Vi (-t,5) = Vy(-2,5) - Vy(-2,5)
= Z,(5) ") (~4,5) = Z,(s) Tn(~4,5)
Z,(s) s input impedance at coaxial port

1
\
|
;
i

The?e can be related to the incident wave in the coax as
VE(t,5) = [1+5(s)] VEI-t,5)
10)(=t,5) = [1-3(s)] 1®)(-s,5)

e zin(s) -Z, fg(h)
5(s) = = -
| 20 2@

= reflection (scattering) coeffient back into input coax

B XCEEN R

(11.12)

(11.13)

Having the scattering matrix in (11.9) one can obtain the scattering parameter for the coax in

(11.11) via

(‘.’»5")("65)) = (gn,m(s)) : (",,Siu)(__"s))

Voe® (3,,u(5)) - G,)

[
S
R
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Ve -t,5) = 7 (-t,5) - Vf*(-1,5)
= Ve [51,1(5) - g2,1(5)]

= 5(s) Vm)(-g,s)

(11.14)
= 5(s) Ve
8(s) = $14(s) - 824(s)
From (11.9) the scattering matrix is
(Sum®) = [(Zant8) - (2o (0] - (1,0)]
[2ante) - (et )]
= [(Zn,m(s)) - (Zc.,. (_l))] [(Zn,m(s)) + (ZC.,. ("‘))]_1 O
= [(Zom(@) + (2., ) - 2(2.,..¢-0)]
-1 (1.
[(20mte) + (2.,..¢-1)] o
Writing out
(2untc8) = 2595 5+ 4 ) wie

then we have (including reciprocity)

= (In.’n) - Z(Zc.,.. (—l)) ‘ [(2.-1(5)) + (zt:.,. (-‘))]—1




O ‘ (gn,m(s)) = (In,'n)
Zc.,. (_t)) *

" a{n) + o))

01 -1

= (Tum)

Z
2 va ) 2,2(5)
+

‘  de{[Z,.(5) + (2., -9)) [fg [o

|
This gives the scattering coefficient from (11.14) as

2z, £

S(s) =1 -
® det{(Z,,n(s)) + (2, (~2)

V

anditheinputimpedance
5 (5) =z (o 1256) _ 5 e[, 2 |
B - 2 -2 e oy

, def(Znt) + (2., -0)|
Z, f; .22,2(5) + Zy fg(w)] ]

= Z,, f@) [—1

Noding that
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2z,z (s)

[_

00 1 -1
+ zwf}‘"’[ ] + Z, f,‘“‘"[

- (Zy8)-Zi(8)  Zya(s) - Z4,2(5)
+ flo)
22,2 (s)- 21,2(5) Z1,1(3) - 21,2 (s)

10
+ Z, £ f,“"“’[ ]
01

jlaa 287

(11.17)

(11.18)

1119)




det((z,,,,,,(s)) + Z, f}"n)[; (())J + Z, f}"“"G ;D

(11.20)
- getl (3 z, plen(1 1 QI (out)
= det (Zn,m(s)) t Ly fg 11 + Zy, fg [22,2(5) + Zy, fg ]
we have an alternate form for the input impedance as
= 11
de{(zm(s)) * féM)L 1])
Zin(s) = 112y

Z,5(s) + Z,, fi™9

Note that this is just the reciprocal of the 1,1 element of the inverse of the matrix of which the determinant
is being taken.

Complementing the scattering coefficient back into the inner coax, there is also a wave launched
back into the outer region (¥, < ¥ < ¥,) as

§w(s) = &‘S:T,s) = §2J(s)
(11.22)
_ . £l lzz,z(s) - 21.2(5)]
de‘((zn,m(s)) + (zc,.,,, ("l)))

Note that the characteristic impedance for this outer region is in general different from that of the inner
coax. So this formula has to be interpreted in the sense of voltage; and power will include the different
impedances.




