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'SECTION I
INTRODUCTION

There is a problem which involves a communication gap between mathematicians
who create numerical integration techniques, and scientists and engineers who
use them. This report attempts to bridge that gap. The report is restricted

to the calculation of double integrals. In most cases the domain of integration
is fully symmetric.

This introduction includes some history, a comparison of numerical integra-
tion methods, and a 1ist of what is known about two-dimensional quadrature
formulas. The basis of the accuracy of such quadrature formulas is discussed
in section II. In section III, properties of integrals of monics, xPy9, are
discussed. This is a foundation for the remaining sections. In section IV an
attempt is made to give the reader some idea of what cannot be done with quadra-
ture formulas. Quadrature formulas of polygonal accuracies 3 and 5 are given
in sections V, and VI, respectively. '

To use a numerical integration method on a computer, the method must be
programable, and accurate. It cannot be time consuming. Types of methods

include the trapezoid rule, Monte-Carlo methods, and quadrature formulas. These
methods have the form

m
/f(x »y)dxdy '""kZ]wkf(xk.yk)
D

The three methods have different merits. In the Monte-Carlo method all of
the weights w, are positive. Sometimes all weights are equal. Unequal and
sometimes negative weights are characteristic of quadrature formulas. With the
quadrature formuTSS. errors in the functional evaluations, f(xk,yk), are
unequally weighted. Thus, any functional evaluation error plays a dispropor-
tionate role in the total error. For this reason, quadrature formulas with near
equal and predominately positive weights are of interest.
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Monte-Carlo methods use a substantial number of conveniently located points
(xk,y ). Quadrature formulas employ a small number of inconveniently located
points. Near minimum point quadrature formulas use a few more points but allow

some freedom in choosing either the positions of some of the points or a value
of one of the weights.

If f(x,y) is defined analytically, and only a few integrals need be approxi-
mated| for a given region D, it is advantageous to use a Monte-Carlo method.
The convenient placement of points simplifies programming. If, however, many
integrals are to be approximated, it may be more economical to use a quadrature
formula. For each integral significantly less computer time would be spent in
calculating functional evaluations at a small number of inconveniently placed
points rather than at thousands of simply placed points. Near minimum point
quadrature formulas offer a variety of compromises between the above two
extremes. While they have less potential for theoretical interest than the
minimum point methods, computerwise they have potential for practicality.
Minimizing the number of points for a given degree of polynomial accuracy is
especially valuable if each functional evaluation must be obtained at a moderate
expense. For instance, if such evaluations must be made empirically, the Monte-
Carlo method becomes not only time consuming but expensive. If f(x,y) can be
observed more economically and/or more accurately in some areas of D than others,
then it is advantageous to have several different quadrature formulas for a
given degree of accuracy. This is true even though some formulas may have more
than the minimum number of points. A comparison of these methods is given in
table/ I. Note that the qualities labled with an asterisk are rarely obtained
simultaneously. ’

Quadrature formulas exist for a variety of planar regions. For discussion,
the following definitions are helpful.

Definition: D is radially symmetric if and only if (x,y) € D implies (-x,-y) € D.
Definition: By (+x,+y) we mean the four points: (x,y), (x,-y), (-x,y), and

(-X "y) .
Problem: How would one define (+t,0), p(+x,+y), and 3 p(+x,+y)?

Definition: D has axial symmetry if and only if (x,y) € D implies (+x,+y) € D.
Definition: D is fully symmetric if and only if (x,y) e D implies (+x,ty)

-0
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Problem: Classify the following planar regions: disc, square, a pentagon,

The Pentagon, hexagon, octagon, cross, ring, rectangle, trapezoid, a fat S,
diamond, four-point star, six-point star, stove grill, stop sign, yield sign,
shower drain, and modern clock face.

Table 1
COMPARISON OF NUMERICAL INTEGRATION METHODS
i Methods
Parameter Trapozo1d Minimum Point Near Minimum
and Simpson's Monte-Carlo Quadrature Point Quadrature
Rule Methods Formulas Formulas
If integrand
evaluations . .
are expensive very costly costly economic nearly economic
then method is
Placement of convenient convenient inconvenient some inconvenient
points is ’ and some
convenient*
Are all es only almost never only some can be
weights equal? y Tocally adjusted to be
equal*
Are all : some can be nega-
weights yes ; yes usually tive. Depends on
positive? choice

* Rarely obtained simultaneously

In table II we have attempted to list what types of quadrature formulas are
known. With the great amount of research going on in quadrature formulas, this
table will probably be out of date by the time this report is published. If a
number p is listed under EX. it means the existence of such a formula has been
proven and the minimum number of points is p. A blank means the minimum number
of points is still under discussion. If a number q is listed under m it means
that a formula of use to scientists and engineers has been published and that it
has q points.
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L

%

all of the points are real.
~ ** Unpublished, but known to the author.

See reference 7.

k* Formulas are known for special regions such as circles.

