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Abstract

Analysis of responses of linear systems, or of linear subsystems
within larger systems, to transient stimuli commonly involves the concept
of transfer functions. Estimation, verification, and use of these transfer
functions often entails recording of transient stimuli and transient
system response. These data are then digitized and processed numerically
to produce the transfer function. The recording and digitization processes
are usually the most important sources of error in the transfer function
measurement. Conclusions drawn about the systems being analyzed are
correspondingly in error. The purpose of this paper is to discuss some
ways of estimating the magnitudes of the important errors in the data
reduction process and to show how errors in the transfer function are
related to errors in that process.
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Estimation of Errors in Calculating Transfer Functions from Pulse Data.

Part I. Introduction.

1. The purpose of this paper is to present a procedure which will, hopefully,
aid in understanding the response of linear systems, or- linear parts of more
complicated systems, to transient stimuli.

2. A 1ihear system is a system which has the property that, if a stimulus
f](t) (t for time) produces a response g](t) and stimulus fz(t) produces
response gz(t), then stimulus af](t)+bf2(t) will produce response ag1(t)+b92(t)

for any two scalars a and b.! The Tinear system (or subsystem) may be
represented schematically as a single-input-single-output box, thus:

input Tinear | output
f(t) > system > g(t)

| Figdre 1.

For example, the input and output may be electrical signals.

3. Why are we interested in the responses of linear systems to transient
stimuli? Briefly, we want to know whether an undesired transient stimulus
might produce a response of such. great magnitude as to damage or disrupt

normal operation of the next system (or subsystem) in the chain. For example,
if we could predict the response of Subsystem A in Figure 2 to a particular
stimulus, and if we knew the threshhold of damage or disruption of Subsystem B,
then we could predict whether normal operation of Subsystem B would be
disturbed as a result of the incidence of that particular stimulus function

on Subsystem A. :

output , Subsystem
Subsystem a(t) B

input
f(?:) —P A 4 (1inear or

(]fnear) nonlinear)

Figure 2.




4. One might ask why we are restricting the enquiry to subsystems A which
are linear; why not investigate also those which are nonlinear? First, the
Tinear subsystem can be used to provide a simple but illustrative example of
a more general method for estimating several types of experimental error.
Second, a great many of the real problems of interest happen to satisfy the
restriction, and so can be adequately represented by Figure 2.

5. For example, consider the problem of an electrical system which includes
a digital computer. An electromagnetic field pulse originating outside

the system might be able to produce spurious electrical currents on the wires
which carry normal input data to the computer. To prevent the computer from
mistakenly interpreting these spurious currents as legitimate input data

and attempting to operate based on them, it is common practice (where such
external fields are possible and error free operation is important) to
surround the computer and the conductors leading to it by conductive
shielding. Unfortunately such shielding arrangements can in day to day
use develop weaknesses which go undetected in the absence of disrupting
external fields, for example at the conductive seam, weld, or connector
joining the shielding of the computer with the shielding of the conductors
which bring input to it. In this case Figure 2 becomes: .

input field ———»

f(t) ‘ - computer shield

data input shield ——  outpyt | “upsystem
Linear (t) B
: o input —3')  Jl(nonlinear
1wiring| ' digital

\Qt\“'--_____ SR computer)
: ‘s\\defective shielding
o connection

Figure 3.

What in Figure 3'cbrresponds to Tinear Subsystem A of Figure 2 is all of
the shielding, the simple data conductors leading to the computer, and any
more complicated but still Tinear wiring at the input section of the computer.

6. (The transfer function.) It can be proved2 mathematically directly from
the definition of linearity given in paragraph 2 that there exists a function
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‘h(t),.which depends upon the features of the linear system in Figure 1 but
which is independent of the stimulus f(t), such that

oo

o(t) - ff(-r) h(tt) dr )

-0

provided the system is time invariant. Therefore there exists a mathematical
model (viz., h(t)) for what the system does to any physically realizable input
f(t) to produce g(t). If we can discover h(t) for the particular system of
interest, therefore, we will understand completely the response g(t) of that
system to any real input stimulus f(t).

3

7. By another theorem® in mathematics, equation (1) can be rewritten

Glw) = Flw) * Hw) (2) ,

where F(w) is the Fourier transform of f(t), given by

Flw) 2 ff(t) e lwt g¢ (3) ,

-00 -

and G(w) and H(w) similarly are the Fourier transforms of g(t) and h(t),
respectively. Solving equation (2) for H(w) yields immediately

_ Glw
Hw = f& (4) .
Knowing H(w) from equation (4) we can inverse Fourier transform® to get

h(t) = %‘EI H(w) e'9t gy - (5) .

8. Our objective is to gain enough understanding of a particular Tinear
system, or linear subsystem, so that we may predict what response g(t) will
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result from a specified transient stimulus f(t) (cf. Figure 1). Since we
know that for linear systems the transfer function h(t) (and H(w)) is
independent of f(t) (cf. paragraph 6, above), one obvious idea for attaining
our objective is to use the following procedure. v

I. Put some arbitrary test stimulus f(t) into the linear
system (or linear subsystem).

II. Record both ;(t) and the resulting g(t) (cf. Figure 1).

ITI. Perform the operation represented by equation (3), for
gxamp]e numerically in a digital computer, to get

F(w) and G(w).

IV.  Calculate the linear system transfer function H(w) from
equation (4). ' ' .

V. Then, for any other transient stimulus f(t), perform the
operation represented by equation (3) to get F(w).

VI. Calculate the Tinear system response G(w) from equation (2).

VII. Perform the operation represented by equation (5), for
example numerically in a digital computer, to get the
Tinear system (or subsystem) response g(t) to stimulus f(t).

In fact, this procedure is commonly used. Some variations on it are also
used. One variation, CW (continuous wave) testing, replaces steps I, II,
and III, above, with the following two steps. ,

!

I. Into the linear system (or 1inear subsystem) put a sinusoidal
stimulus f(t) = A(w)sin(wt) of constant frequency and constant
peak amplitude. For a Tinear system (or linear subsystem)

the response will be of the form g(t) = B(w)sin(wt-q:(w)){5

II.  For each w record both the magnitude A(w) of the stimulus
and the magnitude B(w) and phase shift ¢(w) of the response.

These two steps supply F(w) ( = (A(w),0), in polar coordinates) and G(w)
( = (B(w)s¢(w))) directly for use by step IV. Another variation, time domain
unfolding, replaces steps V, VI, and VII, above, with the following two steps.

