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Abstract

In order to improve the high-frequency performance of pulse trans-
ormers, one of the problems to be addressed is the reduction of the leakage
nductance associated with leakage flux between primary and secondary wind-
ngs. This note introduces the concept of making such windings out of coaxial
or higher order multiaxial) cables, with the outer shields of primary and
econdary windings bonded together, so as to effectively remove this leakage
nductance. : :
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I. Introduction

The subject is transformers, pulse or .broadband transformers to be
pecific. The concept of an ideal transformer is common in electrical cir-
uit theory. However, practical transformers have limitations. At the low-

s
c

frequency end, the transformer core (a highly permeable (u>>uo) medium)
provides only a finite inductance to the primary and secondary windings, so
that the impedance looking into the primary winding tends to zero at zero
frequency, irrespective of the load impedance (even open circuit) on the
secondary winding.

Another problem with transformer désign concerns high frequency
performance. There is in general not complete linkage of magnetic flux
between primary and. secondary windings. The difference, or leakage f1lux,
limits the high-frequency transfer function. 1In order to effectively remove
the associated‘leakage inductance one can bring the primary and secondary
windings physically together to exclude magnetic flux between them. However,
it is desirable to preserve an electrical isolation between certain portions
of these windings. This is accomplished by constructing the windings from
coaxial cables (or cables with higher order multiaxial shields) so that the
outermost shields of the primary and secondary windings are in continuous
electrical éontact (thereby excluding leakage magnetic flux), while main-

taining isolation between appropriate portions of internal conductors.

Various types of these transformer windings are considered. These
allow voltage step-up and step-down, pulse inversion, and single-ended to
differential signal conversion (and conversely).
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I1. Mutual Inductance Between Turns on a Ferroﬁagnetic Core

One of the concerns in transformer design is the problem of the effi-
ency of coupling magnetic flux from one winding on a transformer core to
other such winding. As in Figure 2.1 consider a loop (winding turn) number
»with current I1 flowing in it. , Passing through this loop is a coée of
ghly permeable material (“>>u6)‘ This core-is assumed to be itself a closed
op, such as a toroid, but its cross section can be circular, square, or rec-
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ngular (typical shapes). In the figure only a small section of the core is

shown.

As indicated in Figure 2.1 let the nth turn have current In and voltage
Vn’ Let there be a voltage source driving turn 1, and all other turns be open
circuited (zero current). Now associated with I1 there is a magnetic flux ¢1,
most of which is ideally in the magnetic core. Associated with this there is
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Figure 2.1. Windings on a Permeable Core
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1 dt 1 dt
¢1 = L1 I1
L1 = self inductance of turn 1 (2.1)

1e value of L1'is dependent on the permeability u, cross section area, and
ngth (or better length of magnetic flux paths in the core for a "closed
loop" core) of the core. . While the core conductivity and permittivity are
also significant, they are assumed to be small enough to be neglected in our

prnesent considerations.

Now consider some turn designated by n=3 that is not very close to the

first turn. Not all of @1 links the third turn. As indicated in Figure 2.1

some magnetic flux lines illustrated as § » While linking turn 1 do not

outside
link turn 3, while the flux in the core (at least most of it) illustrated as

ore links all the turns. The flux ¢3 linking the third turn has

0 < ¢3 < o, , (2.2)

1

V3 =My w

(2.3)

M3 1= M1 3 = mutual inductance between turns 1 and 3
1] ? o

It is this mutual inductance that makes a transformer, bqt note

0<M, . <L (2.4)
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he difference between the self and mutual inductance is sometimes referred to

S a leakage inductance ("leakage" of flux lines associated with § ),

outside

or which

0« £3’1 = L1 - M,-,”1 | i (235)

t will be one of our design considerations to minimize this leakage inductance.

.

Let us put this in the form of an equivalent circuit as in Figure 2.2..

Let there be a load R on turn 3 so that
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(2.6)
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~ = Laplace'transform (2 sided over time) to complex frequency s.