Table II
TYPES OF KNOWN QUADRATURE FORMULAS
vearee | Fully sym. Axial Sym. Rl A eorary
Accuracy EX. m EX. m EX. m EX. m
1 1 1 1 1 1 1 1 1
2 3 3 3 3 3 3 3 3
3 4 4,5 4 4 4 4 eee e
4 6 --- 6 --- 6 --- -—- -—-
5 7 7,9 7 7 7 y AR
6 10 --- 10 --- 10 --- --- ---
7 12* 12%,13,17**  12* 12 -—- --- --- -
8 15 --- 15 -—- 15 e mem eee
9 _—— *edkk ——— ek ——— ——- _—— —_—
* Existence of formulas known for all .regions, but in some cases not all

-0
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SECTION IT
WHAT IS A QUADRATURE FORMULA?

This section will discuss what is a quadrature formula for double integrals
and what is meant by the term polygonal accuracy. Throughout this section and
the remainder of the report, only quadrature formulas with real parameters are
considered. |

A quadrature formula is an approximation of an integral by a summation of
weighted values of the integrand.

m
[f(x .y )dxdy zkz]wkf(xk,_yk)
s |

Quadrature formulas are usually judged by the number of integrand evaluations

they require for being accurate for all polynomials p(x,y) € Pn(x,y) for some n,

Example: Let us attempt to construct a quadrature formula that would use the
points (a,a) and (-a,-a) and be. accurate for any polynomial of the type dx* +
by + ¢ = p(x,y) for integrals taken over the square with corners at (jﬂ,jﬂ).
Note that d, b, and c are constants. We want

11
// p(x,y)dxdy

=1 -1

w,p(a,a) + wpp(-a,-a)

[}

w,(da? + ba + c) + w,(da® - ba + c)

Matching powers on both sides of the above equation yields the following
equations:

1 .1
4c éf f cdxdy = w,c + w,c = c(w, + w,)
-1 -1

T T e it L R N N e N T AT T
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= w,ba + w,b(-a) = ab(w,-w,)

RS
4d/3 =f dx2dxdy
09

w,da? + w,d(-a)? = a%d(w, + w,)

s equivalent to

1l
E=

Wy + W, =
wl"w2=0

af(w, +w,) = 4/3

w, and a2 = 1/3. Thus, a = 1//3

Lion yields w, = w, = 2

fy:)(x,y)d)kdy = 2[p(1//3‘, 1/»’3‘) +p(-1/73, - 1//5)]

-1 -1
ample, if d = 2, b = -1, and ¢ = -3, then for a check answer we would
’ 1 A1 A , 11 \ 141 3 1,41
[ [ ey -rn| | ] | -3
' -1 -1 =1 -1 -1 -1

1A

is -28/3. By the formula we would have

1 :
f f (2x? -y -3)dxdy = 2[2(1/»’2'3')2 -1//3 -3 +2(-1/3) +1//3 -3]
-1 ’

1

is also -28/3.
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From this example four natural questions arise.

(1) Can this method be generalized for any p(x,y) e Pn(x,y), and further-
more for any n?

(2) Can this method be further generalized for approximations of integrals
over various regions?

(3) Is there a relationship between n, m, and the dimension s of the
integral?

(4) Are there methods that offer a more convenient placement of points at
which integrand evaluations are made?

Questions 1 and 2 are answered with the theorem that follows. Question 3
has been answered by a few authors including Mysovskikh (ref. 6). An attempt
to answer question 4 was made in AFWL-TR-71-162 (ref. 4).

Definition:

= i
11.3. f X yYdxdy

D

Theorem:

Let D be any planar region such that for every 0 € i + j s n; i, je N =

{0, 1, 2, ...}, we have 0 £ Iij <o, Let p(x,y) e P (x,y). If there exists
m X

a set of points {(xk. yk)}k : and m associated weights W, such that

_ m . ,
- i C oL
Iij = EE% WXy Yi 0<i+3jsn (1)
Then
m
[p(x,y)dxdy = kZ] WP (XY ) (2)
’ .

Proof: By definition

px,y) = 2 cqx'y’
i+jsn




AFWL-]

where

IR-72-248

some C. # 0. Multiplying each Iij by ¢

i n-i and summing we have by

iJ

equation (1) that

On th

Thus

but

imply

as ne
some
satig

L
formy
of th

CapX

or

m .
2 cisliy = X o 2: Xy Vi
i+j<n 1371 i+jsn k=1 "k Yk
e left I,iJ .}r i dedy, and on the right the double sum is finite.
D
J - iJ
Y c.axiyddxdy Z: W, 2. Cii Xp Y
i+jsn i3 k i+jsn 15 7k 7k
D
p(xoy) = 2 cq5 %'y
j+jsn
ing

m
J/;(x.y)dxdy - &Z% WP (X Yy)
D

eded. Thus, our search for quadrature formulas over some region D for
level of polynomial accuracy n becomes a search for points and weights
fying equation (1).

et us illustrate this proof by example. Consider a 4-point, third-degree
la. We desire a quadrature formula that is accurate for any polynomial
e type

2 2 3 2 2
+ 0, X2y + Xy F G XYY €y Xt F Cy XY FCp YT HC X P Ch Yt Cyy

O

O
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over the square with corners at (+] +1). The natural question is what do we

need to get

: 1. - m ' ..
Yo xyY =Y w Cis Xp yi
f /1‘+j$3 13 k=1 K qiges 3 TRk
-1 -1
This last line can be restated. Using