4

V. Calculate the linear system transfer function h(t) from
equation (5).

’

VI. Then, for any other transient stimulus f(t), calculate the
response g(t) of the linear system (or linear subsystem)

from equation (1).
Yet a third variation iSvsimply to apply both the preceding two variations
. 4 [ ’ [ : }
simultaneously, i.e., perform steps I, II, 1V, V, and VI .6

9. It turns out that these procedures are more easily stated than executed.




Part II. The problem.

10. Unfortunately, the procedures outlined in paragraph 8, above, don't
yield quite the right transfer function H(w) (or h(t)) nor, therefore, the
correct new response g(t). This is because there are sources of error
implicit in the procedures. For example, there is experimental error in

the process of instrumenting f(t) and g(t) (or F(w) and G(w)). Then, since
equations (3) and (5) are usually evaluated numerically, the functions

are usually sampled and digitized. Sampling and digitizing can be done
directly from the signal, recording then only the digital samples. However,
for EMP (electromagnetic pulse) information in the past more often sampling
and digitizing have been done after recording the analogue signal, from a
polaroid photograph of an oscilloscope trace. In the latter case a second
source of error is the recording process, and digitizing is a third. The
sample points are then reconnected, explicitly or implicitly, by some
analytically transformable function. This analytic interpolation generally
does not have quite the same values between the digitized sample points as
did the original experimental function, so a fourth error is incurred in
interpolation. The numerical evaluation of the analytic transform of the
interpolation is a fifth source of error, because of round off for example.

11.  This Tist of error sources for the procedures discussed in paragraph 8
is by no means complete. Appendix A gives a more complete, though still not
exhaustive, Tist of sources of system test data distortion for a system
appraisal apparatus much used to date. -Such 1ists can be made impressively
long. Even after considerable effort has been spent in minimizing the
individual errors, the remaining cumulative error can be significant. For
example, consider just the errors from sources numbered 12., 13, and 14.in
Appendix A, i.e., the error induced in calculating transfer functions, as
functions of frequency, from data photographs where the photographs are
assumed to be error free. An experiment which one might perform is to reduce
the data from such photographs to a .transfer function, then repeat the
reduction using the same data photographs to see if he gets the same transfer

function the second time. This experiment has in fact been performed7, using
operational and trusted data reduction equipment and procedures. The
reduction was performed forty-five times, using repeatedly the same actual
data photographs. Figure 4 shows the greatest and least magnitudes calculated
for the transfer function at each frequency. Thus the spread between the

two graphs in Figure 4 gives an indication of the amount of non-repeating
error which sources 12, 13, and 14.in Appendix A can cause in the performance
of just steps III and IV in the first procedure in paragraph 8, above. The
figure shows these errors can distort the calculated transfer function ampli-
tude into values ranging over a factor of 10 at Tow frequencies, a factor of
20 at nulls, and a factor of 200 at high frequencies. Where between these
extremes is the "true" transfer function amplitude at each frequency? Where
with respect to any one of the calculated amplitudes is the truth at each
frequency? It would seem from this example that data reduction random error
can be significant.  Consequently it would seem the problem of estimating
this error is worth solving. The purpose of this paper is to propose a way
to solve this problem. o :
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Part III. Approacheséto the problem.

12. How is the cumulative error from the sources in Appendix A to be
estimated? One way is the variables analysis approach, described in
Appendix B. (Cf. also paragraph 19, fo]1owing;§ This approach has been -
used in the analysis of several systems in the past. It has the advantage
that it provides an estimate of error applicable generally to gross classes
of system data and performance predictions. On the other hand, the error
estimates which come from variables analysis are usually not tailored to
individual pieces of data, and so may be inapplicable and inaccurate, or
at best too conservative, in specific cases. Therefore, although the
variables analysis solution to error estimation is useful, techniques

more precisely tailored to individual data are needed also. The purpose
of this paper is to present one such technique for solving the error
estimation problem. ‘

13. Our idea for helping solve the problem of estimating the error in the
output of the procedures outlined in paragraph 8, above, is to enable the
computer which reduces the data also to simulate the random behavior of

some of the processes and equipment used in the procedures. To illustrate
this computer simulation technique in detail, we will assume a specific
system analysis procedure and a specific sequence of data gathering and
processing procedures. The system analysis procedure which we will use

will be that stated in paragraph 8, above, minus the variations suggested
there. The sequence of data gathering and processing procedures will be
those cited in paragraph 10, above, using the second option of when to
digitize (since most of the system EM pulse data presently on hand was taken
that way). Therefore the sources of the errors which we will try to simulate
are to a large extent contained in Appendix A. Specifically, we will try to
simulate most of the random errors introduced in steps IT through IV,
inclusive, in paragraph 8, i.e., by sources 10. through 14., inclusive, plus
source 15.D., in Appendix A. (We believe the idea of computer simulation of
error could be extended to other error sources besides these.)

14. Since we are not trying to simulate systematic errors, there will be
some ftems listed explicitly or implicitly in Appendix A which we will
ignore. For example, item 10.B.V., oscilloscope calibration, may be done

by recording a square wave of known amplitude and known duration on every
oscilloscope photograph immediately before recording the signal. Alterna-
tively, a "staircase" step wave of known values may be used, or a combination
of DC (direct current, i.e., constant amplitude) level and constant

frequency sine wave, or other calibration signal. Any of these techniques
can involve random fluctuation in the amplitude of voltage from the
calibration generator (though hopefully not too much if the generator is

of the quality one would expect for a calibration source). We propose to
include this random error in our simulation. On the other hand, the power
supply, say a battery, of the calibration generator could begin to fail.

If this were not noticed the operator might set a switch for 100 millivolts
but the generator might then actually deliver only about 50 millivolts to

the oscilloscope. Such a situation, permitted to persist over a considerable
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series of recordings, could provide a serious systematic error. We do not
propose to include this kind of error in the simulation.

