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Abstract

Six error sources found to be dominant contributors to EMP simulator
data error are identified, formulated and illustrated from a deterministic
yiewpoint. The reduction of the classical 1ist of experimental error

sources to these six is justified if a rigorous quality control program

is part of the data acquisition and processing activities of a test program.

The levels of error illustrated are representative of state-of-the-art EMP

Jata acquisition and processing.

The derivation of frequency domain noise error from noisy uniformly

sampled time domain data is shown in Appendix A and a computer algorithm

for determining noise error for more general data processing situations is
jescribed in Appendix B.
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1. INTRODUCTIOH

The purpose of this paper is to formulate and illustrate, from a
deterministic viewpoint, the frequency domain dominant error terms or
sources found in an EMP simulator data acquisition program.

By requiring a rigorous quality control (QC) program be applied to
the instrumentation configuration, calibration and deployment as well

as to the data processing and storace, we can 1imit the classical list

of test data error sources as found in reference 1 to a reasonable number.

In addition to applying this rigorous QC to the instrumentation and
processing, we will assume also that errors such as sensor placement,
test item interaction, and numerical processing will be controlled to

a reasonable level (i.e., below levels typically introduced by the domi-
nant sources).

The six dominant error contributors to be discussed are:

(1) amplitude

(2) sweep speed

(3) base line shift
(4) base line rotation
(5) noise

(6) truncation.

Each of these error sources, even in a well QC'd program, can contribute
significant errors singly and together over the frequency spectrum. .

Let us now consider briefly some limitations that apply to these and
closely-related error sources.

2. INHERENT LIMITATIONS OF INSTRUMENTATION

Consider the case of a "perfect" polaroid photograph, that is, assume
that the instrumentation caused an exact replica of the driving function
to be recorded on the photographic emulsion. How, considering this ideally
recorded signal to occupy about seventy-five percent of the oscilloscope




creen (bipolar trace with base line midscreen), a resolution of one part

n thirty has been found to be the best that can be obtained by careful
uality control of the entire process. This corresponds to a 30 dB signal-
o-noise ratio. For a monopulse sianal, it would be possible to achieve
maximum of 36 dB signal-to-noise ratio, but at the cost of taking at

east two shots to appropriately offset the base 1ine and set the oscillo-
cope vertical deflection.

This 30 dB vertical or amplitude limitation tends to bound the contri-
utions of base line shift and rotation in addition to setting the floor
n noise arising from trace width and subsequent digitization noise. This
0 dB amplitude resolution bound also places a lower bound on truncation
rror in a well implimented program.

In considering horizontal resolution, typically, two horizontal divi-
jons (major) are digitized with a resolution of one part in forty, or 2.5
ercent. This error appears in the frequency domain as an expansion or
ontraction of the frequency scale; thus, the amplitude errors incurred <:>
y this source are signal-dependent and can become enormous for highly
eaked functions.

Time-tie errors in combining multispeed records on a single shot,
hen bounded by tight QC, are also bounded by the three major amplitude
rror contributors above. That is, noise at 30 dB below the signal, base
ine shift and rotation.

Loss of portions of each trace at the time-tie points is minimized
y resubmittal by the QC activity when errors greater than those stated
bove are found in the resulting amplitude or time values.

These error levels have been introduced to set the stage for the sub-
equent formulation of the specific kinds of error determined to be
ominant.

Most of the calibration errors found in the various elements of instru-
ntation fall into the category of amplitude uncertainties (possibly fre-
quency dependent) and sweep-speed or time-scale uncertainties.
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3. DATA ACQUISITION AND PROCESSING FLOW

As shown in figure 1, the path that a particular piece of data may
take will be dependent on the data content and purpose of subsequent
analysis (frequency ranges, early time, late time, etc.).

Various kinds of error are injected at each block in the data flow
diagram. The error analysis section to follow will address an error
model to combine these errors and produce an overall error expression
for the output data.

4. ERROR MODELS

The error models formulated below are universally applicable to
screen box data recorded on polaroid film and then manually or automa-
tically digitized for processing and storage or to data acquired by
transient digitizers via a microwave data 1ink and stored in a digital
format on magnetic tape or disk for process%ng and storage.