1 .1 - ,
= 1,
Iij _/f X yYdxdy

-1 -1

we have

m o
2: Csz I:: = 2: Css E: w x'l yJ
jrjez W g5 1y Tk TRk

That is with natural pairings

1 A1 m .
c3°/ f x%dxdy = c,, Z Wi Xy

-1 -1

1 ~1 2
c“/f x2ydxdy = Z _

-1 -1

||

(9]
N

Ms

E 3
=~

x
_
<
o

(9]
o
(=]
~
—~
x
Q .
<
"
(@]
[~}
o
x
M
=
F
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The ¢ j‘s cancel leaving us with the condition we need to satisfy equation (1)
in order to get what we want which is equation (2). Before listing these condi-
tions, matters are simplified if we evaluate the integrals of the monics xiyj.
These lare commonly called moments.

f1f]xiyjdxdy = (] - ("l).i-”)(.I - (‘])j”)

. (i+1) (3 +1)
21 9

Thus, if i or j is odd, we have Iij = 0. If i and j are even, we have Iij > 0.
And in any case Iij = Iji‘ So we have I5,, I,;5 I12s Tgss I11s Iugs Io1 =03

Io0 I,, =4/3; and I, = 4.

We are looking for points (xk. yk) and associated weights w, satisfying the
following equations.

i 3 ! 2
0= wy 0=, w, Xpy
& " Yk 2 M Xk Y
0= W, X, Y 0= W, X
& X Yk Z i Xk
m ) m m )
4/3 = z_:] W Yi 0= I?; W Xp Vi 4/3 = kzl Wy Xy

Do the following points and weights satisfy equations 3?2 Obviously a # 0.

weight W w W W
x-coord a a -a -a

y-coord a -a a -a

10
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Listing the equations we have

Tsos iz = @° (W, +w, - wy - w,) =0

Toss I = a° (w, - w, + Wy - w,) =0

Igs Iy, = a% (w, + w2'+ w, +w,) =4/3
I,, - a? (W, = w, = w; +w,) =0
Iio=a (W, +w, -wy -w,) =0

—
]

or =a(w, -w, +w, -w)=0
Tog =Wy + Wy + Wy +w, =4
From 0 = I /a i_IOl/a, we have that w, = w, and w, = w,. From 0 = I,,/a +
I,,/a, we have w, = w;. Therefore, all four weights are equal. Let us denote

the one common weight by w. Equations I,,, I,,, I,,, I, I,,, 1,,, and I,
are satisfied. We are left with

4wa? = 4/3
dw = 4
Obviously w=1and a = 1//3.

Thus, we have the following four-point, third-degree formula over the square
with corners at (+1, #1)

1 .1 A
/ ff(x,y)dxdy ~y, f (+1/V3, +1/Y3)
-1 -1

Some applications of this formula are listed below.

Application: Error:
1 01 |
[ f [|x| + |y|] dxdy = 4.218 802 152 0.218 802 152
IR
1,1
f f exp(x+y) dxdy =~ 5.488 224 960 0.036 466 422
303

11
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e objective of this section was to give the reader some idea of what is
rature formula for double integrals. The most important part of this

n to remember is the realization that equation (1) must be solved to
the parameters for a quadrature formula (equation 2).

12
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SECTION III
PROPERTIES OF MOMENTS

You have already seen the importance of solving equations involving moments
Iij‘ It is, thus, necessary to derive several properties of moments. Within
the discussion below, we will use the term measurable. For the mathematician,
we mean measurable in the sense of Lebesque. It would suffice, however, to
think of the measure m(D) of a set D to be the area of D and to think that D is
measurable if a way exists of finding the area of D. Henceforth, when we say
D is fully symmetric, we assume D is two-dimensional and measureable such that
0 < m(D) < =,

Definition: _
N={1,2,3, ...}, N =1{0,1,2, ..}

Definition: If D is a fully symmetric set, define
Iy}
Iyl}

T={(x,y) €D : |x] < |yl}

v

S ={(x,y) e D : x|

n

U=1{(x,y) eD: |x]|

Since D is measurable, S, U, and T are measurable. Obviously m(U) = 0. Thus,

fx"yj dxdy = 0 for 1,3 € Ny
U

By reversing the order of the coordinates of the points is S, we have T. Thus,

ff(x,y)dxdy =f f(y,x)dxdy
S ' T

13
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monomials '
j;c‘.yj dxdy =ijyi dxdy for i,j e Nj
S

ition: If D is fully symnetric then Iij = Iji‘

Using the above equality

m

Ii f 1yJ dxdy f 3 dxdy +fxiyj dxdy

f 3y i dxdy +f xjy'i dxdy

T S
=ijyi dxdy = Iji
b
Proposition: If D is fully symmetric and one of the numbers i or j is odd, then
I.ij = 00
If i is odd and j is even, then define
D, = {(x,y) eD:x> 0}; D_ = {(x,y) € D : x < 0}
D, = f(x,y) € D : x = 0}
Obviously m( =0 and./r J dxdy = 0. Both D, and D. are measurable.
2P, 24
D
={ x(szyaq)dxdy +f ( 2p 2c‘)dxdy
D, D
where i = 2p +1 and j = 2q; p, 9 € Ng.

14
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Since (x,y) € D4 implies (-x,y) € D_.we have

Iij =fx(x2py2q)dxdy +f(-x)(x2py2q)dxdy =0

D+ D, '

With other partitions of D, Iij = 0 can be proven for the cases i even and j

odd, and both i and j odd.

