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Abstract

This paper considers the use of special geometrical hybrids of dielectric and magnetic
materials in which the resultant permittivity is dominated by the dielectric medium, and the
resultant permeability is dominated by the magnetic medium. This gives some control over
the wave impedance and propagation constant for electromagnetic waves, both for transient
lenses and for high wave impedances for chokes (for baluns and transformers). In general
these media are anisotropic such that the magnetic field in the magnetic material is not
interrupted by breaks in the layers or rods of such material. The electric field, being
orthogonal to the magnetic field for the waves of interest, is purposely made to be
orthEgonal to such layers or rods so that the dielectric medium dominates for this field.
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Introduction ,

Artificial dielectrics have long been used to construct lenses for microwave antennas
Typically one embeds metallic pieces (disks, spheres, wires, etc.) in a dielectric medium.
is increases the effective permittivity for wavelengths large compared to the spacing of
se pieces. There is also some decrease in the effective permeability due to the exclusion

the magnetic field by the conductors. By this technique one can significantly decrease

the propagation speed (at frequencies of interest in the lens) below that of free space

e
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One often uses a regular spacing (cubical, tetrahedral) or random spacing of such

Cco

ductors with sufficient Symmetry so as to achieve isotropic permittivities and

permeabilities.

In lens design one may also be concerned with increasing the permeability so that the

wave impedance is more like that of free space
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avoid reflections at the lens surface in a broad-band or transient sense [8], one increases

the permeability by the use of ferrites or other magnetic materials. These are used in

transformer cores and various microwave devices [6]. Besides the permeability such

materials may also have undesirable properties which lower the wave impedance, such as

conductivity and permittivity (greater than ¢, ).
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Basic Uniform Isotropic Medium

Let a uniform isotropic medium be characterized by

B = p, u, = permeability

€ = €, €, = permittivity 1)

(o]

conductivity

where these may be a function of the complex frequency (two-sided Laplace transform
varjable (over time))

s=2Q +jw (22)
The wave impedance is now
1 u 1
7 = |_SB_|2 _ P 2
z [c +se] Z g (2.3)
€ + —
" se,
and the propagation constant is
1 1
¥ = [suio +s)? = 2 u,(e, * —"-—)]2 24)
c Se,

whe

for

re a tilde over a quantity indicates a function of s (Laplace transformed).

Looking at the wave impedance note that for zero conductivity we have

Z = Z _':2 (2'5)

which case we readily have the free space wave impedance as Z, if M, =€, or

more generally from (2.3) if

o= v — (2.6)
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(noting that B, can be frequency dependent and complex). In this case (2.4) becomes

g

7 = B, = .‘E [e' + ——_J (2.7)
c
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S€,

B, and €, areconstantwith ¢ = o then such a medium just has a slower propaga-

tion speed. The problem in this case is to find or synthesize such a medium, say for lens

use. Note that the presence of non zero o, if too large, can distort the passage of a

pulse. This also points out that we would like €, and p, tobe approximately frequency

independent for frequencies of interest.
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Another case of interest has

+0
€,

| >>
350

(2.8)

]2"] >> Z

joy

ch has application for inductors (chokes) and transformers. In this case one may not be

too|concerned if Z is a little frequency dependent as long as it is large for frequencies of

interest. The requirement then is for large K, without a correspondinglarge €, + o/s €,
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Dielectric and Magnetic Sandwich

Now consider a hybrid anisotropic medium as indicated in Figure 3.1. This consists
in alternating set of layers

type 1 (dielectric): u, , €,
type 2 (magnetic): u,, €, o,

elgerleo ’ l"’23"‘reo ’ €2§€r2€0

d=d +d, 3.1)
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A, + 4, =1

present purposes we restrict the magnetic field to be parallel to the y axis with the

electric field parallel to the x axis, appropriate to waves propagating in the +z direction.
The layers are parallel to the y z plane (perpendicular to the x axis). Note that the

magnetic field in the magnetic material is not interrupted by the dielectric medium, but the

electric field in the magnetic medium is interrupted by the dielectric spacers. Then under

certain circumstances the dielectric material can dominate the dielectric (and conducting)

pro

rties while the magnetic material can dominate the magnetic properties. While one

can perform a full wave analysis of propagation in such a medium, let us for present