Their validity is limited by the accuracy of the error parameter
determination as set by the QC program.

We start with a recorded function, f(t), containing certain error or
noise terms. Here we are concerned with how these errors affect the fre-
quency domain spectrum of the recorded function.

Once the major error contributors have been identified, it is rela-
tively easy to obtain deterministic error expressions.

We define the Fourier transform as

Flw) =I f(t) e~dutyy

Let us now consider the error for the major error contributors found in
a measurement program having a high level of QC.
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(a)

(c)

Gain uncertainty - in this instance the gain error, egain’
may be a function of frequency, so that

F (w) = F(w) (1 = €qain

(w)).

F (w) is the measured or apparent function of frequency.

Sweep speed uncertainty - for this case fm(t) = f(t[lte

swp])'
By a simple change of variables we have

F (w) = F ( W ).
m 1 = Eswp 1 =+ sswp

Base line shift - since all data recordings are finite in time,
a base line shift error is simply an added step function, trun-
cated at the end of the record. Letting the shift have an am-
plitude of *h and the maximum record length of T, then base
line shift error is
] - edut

hase - M| T |
Base line rotation - this error source is limited by the QC
activity and qenerally appears as a rotation about the origih.
The offset or error amplitude at the trace end (time T) is zh.

Evidently, this form of error and distortion of the waveform
can be approximated by a simple ramp %tkfor the small rotations
found in a well-executed test program. The frequency-domain
expression for this error is

e .=+ N }1 - etduty ij)} .
w 't




(e) Noise - this error is a combination of various noise sources,
but overall effects may be lumped together. By using normally
(Gaussian) distributed noise to represent this error source
in the time domain, it is shown in Appendix A that the expres-
sions below bound the one sigma expected relative errors in
the magnitude of the frequency domain function

_ 20{[R(w)| + |I(w)! + o}
= 1 - =1
e (@)l pax \/ * R(w)Z + 1(w)2
i} 20 |R(w)] - |1(w)] + o}
.= 1 1 -1
€ (w)|m1n \/ * R(w)Z + I(w)2
R(w) = Re F(w)
H{w) = Im F(w)
o = standard deviation of frequency domain noise derived

from time domain noise.
Absolute error is simply eabs(w) = |F(w)] ere](w).

In this error model, ¢ is a function of the following four

parameters:

1. the number of sample points in f(t);

2. the length of each time increment Ats;

3. the total record length Tmax;

4. the particular Fourier transform algorithm used to

process the data.
Appehdix B describes an algorithm for determining o
from the S/N ratio of the original data.

For uniformly sampled time domain data that is numerically
Fourier transformed using the rectangular rule, a relatively
simple, but rigorous expression can be written for the fre-
quency domain standard deviation o(w). It is a function of




the time domain standard deviation and the sampling parameters
At and n (see Appendix A).

olw) =

where
At
n

Note that nat = T

o(t) ot VI

max

That is

uniform time increment
number of samples.

» the sample window.

(f) Truncation error - we consider first the error introduced by

truncating the test function f(t) = e
maximum amplitude of f(t) is < 1/30 of the peak of the function.

Thus
f(t)
f(t)

"

]

e %in bt

0

-at

for 0<t<T

for T<t <o,

The Fourier transform is then

F(w) =

e~at

e-aT

By truncating at a zero crossing (i.e., bT = nw for n

cos bT

sin bT

b

(a + ju)" +b

b

2

- e-Jmt

L(a + jw)z

a+ jw

_(a + jw

)2 .

-

sin bt, such that the

= integer),

we can minimize the error and the transform simplifies to

Flw)

b

(a + iw)z +b

> (] - e-ij e-aT)




so that fractional error becomes
= _o-Jwl _-aT
€4 prun e e .
If we want the maximum envelope, then

-aT

le = e

trunI
The QC discussed above would Timit this to one part in thirty

or 3.3 percent. This same argument and formula also holds for
the decaying exponential f(t) = e 2t

5. OVERALL ERROR MODEL

In combining these error contributors we have observed that for our
limited but representative test cases of damped sine and doubly-delayed
double exponential, using the QC limited error levels above, the set of

significant error contributors can be further reduced to four, which
are:

(1) gain uncertainty

(2) sweep speed uncertainty
(3) base line shift

(4) noise.