Proposition: If D is fully symmetric, and m, k € N, then

I

Lo m+k),0 > Tom, 2«

For (x,y) e D, it is obvious that
(x2m_y2m)(x2k_y2k) 24

almost everywhere in D.

Hence,

Lomek),0 ¥ To,2(mek) > Tom,2k * T2k,2m

Applying the first propositon

Lo (m+k),0 > Tom,2k

Corollary: I,,>1,, and I . > I,,.

Proposition: If D is fully symmetric such that In.o < »; and i, j, and n are

even such that i + j € n, then 0 < Iij < o,

Define
B = {(x,y) e RZ : 05 |x|, y| 1}
D, = DNB
D, = DNcB

15
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Clearly D, and D, are fully symmetric and measurable. As m(D,) < 4, and xiyj
is bounded on Dy, for i + j < n ‘_{::)

f x"yj dxdy < =
D

1

To show Ijj < = we need only show

J/. x’yJ dxdy <o for i+ j <n
DZ

If m(D,) = 0, we are done. If m(D,) > 0, we have for every (x,y) € D,, that
|x] >/ 1, and thus

f dxdy <f x2dxdy <....<fx"dxdy ST g<e
D, D, D,

O
Thus, Tygs T,s I, seeeesly, < o and by the first proposition, Iozy Towseress _
Ion < o,

We are left with the cases where i, j # 0. D, is fully symmetric. The previous
proposition applies as i, j#0. For i+ j<n

f x'iyj dxdy <fxi+j <o

D, D,

As m(D) > 0, and for i and j even such that i + j s n, we have x’yJ > 0 almost
everywhere. We conclude that
;/;1yj >0 , .

D

16
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To justify the existence of some qUadfaQure formula parameters in future
sectiqns. a knowledge of several integral inequalities is necessary. Rather
than prove some or all of the following inequalities, we 1ist the inequalities
below and refer the reader to secticn II and the appendix of AFWL-TR-71-162
(ref. 4). The inequality 213, < I,, (I,, + I,,) is proven on page 30.

If D is fully symmetric and I, < = , then

\ .
I,0 < Igg Tuo
and

2120 < Ioo (Iuo + Izz)

If D is fully symmetric and I, < » , then

13, < I Iy,

Tho < Tao Teo
130 < 150 Teoo 13, < I, 1%,
15, < I Lyp Ly
Iio < oo Igo

(Iyo + Iuo)2‘< I0 (Igo + 3qul‘

2(1,, - 122)3 < Igo (Igg - qu)z
and : |
(I - 122)2 < (Igg = T42)(159 = 132/145)

Problem: Create a formula for the moments over a square with corners at

(#d,#d). Hint: see formu]a for d=1 in last part of section II.

Problem:"Créate a formula for the moments over a disc of radius h.

Problem: Calculate I,, over the four- point star made by connecting the po1nts

(05 :_])' (i] 0) (+t +t), t <1,

Problem: Prove I3, < I, I4o. Hint: use Holder's inequality.

17
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SECTION IV
THE NUMBER OF POINTS

In this section we attempt to give the reader some idea of what forms
quadrature formulas cannot take. The minimum number of points a formula can use
is discussed, as well as where these points can be placed. Problems involving
the njnexistence of certain quadrature formulas are given at the end of this
section.

We have already seen the minimum number ofkpoihts for various degrees of

polygonal accuracy in table II. For fully symmetric regions, 1-, 3-, 4-, and

7-points are needed for polygonal accuracies 1, 2, 3, and 5, respectively. If

complex parameters are allowed, 12 points are needed for a seventh degree

formula over any fully symmetric region (ref. 7). But if real formula parameters

are demanded, the minimum number may vary with the type of region. For some

regions, such as the square or the disc, 12-point formulas are known. Discus-

sions between Franke of the Naval Postgraduate School and this author have

lead to the conjecture that no 12-point formula with strictly real parameters : "'(::)
exists for some 4-point star region of the type described in the next to the -
last problem of the previous section. Formulas containing 12 and 13 points are

discussed in AFWL-TR-71-162 (ref. 4) and a paper by Dr. Franke (ref. 7). The

minimum number of points for quadrature formulas over fully symmetric regions

is covered in more detail in section III of AFNL-TR-71-162.

Formula point placement is the next topic. Proofs of the propositions to
follow are variations of the same method. Therefore, only a few proofs are
given, Below we use the term connected. By D connected we mean that for any
two points in D we can draw some line from one point to the other point, and
the 1ine will still be in D. The more formal definition can be used, but for
simpl city‘we avoid it. -

ition: Let D be an arbitrary. connected region of positive measure over
which| there exists a s + 2-point quadrature formula of third-degree polygonal
accuracy, s = 2, 3, ... . Then s of the s + 2 points cannot lie outside of the
interior of D in such a way that a line L(x,y) = 0, L(x,y) € P, (x,y) passing
through these s points does not intersect the interior of D.

18




O~

~ AFWL-TR-72-248

Proposition: Let D be as before. If thérevexistsva s + 5-point quadrature
formula of fifth-degree polynomial accuracy over D, s = 2, 3, ... , then s of
the s + 5 points cannot 1ie outside the interior of D in such a way that a

Tine L(x,y) = 0, L(x,y) € P, (x,y), passing through the s points does not inter-
sect the interior of D.