XI.  Solution for Single-Ended-to-Differential Balun

Specialize now to the case in fig. 1.1A in which the transition region covers only -£ £z < 0 with the

symmetncal two-wire transmission line (as in fig. 3.1) continued to the right. Since the wave for z < 0
propagates only to the right with a constant characteristic-impedance matrix we have

(V.(0.9)) = (2.,.(0) - (1x(0.9)) 2.1
As dlscussed in Sections II1, V, and VI this matrix can be written as

(2.... @) = Zu (£,... @)
(d) -
Y (_ ! 11) + 2, 0 C ;) 122)

= Z.Z(S(-)) (g(-))

B=1

Not{'e “~" superscript corresponding to the diagonalization of the left transition section.
|
From Section IV we have the voltage and currentatz = -£ as

Y

(f’,,(-l,s))
= ((#M-20:9) )@
| (2.,..0)) - (i..(—l,s)) (( )'w)

(¥(0.5))

\(zc,, - (0)) : (in (0' S))
(123)

((\7,, (o, s))

= ([#M-20:9) )@
( ’ ) \(f',,(o,s))

Wﬁﬁng this out in terms of the matrix blocks and eliminating (V,, (0, s)) gives

i
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(Va-e:9)) = (280(6) - (ut-2.9)
(2,(,1,) (s) [ ) (-2,0; s) u( ) (-£,0; s)) ] -‘
. e
[u(') (-¢,0; s) u( )(-l,O;s))u]

) (zc,, - (0))

where the matrizant blocks all have common eigenvectors so that these terms commute. Note the

superscript “1” to designate the input-impedance matrix for this case for use with the results of Section
XI. :

From (9.5) we now have the impedance matrix as

(#20)
. cosh(fy) + X228 s
= e £ ) &) L. Z, (0
‘en (12.5)
) cosh(f‘p) + ; 2 sinh I
- 7R s (sO) (w0
R L
The transfer matrix through the balun is now found via
(P(-2.5)) = [ ) + @) - (7-2.9)
(7(0.5) = (F() - (7(-t.5))
(12.6)

(FO6) - [(tm) + (SR - (7al-2.5)

(7',?2,(5)) = transfer matrix




O Froﬁx Section IV we have

[( (‘-’"(O'sf) ]= ((af,;’..(o,-l;s)).,,v')@[ (‘.'"(—l'_s)) }

z,,,.0) - (1.(0.5)) (2.,..(0) - (Tn(-2.9))

 (7009) = (h0-89),, - (al-tes)) + (#AOL5),, - (2,.0) - (l-t9)  a22
- [(as,;’,(o. -4:9),, + (@h0.-49),, - (2.,.0) - (zs:z,(s»"] - (al-29))
which gives the transfer matrix as
(1) = |(#h0tis),, + (#hO29),, - (2..00) - (2]

- [(t0m) + (30205)

In computing the scattering matrix it is convenient to use the eigenvectors for which we have

(12.8)

(Barn-) - (2...0)" = (£20-0) = SA0(e), (),
> (12.9)

= Zeu’ (g(')) (hn-))

B=1

From which we obtain




(Z06) - (2., (-0)" = [(ﬁﬁt,’..(-tIO:S))u + (@2(-0.09),

: [(agjg,(-z,o;s))u + (agj,),,(—e,o;s))m]" - (z.,.0) - (z.,,. (-())-1

Y -Ap

) cosh(f‘p) + sinh(1

= (i), ()
B=1 cosh(f'p) + 2‘Te—smh(l“,) P s

B
Then from (11.9) we have
2 mh(1‘)
2 T B g g
(36h6)= 2 (), (W),

B=1 cosh( ) ( )
(tom) + (gg}u(s)) = 2(25,{2,,(5)) (2 (- t))"l
' [(2"'""5)) (2. (-‘))"+(1u,...)]—1

, cosh(Fy) + E=28 in(f)

) ﬂzs; cosh(I‘ ) + -:-’-smh( ) (g(‘)) (h’('“))p

Recalling the matrix blocks from (9.8) we now have

(12.10)