1e mutual inductance provides a voltage source in the secondary which gives

T, = b T S @)




In the primary 13 provides a voltage source giving

MZ
v = I 1 = - 2—3—'_1__._ T
V1 :-3M3’1 I3 + sL1 I1 { 8? 7= sL3 + sL1} I1 (2.8)
This gives a voltage transfer function

-~ L -

= . 3 1 [ 2 ] 1

T=—=-= + s|L, L, - M Y (2.9)
V1 {M3,1 173 3,1 1\43’1 R

angd an input impedance at turn 1

then

:l sL, R + sz[L1 Ly~ M§,1]‘

in 51 = R +'sL3 (2.10)
Looking at the voltage transfer function observe that if
v = M2 . . '
L1 L3 M3’] (2.11)
M
o 3,.1
T T , (2.12)

which 1is frequency independent (ideally). Furthermore, the input impedance

simplifies to

-1

Z. =R{==2 + — . (2.13)

If we further assume that turns 1 and 3 are effectively the same (ex-

cept for translation (including rotation) along a uniform core) then we have

L, =L, =L (2.14)




T =1

Z1’1 = R {1

3,0 =0

Ideally L=«=, but in practice one make

(2.16) seems to remove all problems,

-1
R
+ Ef} (2.15)

This approaches an ideal transformer in that the leakage inductance is

(2.16)

However, there is still the matter of the self inductance of the turns.

s L large. At the high frequency end
but this neglects propagation times on

the windings since the foregoing analysis is quasi static.

Referring to Figure 2.1 once more, note that the leakage inductance is

made zero as in (2.16) by having all the flux from turn 1 link turn 3. Con-

.> 3
sidering Boutside in the illustration,

this is accomplished by moving turn 3

to the position indicated by turn 2, adjacent to turn 1. In the limit turn 2

takes the "same" position as turn 1

eliminate intervening flux. This will
exterior shields bonded together.

so that no flux appears between them.

be realized later by using cables with

Actually the two turns are of finite size and can bé bonded side by side to




[

T

X

II. Wires Near a Highly Permeable Half Space

In order to estimate the leakage flux consider the problem illustrated
n Figure 3.1. Turn 1 (as in the previous section) is now wire 1 carrying
urrent I1 in the z direction centered along the line

(x,y) = (x,, 0) . | _ (3.1)

<0). The other half space (x>0) is assumed to have permeability o (as in

free space).

leakage inductance per unit length %

In this idealized problem there is an infinite magnetic flux surround-
Ig wire 1 (or equivalently an infinite inductance) because of the current I1
turning at ». However, if wire 3 is introduced at

(x,y) = (x3, y3) (3.2)

then the flux per unit length between wires 1 and 3 1is Dbounded, as is the

3,1°
Define a normalized complex coordinate

X'
p= 3L | (3.3)
1 1 ' '
and a complex potential funection
W=u+ jv (3.4)
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f we let yu+= in the left half space we can consider the x=0 plane as a mag-

etic conductor, i.e.

H =0 " . (3.5)

hen the maghetié field is perpendicular to the x=0 plane. 1In our convention
is chosen as the magnetic potential function, so the magnetic field is per-
endicular to contours of constant v, and hence x=0 corresponds to contours of

onstant v.

hen x1 is the spacing of the wire from a highly permeable medium (u)}uo for

O




O Wire 3

i X3 = .

HIGHLY
PERMEABLE
MEDIUM
H>>uq

NON PERMEABLE
MEDIUM

(permittivity Ug)

Figure 3.1, Wires Near a Highly Permeable Medium




The appropriate conformal transformation has been discussed in [3].
For our current problem we have the special case

[2w ]1,2
- L= |e + 1

Now w is singular (u

|

-
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This complex potential

The 1leakage indgctance per unit length between wires 1 and 3 can be

described by
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+1, wire 1 center
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_.1’

ul
2

for

u

2

0

The surface of the "magnetic conductor" (x=0) is described by

is illustrated in Figure 3,2.

around wire 1 is

potential of wire 3 (at center)

potential at "radius" of wire 1
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(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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u and v are both taken in intervals of —Z2—

16 °
{ =1 (center of wire ) has u = -c0.