Problem: State a similar proposition for quadrature formulas of seventh-degree
polynomial accuracy. Hint: proof of this proposition is given below.

Proof by contradiction: Assume s of the points {(xi.yi)}?:io do lie on a line
L(x,y) outside of the interior of D. Since D is connected, L(x,y) has the same
sign almost everywhere on D; that is everywhere on D except over a subset of B

of D whose measure, or area, is zero. Without loss of generality L(x,y) > 0

~ almost everywhere on D. Through the remaining 9 points {(xi, yi)}?gl, we can

construct a cubic r(x,y) e P,(x,y) such that r(xj.yy) =0, 1=1,2, ..., 9.
Then r?(x,y), L(x,y) > 0 almost everywhere on D. As r2(x,y)L(x,y) € P,(x,y),
and m(D) > 0,

) i 94.5’ ‘ .
0 </r’(x,y) L (x,y) dxdy = 12:] wirt(xg0y5) L (x5y4) = 0
D; = ) .

which is the needed contradiction.

Proposition: Let D be as before and n e N. If there exists a quadrature
formula of polygonal accuracy 4n over D, then the points of the formula cannot
lie on only n ellipses. ’ ‘

Proposition: Let D be as before and n € N. Assume there exists a quadrature
formula of polygonal accuracy 4n + 2 over D. If one of the quadrature formula
points is (0,0), then the remaining points cannot lie on only n ellipses.

Proof by contradictioh: Assume the remaining points 1ie on the ellipses

x?/aj + y*/by =1 for i=1,..,n

Then |

N

i=

n 2
qlx,y) = 0 (5-* + 'Yb-:- - 1) € Py, (x0y)

2
a; 5
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and q(x,y) is positive almost everywhere on D and q(x,y) is zero at every point
of each of the n ellipses. Thus, ‘

m
0 < [ x2q(x,y)dxdy = 2, w.xiq (x;,y;) = 0
o N
b

and we have the necessary contradiction.

For those reagers who are serious about learning two-dimensional quadrature

formulas, it is time to stop reading and start working simple problems. App]yingk

the words of the noted educational psychologist, John Dewey, "We learn what we
do" (ref.8), the way to learn to apply quadrature formulas is to apply them.
Several problems are provided to assist the reader in gaining experience with
quadrature formulas and their application.

Problem: | Create a one-point quadrature formula having polygonal accuracy one
for any planar region D where m(D) > O. '

Answer: | w = 1I,, =m(D), xo = I,4/w, and y, = Io,/wW
Problem: Can a quadrature formula of polygonal accuracy 4 over a fully symmetric

region have all of its points on a circle? Hint: use the fourth proposition
given in|this section. The answer is no.

Problem:| Prove there does not exist a one-point quadrature formula of polygonal
accuracy| 2 for fully symmetric regions. ' ‘

Solution: Let (a,b) be the one point with weight w. Then equation (1) takes
the form:

w=1I,,=mD)>0
wa=1,=20
wb=1,, =0
wa? = 12; >0
wb? = I,, >0
wab =1,, =0

Finding a contradiction is left to the reader.

20
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Problem: Prove there Hoes not exist a two-point quadrature formula of poly-
gonal accuracy 2 for fully symmetric regions. Hint: expand previously given
solution, w, + w, = I,,, etc., and reduce the equations to wycd (w,/w, + 1) = 0.

Problem: Construct a quadrature formula of polygonal accuracy 2 for the square

with corners at (+1,+1) using the points (a,-b), (b,-a), and (-c,-c) where all

of the weights are equal.
Answer: a, b= (1/3 + 172 /5)1/2 ¢ = 1//3, w = 4/3

Problem: If the three points in the above problem are connected with straight
lines, is the resulting triangle equilateral? The answer is no.

Problem: Find a 3-point quadrature formula of polygonal accuracy 2 for fully
symmetric regions. Can the 3 points be colinear? The answer is no. Hint:
consider sz (x,y)dxdy.

D

Problem: Can one construct a four-point quadrature formula of polygonal

accuracy 3 for fully symmetric regions using the points (+a, +b) where a # b.
The answer is no.

Problem: Apply any quadrature formula that you have created thus far to the

calculation of an integral of a first-degree polynomial, a fourth-degree poly-
nomial, and a more complex expression of your own choosing.

- Problem: Construct a 12-point, fifth-degree quadrature formula with equal
~weights for the square with corners at (#1, #1) that uses the following points:

(+a,#b), (+b,+a), (#r, 0), and (0,+r). Are the first eight points within the
square? The answer is no. a= 0.22 and b =~ 1.62.

Review: The following points should have been learned:

(1) Creating quadrature formulas of polygonal accuracy n is a matter of

‘pairing components of both sides of

m
Z] wkp(xk"yk)’ peP

n

‘ fp(X.y) dxdy
D

to obtain

- m . s
1,J
Lij = 20 "Xk
Lo k=1
for 0 < i +‘j s n, which are then solved for the parameters of Wis Xp» and Yie

21
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(2) |For real formula parameters, points should be symmetrically placed so
that when 1 or j are odd, we have

m N
= = 1

(3) Weights for symmetrically placed points should be equal.