(12.11)




= . |

O (- {ie—Aa[cosh(f,,) —sl ), (4,

15 e bl ),,: - (2...0) - (z.ez..(s))—l}

S(l) s))]

i 1S etfcon(ty) + E= ()] (), () () + (2660
[ | & Y77, S B Al I el I PP
!
| -1
‘ —ée A‘[cosh(r ) + -—-smh(F p)] (85.'))'3 (hf,'))p

From Section XI we have the scattering parameters (to the left) and input impedance as

’ 506 = 5{)(6) - 5)s) , 380e) = 35306)

O | (12.13)

1 + 50)(s)

7D(s) =
Z2e) = 1 - 54(s)

|

|

In alddmon we need transmlssxon parameters to the differential and common modes (to the right)

respbchvely as
k T0(s) = V1(0,5) - V,(0.5) _ %(0.9) - 7,(0,5)
! d e-ﬂ[f,l(mC)(_ L s) _ f,z(mc)(_l' s)] Vo
= [526) - 736)]
T(I)(s) VI(O S) + Vz(o S) V](O,S) + VZ(O,S) (12.14)
"‘[V(”")(—l s) — V(s s)] 2V,

11- -
= 5[H26) + 7))




Note the factor of e™to remove the delay through the transition (for convenience). Also remember that
the impedances for these two modes, as discussed in Section III, are in general different from the source

(input coax) so the above coefficients correspond to voltage, not current or power.

Consider the behavior of these various parameters for low frequencies. This is aided by the
equivalent circuit in Fig. 12.1. The output twinline is represented by a tee network, but a pi network is
also possible. Note that, by separately considering the differential and common modes, the correct
respective impedances are obtained. By the usual circuit manipulations we find

5 1 @ 2 1
Z,f,?(O) =2, "fg( *lva t 7
2 @ £ 4 £ — 21O

) @T!”
-z, f(-v){ [2%3. + -;{EI}
8
- 2 z(l) 0 flin) f(""‘) f(‘)
1430 = g e - 2{“ i f?‘

20 () _ Ve0)
Sax(0) = Vi(-¢, (;) Vy(~¢,0) [1+S(1)(0)]

O T
——EW[1+S (0)]

T0(0) = 1 + 3D(0)

,j,r,c(l) ( 0) - % VI(O,S) + VZ(O, S) [1 + g(l)(o)] (12.15)

%(0.5) - V(0.9)

- 3 7t 1+ 0]

From our eigenvector expansions, for low frequencies we also have

O




© 1,
g 3% !

ol

I1+1 _
input output
balun nline

é Fig. 12.1.Low-Frequency Equivalent Circuit of Balun
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Feo=E e 2] o
ST N A

Iy = [Aﬁ + [71]2]7= Ag [1 + O(sz)] as s—0

(20.6) - (2...0)" - g""’ [+ ol (s8Y), (1),

Z ) (s5), (), + 0ls)

P=1
= (f0)" + o)
. (12.16)
= (f5a ) - (£ (-8)" + Ofs) as 50
(Z05) = 20 (£, (0)) + O6) = (2.,,.(0) + Of) as 50

so the low-frequency impedance matrix is just that of the transmission line to the right (the load) as one
would expect. The scattering matrix becomes

(£206) = St (57, (40), + 0

- i 1-f5(-4)

B =1+ fé‘)(_‘) (g’('-))p (h’('—))p + 0(s) as 50 (12.17)

-~ 2 " -
(Lum) + (S&’Z,,(s)) 2 m (gg ))p (h,(, ))p + O(s) as s—0

This can also be represented by inserting the impedance matrices directly in (11.15). The transfer matrix
becomes ‘

() = [(tum) + (35066)) | [(tnm) + O]
(12.18)

=R f(-)( ?) (3'('-))5 (h,(,‘))ﬂ + O(s) as s 0




This is physically reasonable in that at low frequencies the voltages at z = - and z = 0 are the same.