P
as

Not;

ses assume that d is electrically small, i.e., that radian wavelengths and skin depths
propriate in both layers are small compared to their respective thicknesses.
For the electric field E, a pair of adjacent layers acts as series capacitors/resistors.

ing that the total current density (conduction plus displacement) is continuous in the

X direction through the boundaries, we have

J,1 = .l,2 =s¢ E = (oz +se2) E, 3.2)
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Figure 3.1. Dielectric/Magnetic Sandwich in a Half Spac
subscripts indicate the respective layers. The rage electric field is

Em=d[dE 4,E) = A E, + A, E,

om which we have the effective conduction and dielectric properties as

L fey (AEA4E A 4K
Se J, se, E,

, (3.3)

(3.4)




Consider limiting cases. First for negligible o, we have

ast

in n

..l.'. = ﬁ + AZ_ (3.5)
€ € €,
he usual capacitive divider. Second for large o, so that the electric field is shorted out
nedium 2 we have
A
_].'. = ---—l (3’6)
€ €

showing that in this case medium 1 dominates the dielectric properties.

Not

For the magnetic field H, a pair of adjacent layers acts as parallel inductors.

ing that the magnetic field (H,) is continuous in the x direction through the

boundaries we have

B B
H=H=-21=:-2 3.7)
Ko B2
The average magnetic flux density (B) is
1
B,, = y (B, +d,B)] = A B, + A, B, (3.8)

from which we have the effective magnetic property as

For

B, A,B +A,B,

B = =411, = A p,

avg
H H (3.9)
=B, [Ai + A2 ""r]

large @, then medium 2 dominates the magnetic properties.

Referring to Figure 3.1 consider a wave impingent on the z = 0 plane from the left.

The effective wave impedance looking into the special medium is

1 A A 1
3 Sp |2 1 2 2
Z = = Z A + A — P c——
[om] o [[B1* Ay 1] .o (3.10)
7 se




The propagation constant is

. % s A, 4, 51
vy = = o A A — —
¥ = [su(o +s5€)] = [[A1+ 45 ] e " o, (3.11)
1 e +
2 se

Assuming negligible o, the wave impedance is

1

< 5 A A
- (B2 - St P
SlC R SRR

1
} 2 (3.12)

With A, = 1-A, let us maximize the quantity in braces by setting the derivative with

respect to A, equal to zero as

« A 1-A 1 1
0=[1-p](= + [+ A, +(1-A —_-—
3.13)
24, 1-24, {1—24\1 2(1-4) }
= + + ur -
€ € . €
n n n n
Then the wave impedance is maximized for large p, with
1-24A, 2-24,
€, €,
(3.14)
€ -2¢ ,
A, = 1™ 1 A, - 1 2
2 €, €, 2 &, €,

Now let €, 2 2e,l for the solution to apply (an acceptable range of A,, A,). Then

we have
TR S (3.15)
€ ,  2€
n 2 n

PRI R D P DY 1



or

B, = = the wave impedance is then

2 €, 2 €, (€'1 - e,l)
(3.16)
€ 1
}‘2 l 2
'7{“‘“‘):‘ - }
n N
Similarly the propagation constant is
1 e, (b, +1)-2¢ 3
g S 2 s | nt 1
Y ¢ {(Al M AZ p'r)zerl} ¢ [ - € n
N
(3.17)

For

oty

large p, then with maximizing choice of A, we see that medium 2 dominates the

inductive part.

Assuming now large €,, with negligible o, we have from (3.13) for maximum wave

impedance
-2
A -1 B A, - L B2 (3.18)
2 u,-1 2 p,-1
SO we assume u, 2 2 for this solution to apply. The corresponding wave impedance is
1
.28 W |3 (3.19)
2 €, #,-1
The propagation constant is
1
2 (3.20)
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For

large €, then with maximizing choice of A, we have medium 1 dominating the

capacitive part.

that

Looking at these results, we can let both K, and €,, be large, showing from (3.12)

we have a good choice for large wave impedance as
1
A, = A, = =
1 2 2
1 (3.21)
Z- = i u’+1 [1 + f.:l]
2 € €
¢! r
propagation constant is similarly
-1 %
1t fmenge i o

So equal thickness layers are rather reasonable. giving the dielectric layer dominating the

capacitive parts and the magnetic layer dominating the inductive parts.