22
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SECTION V
~ FORMULAS OF THIRD-DEGREE ACCURACY

Formulas of third-degree accuracy are considered in this section. To
obtain a quadrature formula of third-degree polygonal accuracy, we search for
solutions to equation (1). A solution resulting in a near minimum quadrature
formula is described. Advantages of this near minimum formula are discussed.
The effects of negative weights are considered. The formula is applied.

Theorem: Third-degree, 5-point formula. Let p(x,y) € Py(x,y). If D is fully
symmetric and if for every i and j such that 0 £ i + j £ 3 we have 0 ¢ Ii‘ < o

J ?
| | 21,,
fp(XQY) dxdy = Ioo - "';2" P(0,0)
D

120

+ "2-5'2' [P(U.\)) + p(-u,-\)) + p(\)’-u) + p(_\)'u)]-

for any R > 0, u, v 2 0 such that u® + v? = R?

Proof: Consider the points and weights

weight A, A, A, A A,
x-coord 0 u -u v -V
y-coord 0 v -V u i

Equation 1 yie]ds
‘ 5 ij
Iij =0= k2=:1 wk xk ‘yk

if i or j is odd, and
4A, + A, =1,

2A, (12 + V%) = 1,

23
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We have two equations in four unknowns. There are several ways to solve these

equations.

u? + v? and solve for A, and A,. This yields

The user

(1)

A, = I,,/2R?
R, = I,,- 21,,/R?

now has several choices:

A1l of the possible solutions can be described if we define R2 =

He can choose)any one point, except (0,0), in the plane as an evalua-“'

tion point. Once this point is chosen, the positions of the other 3 points,

the weigt
(2)

Ioo - 21

evaluatit

(3)

hts, and R are determined.

He can make A, = 0 and have a 4-point formula.

on points on a circle of radius R about (0,0).

He can make all weights equal. In this case

Izo/ZRz = A‘ = A2 = Ioo - ZIzole

would yield

and

(4)

which is

which is

Io(1/2 + 2)/R? = 1,

R? = 5I,,/21,,

A, = T,, - 21,,/R? > 0
equivalent to
oo > 21,,/R?
equivalent to

R? > 21,4/1,,

24

He can avoid negative weights; A, > 0 is obvious.

In this case 0 = A, =
zo/R2 would yield R? = 2I,,/I,,. He is still free to place one of the

By definition -

- O
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(5) He can use the formula in several different ways to obtain a variety
of approximations: rotate the points, change the radius of the circle, etc.

Negative weights cause problems. For example, consider

f]f}"(x,y) dxdy

-1 -1

where the error in f(x,y) is always less than or equal to A. If the previous
4-point formula is used

4 .
é{% A f(xsy,)  where A =1

approximates the integral and the maximum error is 4A. But if R = 1/3, we
have A, = 6 and A, = -20. The formula becomes

4
-20(0,0) + 2% 6f(xsy;)
i=

which has a maximum error of 44A. This is 11 times the previous estimate.

In tables III, IV, and V, we give the results of applications of the given
formulas to the calculation of two integrals. In table V, we show the results
of applying quadrature formulas in a different way. The Square with corners
at (+1,#1) is divided up into two fully symmetric regions having equal area.
One region is a smaller square about (0,0). The second region is the squared
doughnut that results from removing the smaller square from the larger square.
Variations of the given quadrature formula are applied to both regions and
summed t0‘obtain‘an\approximation of the integral.
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Table III
APPLICATION OF THIRD-DEGREE FORMULAS

T

No. of Pts  Formula Parameters _-{ , _{ (lxl+ly|)dxdy Error
4 v=0 3. 265 986 323 0. 734 013 677
4 vEu- 4. 218 802 152 0. 218 802 152
4 v =2/9 4. 031 585 694 0. 031 585 694
5 ;y: ? 2. 666 666 666 1. 333 333 333
5 vy 3. 771 236 166 . 0. 228 763 834
5 v =9/10 '

R = 95/100 3. 765 138 522 o.'234 861 478
Table IV

SECOND APPLICATION OF THIRD-DEGREE FORMULAS

. . '|ij
No. of Pts  Formula Parameters - J explx+y)dxdy Error
4 v=0 5. 409 073 240 0. 115 318 142
4 v=w | 5. 488 224 960 0. 036 466 422
4 v=2/9 5. 430 784 341 0. 093 607 041
P 1 4. 954 375 769 0. 570 015 613
p oy 5, 570 911 408 - 0. 046 520 026
5 v=9/10 5. 506 711 524 0. 017 679 858

R = 95/100

26
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DOUBLE APPLICATION OF THIRD-DEGREE FORMULAS

Table V

el Al
-4‘ { exp(x+y)dxdy

No. of Pts Formula Parameters Error
8 v=0/v=20 5. 428 857 356 0. 095 534 026
8 v=20/v=my 5. 520 879 643 0. 003 511 739
8 v=0/v=1u/73 5. 497 864 241 0. 026 527 141
8 v=u/v=20 5. 438 429 579 AO. 085 961 803
8 VICIRTVAVEE T 5. 530 451 866 0. 006 060 484
8 v == 3 5. 507 436 464 0. 016 954 918
8 v = ﬁV§7v =0 5. 436 036 406 0. 088 354 976
8 v = w3/ =y 5. 528 058 693 0. 003 667 311
8 v = w3/v = w3 5. 505 043 291 0. 019 348 091

27




AFWL-TR-72-248

SECTION VI
FORMULAS OF FIFTH-DEGREE ACCURACY

Two formulas are discussed in this section. The first was published by

Radon (ref. 2) in 1948. The second is a near-minimum point formula from
AFWL-TR-771-162.