MAGNETICALLY
O CONDUCTING PLANE

(approximation for highly

permeable medium for
X< -1
X1

Figure 3.2, Complex Potential for Wire Near
a Magnetically Conducting Plane
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Considering wire 3 we have
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0 the complex potential is

W, = -;- en(2v + v2) = -12- [zn(va + 2h(1 + %)]
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The éeometric factor is then

([ G - () ol

12

(3.12)

Considering wire 1, let it have radius d. Then we have for positions

(3.13)

(3.14)

(3.15)




O

-3

his has interesting special cases. Let x3 = X, 80 that wires 1 and 3 have
he same spacing from the highly permeable medium, giving

yo\" ¥, \?
~ 1)1 3 31 - 2d
fg = 5135 In (x1) + Y (X1) Ln (x1) | (3.16)

Considering the magnetic flux which does not enter the core (equivalent to _.
lacing wire 3 at the origin) has

[a

k=)

°3

1 (X1) A
£ zgﬂ,n -é'a- (3.17)

In any event this geometric factor (and hence 2; 1 ) is set to zero by
H
making

u3 = u2 ’ Au‘= 0

so that wire 3 is moved to wire 1.

13
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Iv. Twin Windings

In order to realize the concept of making two transformer windings
primary and secondary) into one winding as far as the mégnetic flux 1is
oncerned, let us generalize some earlier considerations concerning the
indings in loops. Two previous papers [1,2] have shown some of the: possi—
ilities concerning the generalization of 51ngle conductors to coaxial cables,
ultiaxial cables, and other configurations concerning the use of Moebius gaps

n loop structures. Here we generalize such configurations to transformer
indings.

b

Now the basic idea is to have the actual windings (in a DC sense)

[

S center conductors of- a coaxial or higher-order structure. The shields

~

outermost) are bonded together to make the resulting winding act as a single

P

inding on the transformer core. .

Consider then that there is some large inductance to raise the im-
edance on the outside of the outermost cable shields. At the gaps in the
ables where signals are matched between various transmission lines, then let

from one transmission line to another with appropriate -care for impedance

p

c

us neglect for present purposes any waves on the outside. Signals propagate
f

m

atching.

As an elementary example let us match (twin) one coaxial winding with
another as illustrated in Figure 4.1 as a 1 to 1 transformer or 1 to -1 trans;
former (inverter) Note that, since the coaxial shlelds are bonded togetner
as one conduetor no magnetic flux can pass between the two conduotors (assum~
ing perfectly conducting shields). A small exception to this concerns the
agnetic flux linking the center conductors of the coaxes at the -small gap

m
r
this junction (and at the ends of the windings) certain of the coaxes have no
i
c

enter conductor to the shield'(or connecting two shields in later examples).

Note the ground symbolé at each end of the shields of the twin coaxes.

Since the twin coaxes form a winding on some transformer core these points can

o

e connected together, perhaps via some common conductor (such as an overall
shield or some other conductor. Note also the bossible addition of a shield

around the twih coax to distribute the signal input position (to the center

14

egion where the signals are transmitted from one coax to another. Note at

nternal signal. This is indicated by a shorting conductor connecting the
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Vout (in)

= -Vin (out)
b. 1 td =1 (inverter), single-ended
to single-ended (or with two such,
differential to differential)."

1 to 1, single~ended to
"single-ended (or with two such,
differential to differential).
Twin Coaxial Simple Windings

Figure 4.1.
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nductors) to two positions on the winding. 1Including the possible addition

another ground on this shield, this additional shield effectively breaks
e length of the winding in two, as far as external waves are concerned. (A
orter winding has resonances at a higher frequency.) This still leaves the
estion of what should be the impedance between the additional shield and the
in-coaxial shields. If waves induced inside both ends of this additional
ield are to be terminated in the twin coaxes (two in parallel or 2/2), then

is impedance for the inside of the additional shield would be Z/4., This is ..

alogous to techniques used in loop design for magnetic-field sensors [1,2],
t the combination of the two windings as one introduces a significant dif-
renceksince the signals from this additional transmission line propagate
to both primary and secondary coaxial windings. Using the multiaxial con-
pt in [1] yet additional shields can be added to further increase the number

distributed signal inputs to the windings to 4, 8, ete., and thereby cor-
spondingly break up the length of the winding (and raise the resonant

equency of the winding segments).

The example in Figure 4.1 is given in a single-ended form. However,
using two such twin-coaxial windings (onia common core) with each winding
iven in oﬁposite polarity (with winding sense to make magnetic fluxes‘édd
the core) then this type of winding can take differential form. This al-
ws a differential to differential transformer in either 1 to‘1, or 1 to -1

nverter) form.