Including some conductive losses in the magnetic material we need to expand the

propagation constant from (3.11) for large s as

-1 1
A, A 2={f_l+f_‘~’ 1_.‘_’£+o(s-2)]}'5
€, g, €, €, Se,
2 er2+.:g:_ 1 2
o
A, A, ]2 1[4, A, ]t o
==L+ 2202|222 -2 + 0™
"o &, 2] e, €, se,
(323)
A, 4,02
- _ S 1 2 2
e ISRl Pty }
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O For a wave propagating as e % the first term gives the delay part that we have already

considered (for o, = 0). The second term gives the attenuation. So write

¥z = sT + az + Ofs)) (3.24)
The delay is
1 1
LN A.l-2
TES:l[A1+A2“r]2—-l+—22
v ¢ "o S
(3.25)
1 1
dra A.l:
v=c[A+ap] 2|+ 2|2 = speed
€, €,
1 2
The attenuation is represented by a transmission factor
f=e* (3.26)

@ which is ideally near 1 (or small «z ), at least for lens use. From (3.23) we have

o (A, a4,]2
azﬁi: 2 [AI Azl"'r]z 1,22
z, 2ce n o
(3.27)
-1
= ._o.l T A}. -+ :‘...2.
2¢, € €,
with z, as an attenuation length. In time units we have
az = 1
[
(3.28)
To fl ..A_l + _A_z
g, erl erz
where T, is now related to the relaxation time in medium 2 with some improvement
@ if e << €,.  For negligible attenuation the thickness of the layered medium in the z

direction should have the transit time small compared to T, .
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IV.|  Cylindrical Waves with C_ Symmetry

- This special layered medium is also applicable to special kinds of cylindrical waves.
As illustrated in Figure 4.1 let the same layered medium be extended over all space except
for the volume within a cylinder of radius a centered on the z axis, The layers are now

taken as parallel to the x,y plane (perpendicular to the z axis). The layers have the

same parameters as in Section III. Note the use of cylindrical (¥,,z) coordinates with
x=Pcos(d) , y = Psin(d) (4.1)

The|configuration in Figure 4.1 is taken as independent of ¢ (Ce symmetry).

LA LT .
d @7/ o te

Figure 4.1. Dielectric/Magnetic Sandwich with C, Symmetry
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This particular geometry is appropriate.for a choke that might be used for a pulse
nsformer or balun [3,4]. In this case a set of cables with shields bonded together has a

gap region where the shields are broken and the inner conductors are cross connected to

each other and the shields in various ways. Pulses are then transmitted in an impedance-

ma

tched fashion through the gap region, incoming on certain cables and outgoing on others,

The purpose of the choke is to prevent currents from flowing on the outside of the cable
shields away from the gap region. Consider that the cable bundle with common outer shield

is placed along the z axis and can be considered to have some radius b < a. Then the

exterior shield currents have a magnetic field in the ¢ direction, i.e. parallel to the layers

as desired. The associated electric field has ¥ and z components, so think of the choke

as g set of alternating dielectric and magnetic washers with the cable-gap region somewhere
in the middle.

sim

The geometry in Figure 4.1 is then an idealization of such a choke. As a further
plification let the currents near the z axis be z directed and independent of both z

and ¢ . The resulting fields have only E, and H, components. These fields meet the

same restrictions for the analysis in Section III to apply, except that now we have cylindrical

instead of plane waves. Note that for present calculations the choke is taken of infinite

extent in the :z directions and infinite radiallyasa a < P < = , Furthermore, radian

wavelengths and skin depths in the various media are assumed large compared to d so that

the

are

the

average parameters (wave impedance and propagation constant) in the layered media
applicable.
With these restrictions on the field components we can use the usual expansions of

fields in cylindrical coordinates for outgoing waves [1,2]. The z and ¢ independent

solution has for ¥ > a

E,=E K, (7P
(4.2)
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This gives an impedance per unit length (of the core in the z direction) as

with
fun

(2]

N
"

I
|-
I
i

4.3)

¥ and Z as in the previous section. For large arguments of the modified Bessel

tions [7] we have

K,(fa) = ﬁgf [1+0(Fa))
. l
K,(fa) = ;’Y-‘; 21+0(Fa)Y) (4.4)