Theorem: Fifth-degree, 7-point formula (Radon). Let p(x,y) € P4(x,y). If D
is fully symmetric and if for every i and j such that 0 < i + j < 5 implies

Iij < o, then

fp(x,y) dxdy = A, Y P(#2,0) + A2 X p(#p,+v) + A4p(0,0)
D

where all Ai >V6, and

H = (Izz/lzo)]/za v = (Iuo/Izo)]/z

A= ([Iuo+ 122]/120)1/2

A, = 134/41,,

2

A = Izo(Iuo - I22)/21uo(1uo +1,,)
A=1g - 2120/(Iuo + 1,,)

Consider the points

\Me'ight A1 A1 Az Az A‘z Az A3
x-coord A ©=A u i -u -u 0
y-coord 0 0 v -V v -V 0

28
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Applying equation (1) we find the following equations need to be satisfied:

2Al + 4A2 + A3 = IOO

2R A% + 4R = 1,

2
4A,v = 1,,
280 + 4t = 1,

v
4A2v =1

4o

| 4A2u2V2 =1,

By division p? = 122/125, and p?/v? = I,,/1,4, and thus v? = I,0/I,,. From the
third equation, A, = 15,/41,, > 0. From the middle four equations,

2R\ = 8A, (1% + v?) (? - V?)

2A1 0% = 4A,(u% - v3)
Thus,

2

A= p? 4yt o= (Tyo + 122)/12

Now we have 4A,u° =1,,1,2/144. Solving the second equation for A, we obtain
Ay = 150(I1uo - 122)/2140(Tuo + I22)

By the first corollary of section III we have I,, > 1I,,, and thus A, > 0. 1In

a similar way we can obtain A,. The first equation is solved for A,. Known

expressions for A, and A, are substituted into the resulting expression to
obtain the claimed expression for A,. To prove that A; > 0, we must show that

2120 < Ioo(Iuo + Izz)
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We start

As examp
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with

‘ ; 2 2
212, = Z[fxzdxdy] = (72)f f 2xtaxey
D D
2 .

= (1/2)[f (x? + yz)dxdy] by 1,0 = Iy,
D :

< (1/2)f12dxdyf(x2+y2)2dxdy by Holder's inequality
D D

< I,,(I,,+1,,) byexpanding (x2 + y?)?
les in applying Radons formula we have

Error

1.1
ff(lxl+|y|) dxdy =~ 3.004 326 529 0. 995 673 471
-'| -‘| .

1 1
f j;xp(x+y) dxdy = 5.521 576 981 0. 002 814 401

Problem:
the prev

Theorem:
symmetri

1

Find another fifth-degree, 7-point formula, due to Radon, by using
jous method with the following points: (0,+\), (#u,+v), (0,0).

Fifth-degree, 9-point formula. Let p(x,y) € Ps(x,y). If D is fully

. < » for each i and j such that 0 < i + j £ 5 then

¢ and IiJ

fp(x.y)dxdy = A, Zp(_tR.:r_R) + A,p(0,0)
D

+ A, X" [p(+r,0) + p(0,+r)]

30
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for
R* > 1,,/1,,
where
- . [
A, = 1,,/4R
A, = (I, - Izi/Rz) 12(1,4 = 1,)

As = Ioo - Iuoflzz

222 [Lao 2Dho | Luo*la
I.. g2 2R*

-~
I

1/2
= [(Iuo - I55)/(15, - 122/R2)]

Consider the points and weights

weight A1 ,A1 A, A, A,
x-coord R R -R -R r
y-coord R -R R -R 0

Equation (1) assumes the form:

4R, + 4R, + Ay = I,
4AR% + 2A,r% = I
4A\R* + 2A,r* = 1,,

4AR* = 1,,

|

A2 A2 A2 A3
-r 0 0 0
0 r -r 0

As we have four equations in five variables, solving will be done in terms of R.
An expression for A, in terms of R is immediate from the last equation. With
this we can obtain expressions for 2A,r? and 2A,r* from the middle two equations.

Division yields

r? = (I, = I,0/(15, - 1,,/R?)
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We need r? > 0. That is we need R* > I,,/1,,. This is a restriction on R.

The second equation can be solved for A,, and the first equation can be solved
for A,.

The user now has several options with this near-minimum point formula. He
can make A, = 0 or A, = A,. He can have R = r or 2R* = r%, As examples of
applications of this formula we have

1 Error
ff(|x|+|y|) dxdy ~ 3.377 663 441 0. 622 336 559
s

1.1
f f exp(x+y) dxdy = 5.521 568 727 0. 002 822 655
R |

Having two fifth-degree quadrature formulas, we again divide the square with
corners at (+1,#1) into two fully symmetric regions and apply each formula to
each region to calculate

flf(]lﬂ_’flyl) dxdy
A

Table VI
DOUBLE APPLICATION OF FIFTH-DEGREE FORMULAS

Formula Used

utside Inside Value Error

Region Region

first first 3. 809 600 373 0. 190 399 627

first second 3. 882 538 348 0. 117 461 652

second first 3. 856 171 924 0. 143 828 076
0. 070 890 101

second second 3. 929 109 899
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The following problems apply to the previously discussed 9-point formula.