If less stringent QC limits ére employed, the error contribution for
truncation can become significant and perhaps should be incorporated, as
in the examples to follow.

Evidently, waveform distortions introduced by the slight rotations
permitted by good QC cause smaller errors than the ramp introduced by
this rotation. Further, the ramp error is always bounded by a base line
shift error of the same amplitude for these cases. Thus our model need
only consider the base line shift.
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Since we are interested in an error model envelope, some further
simp1ificatiqns are made. For the base line shift we have

_ -l - e"jwt
€pase - N ('—TJ__

It is evident that the envelope of the magnitude of this function can be
expressed by the following smooth function (i.e., no zeros):

- 'l-ejwt, m
lebase‘ hI T for 0<ws<y

_ h2 bl o
Cbase| * I forysus

Since all of the above errors are uncorrelated, it is reasonable to

add them in a root-sum-square manner. Thus the total absolute error model
is: '

2
esgs N ﬁF(w)l €gain(®) ]

(gain error)
F W
(1 * Eswp)

(sweep speed error)

. . 2
[ﬁ‘l—ljg:ifiﬂ for 0 < wg 2

2
&ﬂ Mr%gwiw

(base line error)

1
H F(w) |-
[ Eswp

1




‘ ﬁF(w)le'”]Z

(truncation error)

+ ‘F w)l& \/] + IR(wH +JI(0’ | + o) -1

where

R(w
I{w

e ] )
H

Q

€ .
gain

€swp

L}

[}

(noise error upper bound)

the frequency domain function

decay constant in damped signal being truncated

record length

real part of F(w)

imaginary part of F(w)

standard deviation of noise in frequency domain based

on S/N ratio in raw data and established by QC standards
instrumentation amplitude error defined by instrumentation
calibration activity

sweep speed error is limit allowed based upon equipment
calibration and audited by QC procedures

base line shift accepted based upon established

QC standards.

To find relative error €pe] We UsE

€abs

17 [Flw)]

6. EXAMPLES OF OVERALL ERROR

In this section we have selected two sets of examples to illustrate
the overall processing error to be found in, first, a rigorous quality con-
trolled data processing system and, second, a more typical level of quality

control.
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Two different waveforms were selected for this example, the damped
sinusoid which is characteristic of a class of data commonly seen in test
object response testing, and a sum of'delayed double exponentials which is
characteristic of certain fields seen in the ATHAMAS I simulator field
mapping.

a. Sample Waveforms

Figures 2 and 3 show the unperturbed time domain traces to be used
and their Fourier transforms.

Let us consider now the following cases:

(1a) Improved Screen Box System with Video Digitization
(no filtering, no common mode)

Error Type Error Level
amplitude +x 0.238 dB
base line shift < 1:30
truncation < 1:30
sweep speed < 1:25
noise/signal < 1:30

Fiqure 4 shows how these errors combine for the damped sinusoid and
double exponentials to produce an overall error envelope in the frequency

domain.
(1b) Typical Screen Box System with Video Digitization
(no filtering, no comron mode)

Error Type Error Level
amplitude = .46 dB
base line shift < 1:15
truncation < 1:15
sweep speed < 1:20
noise/signal < 1:15

Figure 5 shows the combined frequency domain errors for this system.

13
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(2a) Transient Digitizer/Microwave System (no filters, using
AutoCal*, upper limit 108 Hz)

Error Type . Error Level
amplitude * .5d8B
base line shift ' < 1:30
truncation < 1:30
sweep speed < 1:100
noise/signal < 1:30

Figure 6 shows the combined frequency domain errors for this system.

(2b) Transient Digitizer/Microwave System (no filters, no Autocal,
upper limit 108 Hz)

Error Type Error Level
amplitude + .5 dB
base line shift ' < 1:15
truncation < 1:15
sweep speed < 1:30
noise/signal < 1:15

Figure 7 shows the combined Transient Digitizer error in the frequency
domain for this typical case.