15.  Let's look more closely at the random error in an oscilloscope
calibration signal. Let us suppose that we are being very careful and

are using an external calibration source instead of relying entirely upon
the oscilloscope's sensitivity knob settings. For example, consider the
square wave calibration, as in the figure: : ‘

Voltage T

amplitude

Figure 5.\

Let Yo be the voltage and Ty the pu]sé dufation'Which is expected from the

calibrator. Then the vertical sensitivity used in the data reduction process
as a result of the photograph of this calibration will be about

Vg volts 4V, v ’ L
15 o - The horizontal sensitivity used would be about

3%~centimeters

T0 seconds =.3Tb sec

. Jle to random error in the calibrator
T on | However, due t

5%-cent1meters

(or in the instrument which we are using to independently measure the output
of the calibrator) there is actually some distribution associated with V0
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~ and another with Tg- Figure 6 shows the pulse redrawn in a standard
- Cartesian coordinate system, with the distributions indicated.

I Vb,
Voltage

amplitude

(0,0 | T

o

Time ——

Figure 6.

We don't know what the forms of these two distributions are, let alone the
values of their parameters. (In fact we are assuming, so far without
proof, that the "wideness" of the distributions is linearly proportional
to the magnitudes of V0 and TO, where the Tinear proportionality function

has positive slope and passes through the origin.)

16. When this calibration pulse has been photographed, the next step is to
put the signal into the oscilloscope and photograph it, preferably on the
same piece of film as, and superimposed on, the calibration pulse. Then
the photograph might look something like Figure 7.

S T e— S I

Figure 7.
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Part of the data reduction procedure would then be to digitize the
calibration pulse, say at its corners. Because of problems such as
10.B.VI., 10.C.II., and 11.B.III.b. in Appendix A, the person (or machine)
doing the digitizing might have a hard time deciding precisely which
point on the photograph represents the exact corner of the pulse. Then,
when he has selected a point, because of haste in a production mode of
operation he quite commonly fails to digitize the point he selected, but
rather records the digital coordinates of some other point (which is,
however, hopefully, quite close to the point he was aiming at). Then the
digitization process itself inherently involves rounding ?or truncation)
error. The three errors cited in the last three sentences effectively
serve to widen the distributions shown in Figure 6. \

17. The next step is to try to digitize the signal shown in Figure 7.
Actually, Figure 7 is somewhat idealized since, in order to keep the
trace visible where its slope has large absolute value, it is often
necessary to increase the oscilloscope beam intensity so much that the
photograph trace exhibits noticeable “blooming" (again cf. Appendix A,
10.C.II. and 11.B.III.b.) where the trace slope is near zero. Thus the
signal trace locally might look more like Figure 8.

(X,¥)

Voltage I
‘amplitude

Time~—f-b o

Figure 8.

Thus the three error sources discussed in paragraph 16, abovg, a]l apply
to digitizing the signal, too. Consequently there are distr1but3ons on
the digitization of the coordinates of any point, say (X,Y) in Figure 8,

also. This uncertainty is indicated in Figure 9;
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Vbitage
- -amplitude
(in "counts")

(0,0) X
Time ——pm
(in "counts")

Figure 9.

18. Digitization yields integer numbers of "counts" for the x and y
coordinates of the point being digitized, where a "count" is some (hope-
fully small) fraction of a centimeter and is determined by the kind of
digitizer being used. Llet X0 and YO be these two numbers for the point

(TOPVO) on the calibration pulse in Figure 5, and let X and Y be these two

numbers for the point (T,V) in Figure 9. Then the formulas for determining
T and V are SR—- S L

(T0 seconds)

T = (X counts) * (X, counts) ©
and L
( ’j’ (Vg volts) | (7)
V. = (Y counts) * "
N (¥, counts) |

We have seen that all of the quantities Vos Td, Xgs Yp» X, and Y in these

two equations have errors associated with them. So the T and V which we
calculate for any point in the signal trace will also be in error. The
next question is, how great will this error be? There are at least two
ways to approach the answer to this question. One is to study and assess
individually the three kinds of errors discussed in paragraph 16, above,"
and determine how they interact for each of the variables XO’ YO’ X, and Y

and how working through these variables they affect T and V (cf. also
Appendix B). Error in Ty and V, would also have to be estimated and

accounted for.  We will illustrate this approach by devoting a paragraph to
examining paragraph 16's third kind of error in more detail.
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19. (The analytical approach.) Assume the digitizing machine records the
integer number of "counts", or distance units, nearest the truth, (That
is, assume.the machine rounds instead of truncates.) Then, modulus the
quantum step length, i.e., modulus the length of a "count" in centimeters,
the pdf (probability density function) for this single error is

1 1
pdf(X) = { 1 for - ~2- < X < 2-
0 otherwise

as shown in Figure 10.

pdf(x) | 1/2
7 L A 7 T B
A .
x = Distance, ~——p
“in "counts"
Figure 10.
The mean of this "boxcar" distribution is
B =0
and the vqriance is
1
o ‘ _ 2 )
2 _ 2 y - 2 o]
o, = f (x-ux) pdf(x) dx f]x ’dx \vi
o A

Therefore o, = T%'= .085 digitizer "counts". For a digitizer which reads
0 counts at the bottom grid line of the oscilloscope reticle and about 100
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counts at the top line, then, the standard deviation of vertical error due
to digitization alone, for each point read on both the calibration and

‘n’ signal traces, is about .085% of full scale deflection. Consider the case
of a signal which is expected to have approximately zero integral (i.e.,
have approximately equal amounts of positive and negative variation, as in
Figure 7). 1In this case the oscilloscope would usually be set so that zero
signal amplitude is at the center grid line. Also, it is common practice
to choose an oscilloscope sensitivity such that the greatest signal variations
expected will use about 75% of available full scale vertical deflection.
This is done in order to reduce errors from such sources as 10.B.III. and
10.D.II. in Appendix A, and also to leave some margin for unexpectedly
large signals. Under these circumstances the maximum expected positive
signal would drive the beam about 75% of 3 centimeters above the center line
and the maximum negative signal a similar amount below center. Therefore
the error under discussion here would have a standard deviation of about

.085 counts

100 cdunts’*\%g*”.75 

*100% = .227%

of maximum signa]. Pdt}anotheriway, this error would be a source of noise
some 53 dB below maximum signal. Noise at this level would be distorting
both Y and Y0 in equation (7), so it would be the cumulative effect which

would be distorting V. (Of course the noise is depressed more if a digitizer
is being used which has more than 100 :counts ‘for zero to full scale deflection.)