Problem: Are there formulas where R < r?
The answer is yes. Find one.

Problem: From the equations obtained by applying equation (1) to the given
points and weights, derive expressions for A, and A,.

Problem: Find the R for which A, = A,.

Problem: Find R, if R = r.
The answer is I,,/1,,.

Problem: If 2R = r , all of the points, except (0,0) can be put on what type
of geometrical figure?
The answer is: Circle, A, = 100—2120/(1“0 +1,,).

Problem: Approximate the integral of the x’ over the square with corners at
(#1,+1). Why is the answer zero? Would you always get zero if x” was replaced

by xiyd, where i or j was odd?
Answer: 0. Symmetry of points, Yes

Problem: With two variations of the fbrmu]a, approximate the integrals of x°
and x sin y where D is the square with corners at (+1,+1).

Problem: A scientist needs a double integral to fifth-degree polygonal accuracy
over a disc of radius 4. The cost of obtaining integrand data over the disc is
2r® - 15¢% + 36r + 55 dollars per point for any point a distance r from the
center. What is the cost of using Radon's formula given in this section? Is
there a cheaper way using the 9-point formula given in this section? What is
the minimum cost?

Problem: An engineer needs to calculate a double integral over a square. The
square is 100 units by 100 units and integrand values can only be obtained at
coordinates on the square whose x and y components are integral multiples of
one unit. Find a formula of fifth-degree accuracy for the whole square. Can
the engineer use the previously given 9-point formula if the square is divided
up into four 50-by-50 squares?

Readers who are interested in formulas of seventh-degree accuracy may read
AFWL-TR-71-162 (ref. 4) or Franke (ref. 7).
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SECTION VII
A DIFFERENT BASIS FOR ACCURACY

Thus| far all of our formulas have been accurate for polynomials of given

degrees.| It is instructive to consider other bases for numerical integration
formulas, In this section different bases are considered formally and in
problems, If a formula user knows that his integrand is better approximated

with exponentials or trigonometric polynomials, he may wish to use a formula
with such an accuracy basis.

Theorem:

Consider any polynomial p of the form

3 2 2 3 2,2
Co HCroX + Co)Y + C XY + CaoX™ + Cp XY + C XY™ + Cogy™ + C, X7y

Then for| D fully symmetric such that

where u?

Proof:

By m
that zer
have

J/b(x.y) dxdy < «
D

fp(x,y) dxdy = (I,,/4) [p(u.v) + p(-u-v) + p(-v,u) + p(v,-u)]
D

V2= 1,,/100-

Consider the weights and points:

weight w w W W
x-coord U -u -v v
y-coord v -V ! -u

natching components of p(x,y) from both sides of the formula, we have
-0 equals zero for seven of the components. For the remaining two we

n
—

4w

00

1]
—

Awn®v? 29
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As we have two equations in three variables, one of the variables can be
arbitrary. Obviously w = I,,/4, and we must have py and v such that
wv = T,,/T40.

Problem: Redo the above theorem when x? and y? components are added to p.

Problem: Let p be a polynomial made up of any combination of x1yj such that
0si+js5, excluding x* and y*. Derive the following formula for D fully
symmetric such that

fp(x.y) dxdy <
D

. , .
ﬁ(X:Y) dxdy = (Ioo “Izo/Izz)p(OsO)
D

/4I Zp[ 122/120)]/2’i(IZZ/IZO)]/z]

Is the first weight always positive?
The answer is no.

: : 2 . : 2
Problem: Find a region where I,,I,, > I,,. Fine a region where I,,I,, < I,,.

Hint: try the square first.

Applying these two formulas to

ff (1x]+ Iyl dxdy

-1 -1

We have the following values:

Formula Value Error
Theorem formula 4.90032 0.90032
Second formula 4.61879 0.61879
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Problem:
have a X
Answer:
formula

Problem:

72-248

Develop a formula for any fifth-degree polynomial p that does not
2y* component. Again D is fully symmetric.

If (#r, #r) and (0,0) are used as points, the formula is like the
in the second problem of this section, where I,, is replaced by I.,.

Develop an eight-point formula for any polynomial p made up of compo-

nents that are of degree 7 or less, excluding x" and y" for even n, which is

accurate
Answer:

where

over fully symmetric regions.

I
Jfb(X.y) dxdy = —éﬂ [EZP(:p,:y) + 3 p(:y,:p)]
D

2 1/2
L, [lis 1I,\ /2
s V = 1 i 2 1

22 122 00

if (+u,4v), (+v,+u) are used as the points.

Problem:

Let D be fully symmetric. Develop a quadrature formula if the basis

of accuracy is

Answer f|
equally
(e =1 -1

a. sin x, sin y, cos X, cos y
b,  sin x, sin 2x, sin 3x
sin x, sin y, cos x, cos y, sin 2x, sin 2y, cos 2x, cos 2y

d. ex,.ey. 1

(R4

[1°
-

log x, x, eX
F.ox1/2, yV/2 (xy)1/2
g. x1/2, X, x3/2, x2

h. Make up your own basis

or d: If D is the square with corners at (+1,+1), and our points are
weighted and are at (+a,0) and (0,*a) then w = 1 and a = + cosh™!

/e).
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