7 - -2—5—; [1 +0((Fa)™)]

which is just the wave impedance divided by circumference as expected. For small
arguments we have

K,(¥a) = {- ﬂn(izg) +C,} [1 +0(7aP)

C, = .5772156649... = Euler s constant

K, (fa) = ;‘; 1 +0([Fap)
(4.5)
7 = X | _1[18 + +
z - -2—,;{ i ) C.}[l o((vap)]

Using the low-frequency form of ¥ as in (3.11) we can see that this is basically inductive

as we should expect.
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In terms of frequencies on the jw axis we have the alternate representations [8]

Y=jk, s=jw

K,(jka) = -j = H? (ka)

K,(jka) = -—125 H® (ka)

> impedance per unit length is then

2 - {xn[f_] SE c,}[l +o((£a)]

15

(4.6)

4.7)

(4.8)




V. Extension to Waves with One Magnetic- Orientation but Two Possible Electric
Orientations

With the basic;“ concept elaborated, let us consider a simple variation on the theme.
As discussed in Section III, the layers are arranged so that the magnetic field is not
interrupted in the magnetic layers, while an insulating dielectric (of low dielectric constant)
is used to interrupt the electric current density flowing from one magnetic layer to the next.
This basic idea can be extended as indicated in Figure 5.1. Instead of layers, consider rods
of magnetic material parallel to the y axis. With only an H, the magnetic field in each
rod is not interrupted by any gaps. Letting there be both x and z components of the
electric field, note the dielectric isolation of the rods in both these directions. With identical

[

radii b, and spacing of centers by d inboth x and z directions, the wave propagation
and impedance properties will be the same for waves propagating in both these directions,
and|in general for waves propagation in any direction perpendicular to the y axis. Of
course we assume that radian wavelengths and skin depths are large compared to both d

and b.
XA

mi

Figure 5.1. Magnetic Rods Embedded in Dielectric Medium
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The calculation of the effective wave impedance and propagation constant is

1ewhat more complicated than in the case of layers as in Section III. Here one can take

a unit cell of dimensions d i(d (or d/2 x d/2 using symmetry) and solve for the effective

# and e (with o) using quasistatic techniques (both magnetic and electric). Of course,

the

rods need not be circular but should have the same symmetry as the unit cell.

Furthermore a square unit cell is not essential. An equﬂateral triangular unit cell with rods

cen

tered on the corners could also be used.

The arrangement in Figure 5.1 is appropriate for plane waves. One can generalize

this in a manner analogous to Figure 4.1 by taking magnetic rings all with axis as the z

axis. Then on a plane of constant ¢ a cross section would look like Figure 5.1. Such a

configuration is appropriate for fields with components H,, E,, Ey in cylindrical

coordinates, H,, E,, E, in spherical coordinates with

P = rcos() , z = rsin(@) (5.1)

Then with currents on the cable shield(s) near the z axis we do not need to restrict the

fields to be z independent for the model of the choke in Section IV to apply. This more

general form of C, symmetry allows spherical as well as cylindrical waves to be considered
due|to the allowance of two electric components with H, . Note that for the simple

quasistatic model of a unit cell to apply to all such cells, the cell dimension d should be
small compared to the local radius ¥ for radii of interest in this hybrid medium (choke).
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VL.  Concluding Remarks

This paper has explored some techniques for combining dielectric and magnetic
media for control of the effective parameters of the hybrid medium. By configuring the
different media so that the permittivity (and conductivity) is dominated by the dielectric
medium, and the permeability is dominated by the magnetic medium, one can achieve some
control over the wave impedance and propagation constant.

The geometries appropriate to chokes (high wave impedance) admit of simple layers
of such media with more elaborate rod configurations possible. For transient-lens

geometries the desired wave impedance may be more like free space [8]. However, the
associated TEM mode pattern can have a not-so-simple magnetic-field orientation which
varies in space. The sheets or rods of magnetic material may then ideally need to be
tapered in thickness and bent in shape to match this field pattern.

Here we have basically addressed geometric ideas. The requisite dielectric and
(especially) magnetic media are another matter. While the geometries introduce additional
possibilities, one still needs to use practical materials which may still have some undersirable
limitations.
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