‘n’ When signal is below its maximum level, as it actually is during most of the
recording, the signal to noise ratio (due to this one error source) is
correspondingly worse since this noise level is constant regardless of signal
level. The other error (or noise) sources can only make ‘the signal to noise
ratio worse at all signal levels. SRR ‘ o

20. Paragraph 19 deals only with error source 13.D. in Appendix A. Items
10 through 14, inclusive, in Appendix A have 44 lines of such error sources,
and the Tist isn't complete. Performing an analysis such as that in para-
graph 19 for that many sources, for each of the variables on the right hand
sides of equations (6) and (7), figuring out how to combine these errors
correctly (they are not all independent?, and then figuring out how to
program the computer to simulate this, not only seems a very tedious under-
taking but also seems likely to be fraught with much likelihood of mistake.
In paragraph 18 we mentioned that there is a second way to approach the
problem. That approach is, we think, quite a bit more feasible than the
approach illustrated in paragraph 19, at least for some of the sources of
error listed in Appendix A. We proceed now to illustrate the second approach.

21. (The statistical approach.) First, we hypothesize that time random
errors from the error sources of interest can be "lumped in" with amp1itude
errors, as follows. Let Figure 11 represent the cumulative errors on T and
V from all the sources represented in Figures 6 and 9 operating through
equations (6) and (7). ~

‘l' | -15-
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Voltage
amplitude
(in volts)

:
i.
|
|
4

(0,0)

Time ——————p
‘(in seconds )

Figure 11.

It is all the more true that we know neither the forms of these cumulative
distributions in Figure 11 nor the values of their parameters. Nevertheless,
let us proceed. Let AT be the error actually committed in the horizontal

time scale in trying to record and digitize the particular point (T,V) in
Figure 11. Although neither the value of AT for this particular point nor

its general distribution are known, we do know that the physical function
which we are trying to record and digitize has some value at the time T+AT

at which we have mistakenly taken our reading. Let this unknown exactly
correct functional value be denoted by V(T+AT). Let AV be the unknown error
in the recording and digitization of V, so that the recording and digitization
has actually left us with vertical coordinate V+AV. (Either or both of AT (:)
and AV may be negative, of course.) To summarize, we tried to record and
digitize the coordinates of the point (T,V) but the two unknown error
distributions in Figure 11 led us instead to digitize (T+AT,V+AV). Both these
two coordinates have error in them. However, the point (T+AT,V(T+AT)) is
actually on the curve and so, even though it is not the point we intended

to record and digitize, neither of these two coordinates has any error.

So let us compare our recorded and digitized coordinates (T+AT,V+AV) not

with the coordinates of the point (T,V) which we were aiming at but rather
with those of a wholly new point on the curve,,(T+AT,V(T+AT§). Doing this
makes our first recorded and digitized coordinate exact, leaving all the
error in the second coordinate. Consequently Figure 11 can now have the
error distribution entirely erased from the T coordinate and the distribution
function on the V coordinate replaced by some new, still unknown distribution
which somehow incorporates both of the old distributions. Plotting the
recorded and digitized versions of the numerous points (Ti,vi), each with

its new purely vertical errof'distribution (still unknown) yields Figure 12.
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)

Time ——————p

Voltage
amplitude

(0,0)

Figure 12.

22, Second, we try to estimate the distributions of these new "Tumped"
amplitude errors shown in Figure 12. Paragraphs 22 through 31 are devoted

to this. We begin by attempting to détermine what kind of distribution we
have to deal with. We know that the distribution contains the effects of
error contributed by numerous sources, e.g., at least those sources numbered
10 through 14, inclusive, in Appendix A (cf. paragraph 13, above). This
being so we might be tempted to conclude from the kind of thinking discussed
in Appendix B that the distribution was normal. Such a conclusion should

be accepted only as an hypothesis, however, unless and until it is confirmed
by experiment. We could determine experimentally whether this particular
hypothesis was valid by using statistical goodness of fit tests for normality
on real data. This has in fact been done. The conclusion of the determination
was, "The digitization errors ... show good evidence of normal distribution,
with about 80% of the intervals passing the chi-square test at the .05 level
of significance. ... we conclude that the vertical digitization errors are

normally distributed."8

23. Granting therefore that the distributions in Figure 12 are normal, the
next task is to determine values for the:distribution parameters. The normal

distribution has two parameters, viz., mean y aﬁd;Variande’og (or standard
deviation o). Let us consider first the mean p. It is not unreasonable to
suppose that the mean of the distribution of the digitized value of the
vertical coordinate of the pair (T+AT,V+AV) will in general be V(T+AT) (cf.
paragraph 21, above; the horizontal. coordinate of course then contains no
error at all), considering among other things that the normal distribution
is symmetric. The error distance between the digitized value V+aV and the
mean of the distribution of this value is therefore |(V+aV)-V(T+aT)|. This
same expression also of course gives the distance from the digitized value
to the accurate value of the data at time T+AT. Therefore the distribution
of the accurate value about the digitized value is the same as the distribution
of the digitized value about the accurate value, except that the mean of the
former is V+AV instead of V(T+AT). Consequently we may take the dots in
Figure 12 as the digitized values V+AV and the distributions in the figure

-17- B o ?

3 | | ‘ | |



as representing the Tikelihood that the accurate value V(T+AT) is within a
specified vertical distance of that digitized value. That is, the mean of
the distribution of V(T+AT) is '

no= V+AV (8) .

24. The next consideration is, what is the standard deviation o of the normal
(cf. paragraph 22, above) distributions shown in Figure 127 o gives an
indication of the "wideness" of a distribution. Put another way, large values
of o indicate that the error in a vertical digitization reading is likely to
be large. We may begin our estimation of the value of o, therefore, by
observing that, whatever the error in recording and digitizing V(T+AT) may be,
we would expect that it would in general be greater where the signal had a
slope with great absolute value than where the slope was near zero. (Notice
that the distributions in Figure 12 were drawn to conform with this observation.)
To see this, let m denote the average slope of the function from (T,V) to
(T+AT,V(T+AT)). That is, ‘ '

A V(T+AT) -V _ V(T+AT) -V
R

From this definition it follows immediately that
V(THAT) = V. = m * AT | B ) I

But the left hand side of this equation is just the discrepancy between

V(T+AT) and the vertical coordinate of the point which the digitizer was

aiming at. If his aim was fairly good, then the left hand side is very

nearly the cumulative ("Tumped") random error in the digitized value of
V(T+AT). In any case the left hand side should be the mean of the distribution
of that error. And the left hand side of equation (9), being equal to the
right hand side, is directly proportional to the function slope m. Therefore
large function slope should generally produce large combined (i.e., cumulative,
or "lumped", in the sense of paragraph 21) error in recording and digitizing
V(T+AT), for a given error AT in digitizing T.