7. CONCLUSIONS AND OBSERVATIONS

From the examples displayed in figures 2 through 7, several things

become apparent:

(1) Sweep speed errors cause tremendous amplitude errors when
the signal contains deep nulls or high peaks. For some
purposes these errors can be neglected since they arise
from a shift in the time base which in turn shifts the

*AutoCal - computer based calibration procedure
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(4)

frequency base. The additional amplitude shift is rela-
tively small. Where the exact frequency of a particular
null or peak is not required, this form of error is not
of concern. However, if for example, the data is to be
ratioed with another similar function, these errors are
real and must be considered since the coincidence or lack
thereof may be the essential information from the ratio.

As a rule of thumb, base Tine shift or rotation introduces
error as the inverse of frequency so low-frequency data is
most affected by this form of error. It should be mentioned
that the above figures are illustrating the upper bounds of
these error contributions. In this instance the error will
introduce additional structure to the apparent signal due to
the windowing of the ramp or step introduced by the error
itself.

Truncation error is like base line error in that it will
introduce added structure to the signal. The envelope
bounding this error as defined here is, however, constant

‘with frequency.

Noise error is best viewed in the real and imaginary parts
of the frequency domain where it is a constant with fre-
quency, providing the noise in the time domain is normal,
has zero mean, and random.
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APPENDIX A

DETERMINISTICALLY-DERIVED FREQUENCY-DOMAIN NOISE
FROM INSTRUMENTATION/DIGITIZATION TIME DOMAIN MOISE

1. NOISE PROPAGATION OF DATA PROCESSED BY DIGITIZATION
AND DISCRETE FOURIER TRANSFORMATION

Consider a signal f(t) contaminated by Gaussian noise n(t). The re-
sulting function is fm(t) = f(t) + n(t). Analytically the Fourier transform
is =)

Fnl@) =[ [F(t) + n(t)] e It gt

co @

Flw) + N(w) =[ fF(t) e7dot gt +/ n(t) e w0t g¢.

-Q0 -00

Thus, we need only consider the last integral in looking at the noise
propagation.

In the real world, all data begins at some time > -w, typically at

t = 0 and terminated at some finite time t = Tmax‘

So in processing data, the integral is required over a finite interval.

T
max .
N(w) =f n(t) e 39t 4¢ |

(]
Further, the signal being processed is digitized (i.e., sampled at

iscrete intervals) so that the integral becomes a sum
N

N(w) éZn(ti) o~ Juti At .

i

Q.

The details of the integration algorithm will differ depending on the
Fourier transform code being used but the essential parameters are the same.

We see that the transfer function on the noise as we transform from
time to frequency will in general be dependent on the following parameters:

23




N, the number of sample points

Ati, the duration of each time increment

Tmax = ) Ati, the signal time window

. - the particular discrete Fourier transform integration algorithm.

a o o o

We also note in reference 1 that since n(t) is normal, has zero mean,
is weakly stationary and a random function of time, then the real and
imaginary parts of N(w) are uncorrelated, have zero mean, are weakly
stationary and are random functions of freqxency. These properties
hold for both discrete and continuous Fourier representations.

. With these properties in mind, reference 2 shows that the following
is true for uniform sampling, where x(t) is normal with a variance of
unity:

n-1
variance of;Z x(ti) cos wti} =
i=0

5 w#FOormw

V]

or
n-1

variance of :Z x(ti) sin “’ti% =
i=0

The mean is zero and the covariance is zero for these two series.

H w#FOorm.

NS

For uniform sampling (At), this is directly applicable to numerical
Fourier transforms. For example, using rectangular rule integration,
if we let

x(ti) = Atn(ti) s
then

olw) = o(t) Atq{g? .

o(w) is the frequency domain standard deviation and o(t) is the time do-
main standard deviation.
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2. COMBINING FREQUENCY DOMAIN NOISE WITH THE PROCESSED SIGNAL

We have seen above that when n(t) is Gaussian with zero mean, we
expected that the processed noise N(w) would be Gaussian also, and the
real and imaginary parts would be uncorrelated and have zero means with
the same sigma or standard deviations. Evidently this expectation is
reasonable for well-implemented data processing.