Recalling

- (- e §
(), ()= = [] -

1 —? tc 3
(12.19)
)
the wi{(arious matrix elements can be computed. Common combinations include
(g) £ )
70 (-0 = 'ﬁz)—fgw
(W') (in) [ £(c)
O + g = -;(7[1 }%;7[% 4]]
o) f(in) flin)
[+ 0]t + 0] = 1+ [P0 + )+ 0 (1220

f(mﬂ) f("") f(ﬁ) f("n) f(ﬂﬂ)
o M- e i )
fs fi 41 5

=1+

|
Then we have for low frequencies
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T6) = 1+ 39(s) + O(s) = 1+ 5{Y(s) - 50)(s) + O(s)

2
=[TOs) - TE) e = Y+ !
1,1( ) 2,1( )] Z:I 1+ fé—)(") c3

={[1 + f,(')(-l)] [1 + fz(‘)(_g)]}—l { z(')(“);fz(")(-f) [1_ %1 ]

v 24 ft) + fz")(-l)} + Ofs)

- ~ -1 | flow) £ g £
~{r + e[t + A2 {;éo [1‘ o [‘4‘ o H
+ 2 {960 + 0l 0 1221
(out) -
= 2{1 + [fg!(c_)} {[1 + fz(')(—l)] [1 + fz(')(—l)]} ' +O(s)as s—> 0
which can be shown to agree with (12.15). We also have
2, 1-f(-0) 1

5(1) s =§(1) s)= )

+ O(s)

[1- 19C0)[1+ £2-0)] - [1- 0] [1+ £-0)

2C3

=+ Fe0)- o]
+ Ofs)

- [ 100 e ] EEEAZECED o
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=- 7_ {[1 +f, H(—-t)] [1 + fz(') (—l)]} + O(s) as s—0
796 = 3 [1206) + 79] +0e) = 2[F) + 23§)e)] + 06 - @2
= {[1 + fz(_)(“)] [1 + fz(')(-—t)]}-l + Ofs) as s -0

con{pleting the low-frequency expansions.

Turning now to high frequencies, consider first the scattering from the input port of the balun for
which we have for s — « with Rels] 20 (i.e. in right half plane including jo axis)

Iy = )l[l + O(s‘z)] as s— oo
Apg1-¢ 2% -z—ic3-1

850(s) = 50(s) - 3%(s) = i: 5 + 0[s?)
C3

B=1

1-e2¢

{ [4;+ 4] + [A; - Az][ ]} + 0fs?)

- {_ £ £7(-0)) + "{ ST )] [1' fff:’ [% ' %ﬂ}

. + 0(5-2) as s—>oo

50(s) = 50(s) = i; AP1 - 1 O(s'z)

= A CSAI - ofs?) (12.23)

-)(- —ee
P
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So the reflection from the balun, both inside and outside the coax, behaves like (7!)'1 times some

coefficients which are only functions of the geometric impedance factors. Unlike the low-frequency O
~ results, these involve more complicated functions of these factors. Being a smooth taper it is to be

expected that for |y£| 21 the reflection should be small and — 0 as s — . Note also the factor 1— e",
the second term of which represents the reflection from the output at the balun (z = 0).

Next the high-frequency transfer function through the balun for the differential mode is given by

C’ Lte-1
- - 3
76) = [{000) - He]* = et 22

=1 2¢3
L]
- 2¢ R f(out

- i{ff(fm : [ﬂ-ﬁ (~0)- £ (-z)} By ’(—t)}+0(3'1)

C3

+0 s")

"’(—t)}r“’ (- l)-[~2+ ff‘ fz(—)(‘l)} #3( l)}

-1l f“"“ ot [ - g+ of) O

1[ 9 6O (aTE fz"’(—t) f‘"(—l)
SR Ny
e ] | AP

f()

=@ [ rea AR ][ D)+ 0+ 2[00 -0 }

+ O(s")

Nlo-

f}w) fg(‘) % fém) f(m) f(C) f("') fg(w) fg(d) %
[fé" fé‘"’] 2 [“ YoM Sr oyl

+ O(s")