25. To understand the standard deviation of the cumulative ("lumped") error
distributions shown in Figure 12 in more detail, however, we must take account
also of the fact that, for a constant setting of the oscilloscope beam
intensity control, the tracewidth (and therefore the size of the target which
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the dig1t1zer has to aim at) decreases as the oscilloscope beam traversal

0 speed increases. 0scilloscope companies try to make the output of the
horizontal sweep generator as linear as possible, so the horizontal component
of the beam speed is roughly constant. Consequently the beam speed increases
as the direction of travel departs from the horizontal. To quantify this

speed increase, consider Figure 13.

Voltage T

amplitude

‘Figure 13.

In this figure d, is the horizontal distance which the beam would travel

in time duration §t, and d is the distance the beam actually travels in that
same amount of time when the trace makes an angle 6 with the hor1zonta1 For

small time lapses 6t, thez the horizontal beam speed is Sg = dO/Gt and the
instantaneous speed is s = d/at From the figure,

= s R cos 8 - So sec ) , (10) .




Just how does this instantaneous beam speed affect the size of the target
which the digitizer is aiming at, and his accuracy in hitting that target?
Consider a magnified view of the trace, as shown in Figure 14, :

4 -
Voltage I

‘amplitude

O

“>~edges of
the trace

Time ———g

Figure 14,

The figure shows that w is the (non-negative) width of the trace and o is

its angle with respect to the (horizontal) time axis. From inspection of

the figure we would expect that the error in choosing the exact vertical :
coordinate Y to associate with time coordinate X will be directly related (:)
to the vertical sectional width of the trace. In other words, what point

along the 1ine segment (vertical cross section) of length c in Figure 14

should the digitizer choose for the Y to correspond with the X in the figure?
Especially if the trace happens to be bending the answer need not be simply

"the center of the segment". In any event experience has shown that a person
operating a digitizing machine in a production mode will often be satisfied

with any point along that segment. So we repeat, we would expect that the

error in Y would be related directly to c. Can we find a functional relation-
ship between ¢ and some simple observables of the data, perhaps for example

the local trace slope? From Figure 14 we see that

= c = cogie = wseco ' (11) .

Consequently, to get a function tokpredict c we will need a model for the
behavior of tracewidth w. Let us consider two such models, then choose one

of them. s
O




26. (First model: constant area per unit time.) In both of the two
models we will assume that the total amount of energy falling on the
whole oscilloscope face, and subsequently on the film, per unit time is
constant. In the first model we will assume in addition that the spatial
distribution of the energy is such that the area of film exposed per unit
time is also constant. Figure 15 shows a segment of the trace as exposed
on the film during time segment §t. :

|
Voltage : :
‘amplitude - |
|-
1
o
| -
o
| 1 L |
0,0 | 5t >
Time — 3
_ Figure 15.

The trace seémentvhas the Shape‘of~a para11e109ramu1f &t is not too great,
so the area of the segment is ‘wxd . By assumption this area is constant for
fixed 6t, so define L ‘ L

fC] ‘w;* d:. - P - '(]2) .

From the figure, cos 6 = é§-=:=£> d= cgg 5 = ot sec 6 . Putting this into
equation (12) yields SN

C
C; = W * 8t « sec & —J> wseco = - ‘ .

O
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Since this discussion is for fixed &t (say a unit amount of time), we can
define a new constant C2 g C]/at. Then by the last equation ‘ <:)

W sec o = C2
By equation (11), therefore,
c = G (13)

(cf. Figure 14). That is, the two assumptions of this model for tracewidth
behavior imply that c is a constant.

27. (Second model: normal cross sectional distribution of energy.) In the
second model of tracewidth behavior we will still accept the first assumption
in paragraph 26, above, but we will replace the second assumption in that
paragraph with a more complicated one. Specifically, assume that the
oscilloscope electron beam is at any given time aimed to produce exposure at

a single point on the recording film. However, due to beam electron scatter
there is a two dimensional distribution of the beam which results in a
distribution of 1ight intensity incident on the film. The cross section, (:)
taken perpendicular to the direction of beam motion, of the light intensity
distribution is normal. The magnitude of the local intensity is inversely
proportional to the speed of the beam as it sweeps past. The film-phosphor
combination has no memory, i.e., the incident 1ight intensity is sensed
instantaneously, not cumulatively. Finally, the film-phosphor combination

is binary, in the sense that there is a characteristic constant threshhold
such that if the electron beam intensity surpasses this threshhold level the
film is, at that point, completely exposed; otherwise the film remains
unexposed. (This threshhold value is a function of numerous things, such

as film speed, but is constant over the entire area of a single data photograph.)
Under this assumption the energy falling on the film will expose it wherever
the energy density is great enough, but out at the "tails" of the normal
distribution the film will remain unexposed because the energy intensity there
will have fallen below the film exposure threshhold. Figure 16 shows a cross
section (perpendicular to the direction of beam travel) of the instantaneous
light intensity, compared to the film exposure threshhold level.
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The slow beam is intended to be represented in this figure as traversing at
two thirds the speed of the fast beam, so that the slow beam is depositing
one and a half times as much energy per unit area per unit time as is the

fast beam. Of course, the beam of an oscilloscope traverses at its lowest
speed when it is travelling horizontally across the face of the tube, 1i.e.,
at speed so'(cf. equation ?10)). Therefore the instantaneous intensity of

the passing beam, under this model, normalized to the intensity when the
beam is traversing horizontally, is given by the first expression in
Appendix C. There are two variables in this expression, viz., s, the -
instantaneous beam speed, and w, the perpendicularly cross sectional width

of the trace recorded on the film. The quantity &, the standard deviation
of the normal distribution of the intensity, may be eliminated by first
noting that at the edge of the recorded trace the exposing intensity must

be precisely the postulated threshhold intensity ID' So we set the intensity

expression, evaluated at th,different‘beam speeds s; and s,, with x given
the corresponding values w}/2 and:w2/2 of distance from the beam or trace
center to the trace edge (where I =‘IO), equal to itself. From this point

the derivation in Appendix C is straightforward. It concludes by presenting
the vertical cross section ¢ of the trace as a function of s and various
constants peculiar to the individual data recording photograph. Applying
equation (10), the final equation in Appendix C becomes

L

. IR wg -»w% s sec B
c = (sec 6)", Wy - 5 n — s]( (14)
2

or else, should the radicand become negative, c = 0 . The general shape of
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this.function of (the absolute value of) © is shown in Figure 17. (This
particular example was calculated for an oscilloscope sweep "speed" setting
of 10 ns/cm, i.e., Sp = 1 Mm/sec. The other constants taken from the particular

photograph trace were Wy = 1 mm, S1 = 5 Mm/sec, Wo = 2 mm, and Sy, =2 Mm/sec.) (:)

i ¢
(0 0)4 T T T R | UL
’ 10 20 30 40 50 60 70 80 90

(Absolute value of)
Angle 6, in degrees — —»

Figure 17.