Let us express the transformed noisy function of frequency as

Re{Fp(@)} = R(w) + Ng(w)

Im{Fm(m)} = I(w) + NI(w)

where

NR(w) Re{N(w)}

Np(w) = I_{N(w)} .

We note that when the noise is expressed in this manner, the noise
in the transform of the measured function is simply NR(w) and NI(w) added
to the real and imaginary parts of the unperturbed function.

Assuming a suitable method is available to determine N(w) from n(t)
(see Appendix B for an algorithm for general data processing), the problem
of error determination in the frequency domain is straightforward. If
one looks at only real and imaginary parts, the relative error equation
can be written immediately in terms of one sigma error

' tUR(m)
() = Ray
and
01 (w)
1) = iy

25
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If this error is propagated into the function magnitude, the expression
becomes a bit more complicated.

[Fp@) | =YRF (@)} + 1 (F ()}

expanding
[Fp(@)1? = (RGw) + Ngw)3? + (1(w) + Nj(w)}?
= W)+ 1(0)? + 2[RWING(W) + TN} ()] + N(w)? + N ()2
' 2 R(w)N I(w)N 2 2
F 1 = 172 ’] , 2RO + 1) %m) + :R(m) + Np(w)
R(w)® + I{w)
or ‘
2 R Z 2
IF (w)] = IF(w)IJI , 2RI ¥ ity (u) + Nglw)” + Ny(w)

R(w)% + I(w)? ' O

Thus relative error is

Z Z
o) - J] , 2 RwNgw) + I(w)N;(w) + :R(w) + Ny (w)
R(w)® + I{w)

Recall NR(w) and NI(w) have the same distribution as n(t), if n(t) is
normal or Guassian. Hence they are constants in frequency and have the
same sigma (o).

, To develop the one sigma limits on aR(w), we substitute o for
NR(w) and NI(m) and adjust the signs to achieve max and min of eR(w) at
any one frequency w

20{|R(W)] + |I(w)] + o}
= 1 + -1
eR(w)lmax ‘J R(u)2 + I(w)

O
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min R(w)™ + I(w)

We note that for o < |R(w)| + |I(w)]| that eR(w)!mih < 0 and eR(w)|max >0
but they are not symmetric about zero. For o > |R(w)| + |I(w)|, the one
sigma error is biased positively so that the unperturbed function value
is no longer contained between the upper and lower one sigma bounds.*

3. APPLICATION OF NOISE ERROR MODEL TO MEASURED DATA

Since measured and transformed data is already contaminated with noise
it is a bit less straightforward to determine the expected error.

‘ As discussed above, if we 1imit our attention to the real and imaginary
parts of the function we have

Re{Fm(w)} = R(w) + NR(w) = Rm(w)

I{Fp(w)} = I(w) + Nj(w) = I ()
where

NR(w) = Re{N(w)}

NI(w) = Im{N(w)}

From the noise transfer function model we can determine the noise term
(a constant). Then to find one sigma bounds, we let N(w) - *o and the
relative error for the real part becomes

g

sR(w) = ﬁm‘wito
and for the imaginary part
+g

SI(w) 1 zws;c

m

*The distribution function is now Rayleigh, see reference 3.
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To carry this through to the magnitude is a bit more involved, and
eads to an expression for the error that contains singularities.

el

For small levels of noise (o < IIml + IRmI), the equations found in

he previous section for relative error, on the signal maanitude, are
seful. At greater noise levels, a rigorous expression for the magnitude
rror blows up. ‘ |

D £
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_ APPENDIX B

PROCEDURE FOR DETERMINIMG THE APPROXIMATE NOISE
TRANSFER FUNCTIOM FOR FOURIER TRANSFORM DATA PROCESSIHG

» We expect that the random properties found for the idealized numerical
transforms (Appendix A) will tend to hold also for typical measured data
being processed. With this expectation, a procedure may be devised for
determining a noise transfer function that is approximately constant with

respect

1.

RESULTS

to frequency.