N

in in in + (c c) ¢(in
£ || O£ 269 e

1 1
O : [ £ I “[ flo) @ r flo) 0 g0 +1+2[ gl 4@ ]2

+0(s7)

- 1 2 E

f(d) f(w) f(d) flowt) fd) 12 @
1+ 8 4 4 -1
[ f('"’]' [ @ | T | |t @ ofs)
1 (12.24)
@ T2 (d) T 2
f d fd f(wt) f(d) 2 _
[F"T 1+ 2;8(6) 1+[;g(c)f§') +0[s l)ass-)eo

whei‘e we have used the product and sum of the eigenvalues from (5.2) (determinant and trace) to obtain
this explicit result in terms of the geometric factors. A case of interest has

O ! fg(m“) s> f}d) , fx(C) >> féﬂl)
|
lim f; Q
e T“’(s)-’[ff as f{*) e and f) > 225)
\ f(M)
% with =— constant
| F

This is just the result for a tapered-transmission-line transformer, i.e. the square root of the impedance
ratio (at high frequencies). Also from (12.24), noting that the impedance factors are all positive, we have
the genad result

0<, fim " 1) < [—’%—I (12.26)




As we have already seen, the reflection at the input (both inside and outside) is negligible at high
fregencies. By (12.24) not all the power goes into the differential mode; the remainder must go into the O
common mode. The high-frequency transfer function for the common mode is given by

TO(s) = %["1"1(1}(5) + '(1)(5)] e¥ = Zi o + O(S-I)
s

()
= ﬁ .fg(ﬁ_ [f(‘)? (*l f(“)z (—l)] 0(5-1)

£ "(—z) f"(—l)

= + Ofs
anf( ) (-)2( -0+ f(-)Z( 1)

-1

[f}"% -0+ £ (—e)]_ + ofs")

N~

1
- %[ﬁ“’(—l)+fz‘"(—l)+Z[fz‘“’(-t) fz‘"(-e)]fr + 0[s)

1 (12.27)
17 2
1 f(d)] [ f(W‘) f(‘)] f@
= S| 1+ E£ + 2=l +0(s7) as s .
2[f() @ ||t 2@ ()

where the last several steps follow in the same way as in (12.24). In the same limiting sense as in (12.25)
we have

1

g 1
im . f(‘) flow) f@) 2
S—oo (I)() _) ol 1+ ﬁ as fs(M)_)”’ fxw—)“
fs i fs
(12.28)
(out)
with -;-(7)— constant
g

Noting the orthogonality of the differential and common modes on the twin line let us add the
normalized powers as O
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O o]l m]

— oo fx(‘) §—>oo0
1
172 17 "2
i = 1 1+[f“('mt) fxw]i 1+[f§M) fg(d)]z + féd)
e ||l | e
1
(d) ) 4 () 2
d (out) £(d) 12 d
__"(fi) @1t bk ) {:-) i G
2 ) g £ £ 2 (12.29)

=F

WM& is the normalized power incident from the coax.

O




XII.  Solution for Special Case of Inverter

In Section IX the eigenvalues were constructed using exponential interpolation for the left
(£ <z<0)and right (0< z< ¢ ) sections of the inverter (transition section). There it was observed that one

could construct a solution by multiplying certain matrices which had different eigenvectors, thereby
introducing various additional cross terms. If, however, a constraint as in (9.12) is imposed the
eigenvectors are common to both halves of the transition, thereby simplifying the results. Furthermore, in

Section X it was shown that an exponential interpolation for the entire transition can be constructed,
further simplifying the formulas. This constrains both fé‘) and f}‘) at z = 0 via (10.15) in terms of

fx("') and fé""') which characterize the structure outside the transition region. Let us now consider the
solution for this special case for the geometry in fig. 1.1B.