28. In the preceding two paragraphs we have considered two models for
tracewidth behavior. From each we have deduced a functional relationship
between c and 6 (cf. Figure 14). Which model are we to believe? Fortunately
there is a very simple way of choosing between these two models. In the
second model (that of paragraph 27) there is a finite instantaneous beam

traversal speed (and therefore a By < %-) at which the tracewidth w will

become 0, i.e., the trace will vanish. This can be seen intuitively by
examining Figure 16: when the distribution drops entirely below the film
exposure threshhold level, then w becomes zero. It also follows analytically
from equation (14), since the radicand will become zero when

2 ,
2 _ M2 "W, Sosec f
¥y F 3 £n 5 =
5, |
s
w% -
52
S
<= gl-e 20 L sec 89 <=
0

-24-




s
w2 £n i
1 So
S i WZ "W]
=D s gy = e =
2 , 5
w ——
i 1 Sy
: 2
s wWo - W
<P g = cos’] gg-e 2" (15) .

For the parametér values associated with Figure 17, for example, according to
the second model the trace should vanish entirely at 90 = 81.526°. On the

other hand, in the first model (that of paragraph 26) the trace can never
entirely disappear (cf. equation (13)). Yet we know that in real 1ife the

trace can disappear entirely when 6 becomes sufficiently great,9 Therefore

we choose the second model, despite the relative simplicity of the first. --

-- Of course, we could construct yet other models for tracewidth behavior

than just these two. However, the authors of this paper have in their ,
investigations of these matters come to believe that the second model presented
here is adequately realistic and yet simple enough for purposes of estimating
errors in calculating transfer functions' from pulse data. In the following
discussion we will introduce experimental evidence which supports this belief.

29. Let us now pause for a moment to summarize where we stand with respect to

the question which we raised at the beginning of paragraph 24, viz., what is

the standard deviation o of the normal (cf. paragraph 22, above) distributions
shown in Figure 12? Our analysis has indicated that ¢ is a monotone increasing
function of both the absolute:-value of the local trace slope m (paragraph 24) -
and the local vertical cross section c of the trace (paragraph 25). In para-
graphs 26 and 27 we developed models for the vertical cross section of the trace,
and in paragraph 28 we presented an argument for selecting the model represented

by equation (14). The question now is, precisely what function of |m| and ¢ is o ?

30. To get an insight into this question, consider a redrawn version of the type
of information shown in Figure 17, in which ¢ is the horizontal axis‘(instead of
the vertical) and the vertical axis is absolute value of slope m (i.e.,-of tan o
instead of angle 6). Figure 18 shows the new drawing. (The reason for portray-
ing ¢ in this new way is to facilitate comparison of our theory with some pre-
viously published experimental data, as promised at the end of paragraph 28.
Also, rather than just mechanically reproducing Figure 17 in a new coordinate
system we have, in order to use the new figure to convey as much new information
as possible, used new parameter values in Figure 18. This particular example was
calculated for an oscilloscope sweep "speed" setting of 10 ns/cm, i.e.,

Sg = 1 Mn/sec, as before, but the other constants taken from the particular

photograph trace were Wy = 1 mm, Sq ='1~Mm/sec, Wy = .8 mm, and's2 = 2 Mm/sec.)

-25-




1
0]
o

70

45

4

1

35

[« ]

Absolute value of
slope m (tan o)

k] 1 4 T 4 T L5 L . \ L] U 1 Rl

2 .3 .4 5 6 .7 .8 .9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Vertical cross section ¢ (in cm) ——p

Figure 18.

-26-




- Figure 18 shows that, for the particular data photograph from which it was
constructed, according to the model of paragraph 27 the trace will remain
visible except where the data drives it to a slope of absolute value greater
than about 87.5 (cf. equation (15)). The figure also shows that the model
predicts the vertical cross section of the trace on this particular data
photograph should increase until the slope reaches about 53. (The exact
peak can of course be found by setting the derivative with respect to 6 of
the right hand side of equation (14) equal to zero and then solying for 6.)
Now, ordinarily oscilloscope controls would not be set so that-anticipated
data would produce absolute values 0f. slope in excess of such extremes. Even
if the data were to contain unexpectedly high frequency content, so that the
data trace did exhibit slopes of absolute values greater than these, people
operating digitizing machines would not, ordinarily, choose these places in
the data to digitize: it {s much more common to choose critical points

("corners") on the trace for taking digitization readingsygo Therefore our
interest in Figure 18 is primarily up to the general part:-of the curyve upon
which the "close parenthesis" has been superimposed in that figure. We are
not saying validity of the model is restricted to the lower portion of the
curve, but only that that is the portion of the model which we would expect

to use most often with real, carefully recorded and digitized data. In this
portion of the model |m| and c increase together. Therefore in this portion
of the model a function which increased with c would also increase with |m|,
and vice versa. The question is still, what function of |m| and ¢ is o ? The
simplest approximation we might make, in view of the foregoing, therefore, is

that o is simply a scalar multiple of [m| or of ¢! Assuming for a moment

that the function really is this simple, we must then ask, what scalar multiple?
There are several ways to attack this question. One direct way is to conduct

the experiment of studying real data to see what function o really is of |m| or
of c. At least part of this experiment has in fact been performed. Figure 19 is

a photo-reproduction of a figure in the published report of that expenr'irlnent.]2
This figure shows that o is indeed a fairly linear function of |m|, within the
experimental error of the procedures used to produce the figure, at least for
small values of |m|. Therefore this experimental data corroborates our guess
that o is simply a multiple of |m| or of c.” This being so, we might be tempted
'to say immediately that o = k]*|m|, and devote ourselves from here forward to

trying to discover the value of k].h'Howgver, there is also the possibility that
o = ky*c. In the region of Figure 18 below the parenthesis the forms of these

two equations of o would be much the same. But for values of |m| above about
35 the two equations would begin to disagree sharply. Which, then, are we to
accept?-~The,hypothesiSvc'=~k]*lm1 is-to be rejected, for two reasons. First,