Start with Gaussian noise that is truncated at 2¢
(representative of instrumentation/digitization noise,
see Appendix C for noise generation algorithm).

Pass this noise through the processing system using
same At's, Tmax(time window) and FFT, DFT or FIT al-
gorithm that is to be used on the data to be evaluated.
Use the same frequency band and frequency calculational
points as well. Limit frequencies to less than one-fifth

At (as you would normally for valid data processing).

Repeat this procedure until the accumulated standard
deviation (SD) of both real and imaginary components of

the resulting frequency domain noise are essentially equal.
The SD is calculated for all resultant values over the fre-
quency band stated above. Subsequent passes are accumulated
to get the overall SD.

The resulting value for the SD can then be used to predict
noise on a transformed noisy signal, f(t) + n(t) having a
known signal-to-noise (S/N) ratio or absolute noise level,
by appropriate scaling of the above SD.

This procedure has been implemented using several computers and using
algorithms having the following properties:
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a. N.= 1001 sample points
b. At = 8x10™° sec
_ -6
c. Tmax = 8x10 ~ sec
d.

rectangular rule integration algorithm and Simpson's rule
integration (i.e., same as used for Upgrade Testing CDC 7600
Fourier transform).

e. frequency sampled at 28, 55, and 90 (9, 18 and 90 per decade)
points from 104 to 107 Hz.

The resultant SD was about 1.4BXI0'7

deviation + 20) Gaussian noise input.

for the truncated 2o (max input

It is comforting to observe that the analytically predicted result
for this same case, but without truncating the input noise, is 1.78x10”
for the standard deviation. A number of additional computer-derived re-
sults for different At's are in similar agreement.

7
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APPENDIX C

PROPOSED STANDARDIZATION OF FUNCTIONS USED
TO SIMULATE NOISE IN MEASURED DATA +

INTRODUCTION

The presence of noise in data analyzed with pole extraction algorithms
an significantly affect the accuracy of the derived poles. A measure of
he accuracy of a particular algorithm is best obtained by using as inputs,
nalytical functions whose true pulse are known. A number of different
ethods have been used to simulate the presence of noise in such analytical
unctions. As a result there is no common measure of the relative accuracy
f two given pole extraction algorithms. In this paper, a standard model
imulating noise in analytical data is proposed which will facilitate com-
arisons of algorithm accuracy.

NOISE MODEL

To best approximate a physically real situation we assume the noise
0 be additive, and write

fy(t) = £(t) + n(t)

here f(t) is an ideal (noise-free) function of time, n(t) is the noise
a zero mean, weakly stationary, random function of time)*, and fM(t) is
he result of measuring f(t) in the presence of noise.

Denoting the Fourier transforms of fM(t), f(t), and n(t) as EM(w),
(w), and N(w), respectively we can write

b 5 1

Fy(w) = Flw) + N(w) .

These Fourier transforms are complex functions, and the real and

i
L

maginary parts of ﬁ(w) are uncorrelated, zero mean, weakly stationary,
random functions of frequency (ref. 1).

*

fe

fthat is, the covariance matrix of n(t]), n(tz), ves

invariant under time translation.

Prewitt, J. F. and L. D. Scott, "Proposed Standardization of Functions Used
to Simulate Noise in Measured Data," AMRC-N-58, Mission Research Corporation,

May 1977.
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Again since many physical processes are reasonably modeled by normal
distributions we now assume that n(t) is Gaussian distributed (normal).
- Its probability density function is

p(n) = exp [-n2/20n2].

% 2T
Then the real and imaginary parts of ﬁ(w) are also normally distributed

with probability density
1

oy Vo

i

P(ﬁ) exp [-ﬁz/Zch}.

However, writing

- i
fi(w) = Ne N,

N

neither N nor ¢, are normally distributed. In fact N is Rayleigh distri-
buted (ref. 2), with probability density function

P(N) = 2 exp [-0%/20, 7] N >0
ag
N

=0 N<O

and dn is uniformly distributed on the interval 0 < oy < 2m (ref. 3). The
probability density functions p(n) and P(N) are illustrated in figure 1.
Hote that since the amplitudes |F(w)| and |N(w)| are not additive, the
knowledge that N is Rayleigh distributed is not of primary interest.