The wave leaving the inverter to the right (z 2 ¢) is characterized by a characteristic-impedance

matrix as
(Vu(e,9) = (2..,.(0) - (Tae.5) (13.1)
As discussed in Sections II, VI, VIII, and X this matrix can be written as

(zc.,, (l)) = zw(fg,, - (l))

11 (0 0 :

2
- 2 34, ()

Here a superscript “2” is used to designate parameters peculiar to this case. We also have

(F200)= (£ @) - (fon(-0) = gez‘g) (s7), (%), 133)

so that the normalization is taken at the left end of the inverter.

From Section IV the voltage and currentat z = -£ is
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~ (134)
g

Va(t:5)
= ((ﬁff.’..(—lrl:S))M.) ) | )_1
(Ze0n 1) - (2o, (0) - (Pales)

In hérms of the matrix blocks we now have
\ (ees) - (2200) - (t-to)
‘ (#0) - [#henn),, + (Easss),, (fon®)”

u(2) ) (-¢,¢; s)) + u(Z) ) (-24,4; s)) (f,,,,,,(t))_l]—l

O - (2.,.(-9) (13.5)
(2, (-0) = z., z(g(z)) (),

B=1

From (10.19) the impedance matrix is

(Z82(s))
cosh{F{?) + 21 . 2’)‘5) in(F{2
2 Iy
(), ), ()
p=t cosh(l‘(z)) 2o sinh(7§?)
2 (13.6)
(7 +2ﬂj 4 sinh(F{?
 _z , Cos ( B ) 52) . ( B ) (g(z)) (gf,z))ﬁ
O e




The transfer matrix through the inverter is now found via ‘ O

(7a-9) = [(10m) + (3206)] - (7-2,9)

(7a(e,9)) = (7h6s)) - [(1,, +(52 (s))] \ASD) 137)

(T,fz,?,(s)) = transfer matrix

From Section X we have
V,(¢,5) V,(~2,5)
(7te9) ((ﬁff),,(l,—t;s))v v,) ® ( )
(2...-0) - (L.(e.9) T (2 0) - (T-2s)
(Va(es) = (ﬁs,fz,,(z,-z,-s))u- (V,(-e,;)) + (a,(,fz,,(z,-z,-s))m- (2.,..(-9) -:(T,,(-t,s)) (13.8)
= [(ﬁ.‘f.l.(l'-l"S))m + (ﬁif?..(lr-!:S))m- (Zc,.,,, (-l)) . (2.‘5.’.(5))-1] : (‘7,(-!'5)) O
so the transfer matrix is

(T2() = [(afsz..(z,-e:s)),,, + (@h(e-t9), - (2,.¢-0) - (zsfz,<s>)"]
(13.9)

[(m) + (32206

From (11.9) and (13.6) the scattering matrix is




O

O

ég sinh (I‘(z))

2

52.(s))= @) (12

( (5)) ﬁzﬂcosh(l“p(z))wl_?@sinh(f“}z)) (3 )p (hn )p
B

- 2+ AY
osh (I B
2 © (r” )+ "(2)

(tm) + (55006))= 2,

=1 cosh (r"’) (’f)smh (r}”)

sinh (f‘éz))

(82 , ()

The transfer matrix then is

2

(126 = {3308 o ) o 1) ), ),

[iw 35 1600, ) 20|

)+ (329)]

¢

B=1
-1

38 [msh (1) 25 (rw)] (), (49),

As before the scattering parameters (to the left) and input impedance are
59s) = 530) - 584s) . 38(s) = 30e)

1+53)(s)

226 = 15,

For the transmission parameters we have

ie&[wsh (F)+ 2’“"5 (rf’)]-l(gsf)),(h?’),}-[(1,,.,)+

(13.10)
(326

(13.11)

(13.12)




F(s) = V(t,s) - Vy(t.s) _ Wules) - %(ts) e
in e [",l(mc) (_ L s) _ Vz(mc) (_ L S)] v,

- [£86) - 78(6)] &
= transmission to inside of output coax

A _ Wits)

(s — , :
ot (5) e-ZﬂIVI(W)(_l' 8) - Vi")(~s, sﬂ v,

(13.13)

T2 &
= transmission to outside of output coax

Note the minus sign for T{?)(s), associated with the use of the center conductor (conductor 2) of the
output coax to define the output voltage; this gives the meaning of “inverter”. The factor e?¥ is used to
again remove the delay through the transition (for convenience).