Figure 19 shows that, contrary to the prediction of this hypothesjsz‘c is
appreciably different from zero when |m| = 0. (This is not surprising, since
the tracewidth is large when |m| = 0: cf. Appendix A, 10.C.II.) For the second
reason, look again at paragraph 24. Equation (9) implies that the vertical
error increases linearly with |m| provided AT is constant. But the error

AT should become less and less when |m| becomes sufficiently great that the
trace becomes an almost vertical, very thin line. Consequently ;he vertical
error, the left hand side of equation (9), is not a linear function of |m|

for large values of |[m|. (Besides, our experience_w1th people operating
digitizing machines indicates that, in those rare instances when the operator
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“elects to try-td,digitize a point in a port1oh~of the trace with high absolute

zﬁ1ge, he is unusually careful.]o) Therefore, we are left with the hypothesis
a . : ; : ‘

o = kwc (16) ,

where ¢ > 0. As with any hypothesis about the real world, equation (16) can

(and should) be checked by experiment. The experiment in this case would be

to measure both ¢ and ¢ for real data and confirm whether or not their ratio is
approximately constant, at least for significant sets of data (e.g., all the data
on any single oscilloscope photograph). Unfortunately this experiment has not
yet been performed, so far as the authors are aware. However, the experimental

data presented in Figure 19 is relevant, and can be used to argue quaTitative1y13
that equation (16) is an acceptable hypothesis pending further, more quantitative,
evidence. Equation (16) agrees qualitatively with the data shown in Figure 19

in four ways. First, they both give the reasonable result that the value of ¢

is greater than zero when the slope of the trace is zero (cf. equation (14)).
Second, in both cases the value of o initially increases as the absolute value

of the slope of the trace increases. Third, both give an approximately linear
relation between the trace slope absolute value and o for small values of o.
Fourth, equation (16) results in .a plausible way from the digitization process
actually used. Therefore this relation will be used in the following treatment.

31. We must now examine more closely the value of k in equation (16). It is
the experience of the authors with semi-automatic digitizing in a production
mode, involving as it does some pressure to hurry, that taking a digitization
reading altogether outside (though usually not very far outside) the boundaries

of the trace is not at all untommon.]q ‘We nevertheless estimate that some 98%
of all readings can be expected to be taken inside the trace boundaries even

in a production digitization mode. That is, on a typical data photograph
processed in a routine production mode as many as 5 of the digitization readings
will actually be taken slightly outside the edges of the trace;]q 98% of a
normal population 1ies within a trifle. less. than #2.33 standard deviations of
the population mean. If our estimate of 98% is correct, therefore, the vertical
cross section ¢ of the trace is approximately 4.65 standard deviations "long".
By equation (16), therefore, v . 4

g fg» o :
k = T T Fe C .215 (17) .

Any other estimate than our 98% could be used to generate a corresponding
value of k in this same way. The best estimate of how often a particular
kind of digitizing arrangement actually hits the trace is to be obtained from
analyzing real data digitized in a production mode. We (the authors) are
unaware of any estimates of this quantity obtained in this way up to the time
of preparation of this paper. Therefore we will use our estimate of 98% in
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the examp]g procedure for error estimation to be developed. If and when a
better estimate becomes available, however, our illustrative value of k (cf.
equation (17)) should be updated accordingly.

32. 1In paragraph 21 we set out to outline a statistical approach to estimating
the data reduction random error from many of the sources and subsources of
error listed as items 10. through 14., inclusive, plus item 15.D., in

Appendix A (cf. paragraph 13, above). Since then we have developed Figure 12
and equations (8), (14), (16), and (17) to help us in this endeavor. These
equations provide us with the means M and the standard deviations 0; of the

normal (cf. paragraph 22) distributions of Y, in the coordinate pairs (xi’Yi)
(Xi has no error: cft paragraph 21) in Figure 12. Consequently we can now
produce error bars about the Y{ in either of at least two ways. One way is
to graph the set {(Xi,Yi)},‘then for error bars overlay graphs of, say,
{(Xi’Yi+]'645°i)} and‘{(Xi,Yi-].64501)}. Approximately 90% of a normal

population lies within +1.645¢ of the population mean. Therefore the interpre-
tation of these error bars would be:  one-could be approximately 90% confident
that another digitization of the data would generate a value of Y between

these error bars for any randomly selected value of X.

33. The second way of generating error bars for the digitized time domain .
data is a somewhat more elaborate ruse from order statistics, a ruse which will
be useful again in later paragraphs. This second way is as follows. Using

H; and 0; we can obtain from a random normal number generator new estimates

Yi of the digitized vertical co‘ordinates.11 That is, we can get a new set

of samples from the distributions shown in Figure 12. The set {(Xi’Yi)} is

actually a simulated outcome of applying the given digitizing process to the
individual data photograph. We may refer to this set as a pseudo-digitization

of the data. These pseudo-digitization values, like the o5 used in the first

error bar scheme (described in paragraph 32, above), will contain simulated

error from all the sources in Appendix A of which we took account in constructing

the model of paragraph 27. If we pseudo-digitize several times then for each
Xi we could use the greatest and least values of Yi'as‘error bars for the

digitization of the (time domain) data. Such error bars can be given a precise
interpretation using a "distribution free" interval estimator, such as is

provided by Wilks' Tolerance Theorem]4:

[i]

c(n,F) 1-F" - n(1-pfF"!