Any process used to measure a given time (or frequency) domain signal
has a number of inherent thresholds. Such thresholds have the effect of
clipping the "tail" of the signal's noise probability density function.

We propose to simulate this clipping by discarding all values of n(t)[N(w)]
for which |n(t)| [N(w)] is larger than ch[ZON].
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p(n)

a) b)

Figure 1. Probability Density Functions for:
a) a Gaussian Distribution
b) a Rayleigh Distribution.

The remaining parameter to be specified is a measure of the noise
mplitude. It is porposed that noise amplitude be defined by specifying
.On[ZCN] as a fraction of the largest value of |f(t)| [|F(w)]|]. Thus the
effective signal-to-noise ratio in the time or frequency domain is

47}

%

If . (t)]
S/N = mgx
n
ar
|F . (w)]
“max
S/N = o

3. GENERATION OF GAUSSIAN DISTRIBUTED RANDOM NUMBERS

If a sequence of independent random numbers {x} has a cumulative

distribution function f(x), then the solutions X; of the equation

uj = F(xi) i=1,2,....
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where {u} is a sequence of random numbers distributed uniformly in the

interval (0,1), are members of the sequence {x} (ref. 4). This statement
is useful only if

X = F'](u)

gan be obtained or approximated analytically. The cumulative distribution
function is related to the probability density function p(x) by the integral

X
F(x) = ./f “ply)dy.

- 0O

ror the Gaussian distribution,
X
1 2,, 2
F(x) =/ eV /20 dy,
oV

annot be integrated analytically, and u = F'](x) cannot be formed directly.
owever, note that for the complex random function

e.i¢

X o

Yy =yg tiy; = x

x(cos ¢ + j sin ¢)

-t

f YR and Y1 are zero mean Gaussian distributed functions, then x is Rayleigh

distributed and ¢ is uniformly distributed on (0,2r). Then
yR = Xcos¢
Yr = Xxsing ,

7]

o if we can generate Rayleigh distributed numbers, we can obtain Gaussian
istributed numbers from them.

Q.

For the Rayleigh distribution, the cumulative distribution function is

X y2/22
F(x) = J%- e dy
o ©
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Since

and

- &+ =

where Un,

aussian

follows:

1.

d [;‘YZ/ZOé]z Yy e-y2/202
2

dy o ’
2,, 2|x
F(x) = _[;-y /20 ]
0
2,,2
u=1-eX/%

has solutions

Xy = o/22ni]-—u1$

hich are Rayleigh distributed random numbers on the interval (0,=).
hat is u,

1

X: = ov-24n u; .

1

Since ¢ is uniformly distributed on (0,2%), we can write

¢m = 2ﬂum,
is uniformly distributed on (0,1). Thus
(yR)k = g/-24n us cos(Znum)

(yy) = o/=2an u; sin(2m )

random numbers in the time or frequency domains.

re presented (without explanation) in reference 4.

Calculate the Gaussian standard deviation from the
desired signal-to-noise ratio
_ Ifmaxl

%n = 2(S/NY
36

Note

is a unifromly distributed random number on (0,1), so is (1 -ui).
hus we can write more simply

both belong to a zero mean, Gaussian distribution with standard deviation
s. These same two formulas, obviously, can be used to generate a pair of
G
3

These formulas

Thus the proposed standard noise distributions can be generated as




g

Generate a uniform random number pair Uy and Uys
0 < uy < 1 (note exclusion of zero).

Calculate a Gaussian random number pair as

ny = ov-28n Uy cos(2nu2)
n, = av-28n Uy sin(Zwuz).

Discard n; for Inil > 20.

Form
fM(t]) = f(t]) + 0y
fM(tZ) = f(tz) +n,

or

Fylwg) = Re[F(w))] + ny + JUIM[F(w))] + n,}.
Return to Step 2.

The functions f,(t) and ?M(w) contain Gaussian random
noise truncated at *2c (sepcified by the desired signal-
to-noise ratio).
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