The equivalent circuit in Fig. 13.1 can be used to aid in the analysis of the low-frequexicy behavior
of these various parameters, for which we find

. 1
ﬁ%=a{i+—%}
12"

| , @ 17
= Z, f{™ [1 + %]

2fg
< 278(0) fo T
1+ 590 = g ez @ = 1t e

Vy(-£,0)

&2y =
%@'W%W%Hm

[1 + 3(2)(0)]

-3t + 590)]




1 —_ 1
) (in)
Zy, ———> Zytg
2 2 (out)
vV prm— wag
16}
(out)
fg
0 0~
—\/
Iy + I o B
w_t_J ~— — —_—
inpu
= - oo

Fig. 13.1. Low-Frequency Equivalent Circuit of Inverter




D0 = -[1 + 39(0)]

(13.14)
780) = 320)= -1[1 + 39())
From our eigenvector expansions, for low frequencies we also have
00 = e = A7
) 1
P = [Agz) + [214]2]2 = Ap [1 + O(sz)] as s—0
2
2) (s)) . )\ I Y @) (n2
(20206 - (e = 25el1 + 0] (6), (),
2
..2 f(z)(l) (8(2) ( (2)) O(s)
B=1
(13.15)

- (£200) + 06 = (5 (0) - (5._(-2) + Ofe
(2,(,22,,(3)) =Z, (fg_._ (t)) + 0(s) = (Z,f.'_ (t)) + Ofs) as s—0

Again the low-frequency impedance matrix is that of the transmission line to the right (the load). The
scattering matrix is

(30) = o)), (49), + 00
B=1

- 7_5_% ( gslz))p (h'('Z))p + O(s) as s—>0 (13.16)

(Tom) + (S(z) (s )) 2 ;2{;[)([)1 ) (h,(,z))p+ Ofs) as s—0

The transfer matrix is
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(f20) = ,,Z Zf?e)(l)z( @), (W9), + Ofs) as 50 (1317)

Recalling

o), 1), - )P0

(13.18)
1 1 1
e (o))
the {;rarious matrix elements can be computed. Then for low frequencies we have
1) = - [1 + 39(3)+0fe) = 1+ 506s) - 50e) + 0(s)
= -[f26) - 1)
sz)(t) , 26247 224
=-2r——+00)=- - + O(s)
Zi[lf’(z) +1] i [eui” + 1T [e-“?’ + 1]2 i
= 4[ N T+ O(s) = —2[1 + cosh(cs)] + Ofs)
2T
= [1+4§M)I+O(s)ass—)0
2 (2)
50(s) = 50(5)= -y S _
) = 53 ;[ Po-T
= -31(9) + Ofg) = = 2[1 + 50(0)] + Of) a5 50
(13.19)

TE(6) = T(s) e = 33(s) + Ofs)

= —%[1 +‘§(2)(0)] + O(s) as s 0




completing the low-frequency expansions and showing the agreement with the previous equivalent-

circuit results. O

Turning now to high frequencies, consider first from the input port (back to the left). For s—
with Re[s]20 we have

f‘}z) = 27{[1 + O(s'z)] as s— oo

2
5@)(s) = 8;4(s) - 534() =z;; - "”]Fr(i)—_'_—l + O(S"2 )

B=1

1—3-4# 1 ~2
= A[ "o .2,,()]"'0(5 )
e? 1+

2% 1)+1

1-en 2400 _ 240
22 14+ cosh(ZA(z))

=1 O(s'z)

I—et® ¢ _
= 2; el Y C5 + O(S 2) O
J1oe™ e afccosh (ca) + O[s)

?” C‘+1

1
1- e—‘ﬂ f(w) f(i")
== [1 + 4 f}") arccosh{ 1 + 21 +O(s‘2)as s§—>c0

A (2)
5a(e) = 60)= 2 ;[-e«]%m(ﬂ)
R/

i 242 o2
_1-¢ AP e _ + O(s"’)
29 71— AP -M“’




-'::# AP [e“ - ]-1 + 0s?)