Yet another 'Variatién utilizing the windings of Figure 4.1 is to
mbine those in both A and B with the input signals (primary windings)
nnected in parallel, but the Output signals (secondary windings) being in
ries (differential output). This gives a transformer ratio of 1 to 2
ingle ended to differential). In this case the two orimary-winding
ansmission lines have a net parallel impedance Z/2, while the secondary-
nding transmission lines have a net series impedance (differential) 22Z.
gure 4.2 shows how such a transformer might be wound. This has two twin-
axial windings, each of 5 turns. Note that the direction of magnetic flux
nsity in the core is maintgined by the sense of both windings. At the ends

of the windings the shields of the two windings are connected together and to
ground (say a local external shield containing the transformer). Note that no

‘additional conductors should pass through the transformer core because such

16
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Figure 4.2. Example of Single-Ended to
Transformer
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an create an additional "winding" (such as a shorted turn) on the trans-
ormer. While the discussion has centered on a single-ended to differential

c
f
transformer (balun), it also functions as a differential to single-ended
transformer with a 2 to 1 turns ratio.

Let us briefly consider a few alternate winding topologies to show that
this general class of transformer windings admits in principle an infinite

3

umber of winding topologies. However, the cable impedances required will
limit the number of practical cases.

Figure 4.3 shows two related examples involving the use of a Moebius
gap [1] which effectively doubles the number of turns on the secondary wind-
ing. 1In Figure H4.3a we have single ended to differential while Figure 4,3b
shows differential to differential. As in Figure 4.1 .one can have an addi-
tional shield around the twin-coaxial structure to-distribute the signal input
around the winding. One can also use Moebius gaps in both primary and second-
ary to make a 1 to 1 differential to differential transformer. |

Higher order winding topologies are also possible. Using the multiax
concept [1], Figure 4.4 shows the case of a triaxial secondary bonded to a
cdaxial primary, Preserving the impedance matching from coaxial primary (with
two inputs) to the transmission line formed of the secondary coaxiai and tri-
axial shields, the latter waves in turn are impedance matched inio the second-

ary coax (with a doubled impedance). Note that the two 1nputs to the primary
on the -winding connected together. In this case the winding is naturally

one can add additional shields around this winding centered on the external
gaps as in Figure 4.1,

By reversing which coax is used for the signal oJutput on the secondary
(or by reversing both input coaxes on the primary) the configuration of 4.4
‘becomes an inverter with 1 to -2‘turns ratio (analogous to the change from
Figure 4.1a to Figure 4.1b). By taking this configuration and combining it
with the previous (in Figure U4.4) one can make a single-ended to differential
transformer with 1 to 4 turnsAratio. Note in this éase there are four par-
allel. inputs to the primary. This qonfiguration is a generalization of that
in Figure 4.2. '

18

are fed in parallel giving an impedance of Z/2. There are three ground points

divided into two parts as far as external waves are concerned. Beyohd this

O
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Yet another variation on the theme of Figure 4.4 has the gap in the
secondary coax changed to a Moebius gap, giving a differential output from
opposite ends of the winding. The impedance of the secondary coax is raised

to 4Z. The resulting transformer is then single ended to differential with 1
to 4 turns ratio.

" Vout(in)

= 2Vin (out) \

VA

vﬁ__-__-__

Figure 4.4, Coaxial/Triaxial Single-Ended to Slngle-Ended
Transformer with 1 to 2 Turns Ratio
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. Summary

This note has introduced some new concepts in transformer windings. By
sing coaxial (and multiaxial) cables as the windings, with outermost shields
f primary and secondary windings bonded together, the problem of transformer
eakage ;nductance can be largely eliminated.

In these special winding' configurations the primary and secondary

his single effective winding still has positive length on which waves can
ropagate. Such waves involve not only the winding lengths (pitch, etec.), but
1so the detailed high-frequency electromagnetic properties of the transformer
ore. So the question of leakage inductance is shifted to problems (at gener-
11y higher frequencies) involving core properties, winding geometries, and
oading (signal introduction positions) along the windings. This is a subject

or further research.

21

indings are effectively reduced to a single winding as far as the external.

roperties (such as interaction with the transformer core) are concerned.
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