1 et

1

a2

1 e f("‘) f(m) 2
574 [ f(out) ffm) arccosh{1 + ?L_.

Again the reflection from the transition, both inside and outside the coax, behaves like (1¢)".

The high-frequency transfer function through the inverter (into the coax) is given by

—1] 2 arccosh (c ) + O(s )

f(r'n)

™

06) = - [f26) - 7] - -Zf‘z’(l)” %)

-

A _aDT? 4 - - ~
=_2[1+e ]_+O(s)=-2[e‘5+e“+2]2+0(sl)

==2[2c, + 2]"%+ O(s‘l) = -[1 +

Note that

lim . flo)
(2) - oo
oo In'(s) > ~1as -;T’-T_’

8

0> fim T(s) > -1
§->oo

On tfje outside we have
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w T3
—‘—-] + O(s") as s oo

4 flm)

(13.20)

(13.21)

(13.22)




+ 0fs7)

2
FO(s) = 7O\ o
out (s) 1,1 (s)e gj 1 f(2)2

[e“?) +e A T + O(s“) = _%ﬁ'z)(s) + 0(5—1)

(13.23)
1
1 fx("‘) 2 1
=31+4f(""') +O(s )ass—no
g
With the orthogonality of the inside and outside fields, the normalized powers can be added as
1 lim 7@ 2 1 lim 7@ 2
oyl T + oy | 706
{4 g
. 1
£ 1 1 ]
=11+ — + (13.24)
] [

"
=

which is the normalized power incident from the left coax.




XIV.  Concluding Remarks

The solutions here of the NMTL equations can be. used to construct transitions (baluns and
inverters) based on an exponential interpolation of the eigenvalues. Note that the medium in which the
ect conductors are embedded is constrained to be uniform for the present solution procedure to
apply. This gives a special kind of spatial variation of the characteristic impedance matrix. One is now in
sziuon to realize the particular geometric-factor matrices. However, the actual cross-section geometry
is not in general unique for realizing a particular geometric-factor matrix. This gives some extra degrees
of freedom that one can use to optimize the transition design, e.g. by introducing considerations from
hi -frequency wave propagation which include three-dlmensxonal waves instead of only the one-
danntlonal transmission-line theory.

Besides the explicit forms given for both high- and low-frequency behavior of the transitions,
ther# are more general expressions applicable to all frequencies, and via the Laplace/Fourier transform to
timé-domam waveforms as well. The high frequency results are directly applicable to the early-time

\ rmance, say for the transport of a step-function incident wave through the transition. One can

ider successive terms in the step response to see the decay of the response to the late-time (or low-
frequency) response in times proportional to the transit time through (or length of) the transition.

|

In going through the details of constructing the interpolated geometric-factor matrix the results of

[4] l'*ave been extended somewhat. In particular it has been shown that this matrix is symmetric, consis-

tent with reciprocity. Furthermore, for the cases considered, it has been shown that the elements are all

msihve, and that the off-diagonal elements are less than or equal to all the diagonal elements, a condition

ecéssary to the realizability of the cross-section geometry. Viewed another way, what has been con-

structed is a way to diagonalize the product of two symmetric matrices and use the resulting eigenvectors
and eigenvalues to express both original symmetric matrices.

As the high-frequency formulas shown, better performance of baluns and inverters is obtained
with large external impedances, the outside wave (sometimes referred to as an antenna mode) undesir-
ably|loading the device. In the present paper the model used is applicable for uniform media. One way
to achieve a larger external impedance is by use of magnetic chokes such as ferrite cores or related (special
media [5, 6]. However, a different model is appropriate to this case.
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