1 onE™l e (- FED (18)
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where n is the number of elements in the sample, Fis any fraction between
0 and 1, and C(n,F) is the confidence that at least a fraction F of the
population is "trapped" between the largest and tge smallest values in the

sample. for example, if there are 25 values for Y. then according to Wilks'
Tolerance Theorem our confidence that the greatest'and least of the 26
digitization values (1 real and 25 pseudo) "trap" at least 85% of the population
between  them is , ,

C(26,.85) = 1 - 26%(.85)2° + 25%(.85)26 = 9oy

(cf. equation (18)). That is, we may be approximately 92% confident that,
for a single randomly selected value of X, at least 85% of an infinite set
of future digitizations would produce values between the graphs of.{Xi,max{Vi}}

and {Xi,min{Vi}}, where {V.} é'{Yi}U{Yi}. Equivalently, we may be approximately

92% confident that the graph of another real digitization of ‘the entire data
photograph would 1ie between these two error bar graphs for at least 85% of
the X values. " - :

34. Paragraphs 32 and 33 offered two ways of estimating the error committed

in performance of parts of steps II and III of the procedure outlined in
paragraph 8, above (cf. also paragraph 13, above). The next part of step III
is to apply a numerical Fourier transform algorithm (assumed correctly
programmed) to the actual digitization readings. This should yield a best
estimate of the Fourier transform of the: recorded data, given the particular
digitization of that data and given the particular transform algorithm. We

are now in a position to estimate a large part of the error in that estimate.
We can put error bars on the magnitude, say, of the calculated transform in
either of two ways, quite analogous respectively to the two kinds of error
bars described in paragraphs 32 and 33, above. .The first way is to derive
analytically, from knowing which specific arithmetic operations are used on

the normally distributed input random variables by the particular transform
algorithm, what must be the distribution of the output of that algorithm. For
example, if the algorithm obtains the real and imaginary parts. of the transform
at each frequency w by a process which is equivalent to summing products con-
sisting of Y, times functions of X (e.g., cos wTi), i.e., a normally distributed

variable times an error free constant (cf. paragraphs 21 and 22, above), then
the real and imaginary parts of the calculated transform will be normally dis-

t\r'ibu'ced.]s"rl If the constants in the sum were such that the means and variances
of these latter two normal distributions came out about the same, then the square
of the magnitude of the transform, being the sum of the squares of the (normal)

real and imaginary parts of the transform, would be chi-square distr"ibuted.]6

In that case the magnitude itself would be Maxwell distributed.]7 Since the

H; and the o. are known for all of the original random variables in this chain

of functions, the values of .the parameters of each of the succeeding distri-
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butions in the chain can be calculated by the reader who is interested in
Tooking up and applying each of the footnoted theorems. Error bars could

then be put on the magnitude of the numerical Fourier transform using values
of the Maxwell distribution parameters in the same way as was done to the time
domain data using values of the normal distribution parameters (cf. paragraph
32, above). Similarly, at step IV of the procedure in paragraph 8 it may be
decided that the square of the magnitude of the transfer function, being the
quotient of the squares of the magnitudes of two numerical transforms (cf.
equation (4)), each of which is chi-square distributed, must be Snedecor F

distributed.]8 In this way error bars analogous to those of paragraph 32
could also be put on the calculation of the magnitude of the transfer function.
Error bars for the calculated phase of both the numerical Fourier transform
and the transfer function could be produced in a similar way. =-- With these
general observations we will here leave any further pursuit in this paper of
the details of error bars generated by this kind of statistical analysis.

35. The second way of estimating the error in the calculation of the numerical
fourier transform follows the idea of paragraph 33, above. Applying the
numerical fourier transform algorithm to a pseudo-gigitization of the data,

i.e., numerically fourier transforming a set'{(Xi,Yi)} (cf. paragraph 33,

above), we can obtain from equation (3) a new estimate of the Fourier transform
of the given data. for a given frequency w this new pseudo-transform will
generate a point in the complex plane. This complex point, like the point
generated at that frequency by the transform of the real digitization of the
data, will contain error from all the error sources in ‘Appendix A of which we
took account in constructing the model of paragraph 27 plus error from all the
sources of random error in the numerical transform algorithm being used
(including the error in the interpolation function between digitization points,
etc.). Executing procedure step III repeatedly with such pseudo-digitizations
as well as with the real digitization will generate at each frequency a

family of such'comp1ex points. To obtain error bars on the magnitude, say, of
the transform we now need only apply Wilks' Tolerance Theorem to the set of
magnitudes of these complex points. Cf. equation (18) and the example following
it. Error bars can be obtained in the same way from the same family of complex
points for the phase of the transform, '

36. The error committed in calculation of the transfer function can be
estimated by continuing the process advanced in the last paragraph..  For each
pseudo-transform of the input function f(t) (cf. Figure 1), a pseudo-transform
of the output g(t) is used in equation (4) to generate a pseudo-transfer
function. for a given frequency w the set of pseudo-transfer functions will
generate a family of complex points containing error from all the sources
discussed so far plus that incurred at step IV of the procedure (cf. paragraph
8, above). In the same way as in the last paragraph applying equation (18) to
this family of points will yield error bars for the magnitude and phase of the
transfer function calculated from the real digitizations of the data.
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Part IV. A proposed solution to the problem.

37.. The problem which we set out to try to find a way to solve in paragraph 11
was, how may the random error in transfer functions calculated by reducing
pulse data be estimated? In Part III of this paper we have considered numerous
aspects of that problem. As a result of these considerations we are now able
to propose in complete detail an example of a procedure which produces meaningful
error bars which incorporate many of the error sources listed in Appendix A.
That example appears in Appendix D. As was shown in paragraph 32, the meaning
of the error bars generated by the procedure of Appendix D is that one may be
approximately 92% confident that any future single reduction of the given,
individual piece of data ("from scratch") will generate curves which 1ie within
the bars for at least 85% of the abscissa values. Thus, the error in the
reduction of this particular data is estimated, with 92% confidence, to be less
than the difference between the reduction values (center line) and the error
bars at least 85% of the time.

38. The procedure presented in Appendix D has actually been programmed and

made ogerational in a working, production data reduction mi11l. Figures 20

through 26 show the result of applying this procedure to two sets of data. The
center curve of Figure 20 represents the digitization of the inpyt signal and

the two outer curves indicate an estimated +1.75 standard deyiations from the
digitization. The boundaries therefore contain approximately 92% of the normal
population. Figures 21 and 22 show the magnitude of the Fourier transform of

the digitization of the input signal along with the predicted bounds on the error.
Note that while the magnitude of the error in the transform does not increase at
high frequencies, the relative error increases substantially. Figures 23 through
25 show similar results for the output signal. Figure 26 is a plot of the
calculated magnitude of the transfer function and of the associated error bars,
It can be seen that in this case the transfer function contains order of
magnitude errors over most of the frequency range shown, so that considerable
caution would have to be used in drawing conclusions based on this calculation

of the transfer function magnitude.

39. In actually using the procedure given in Appendix D it was discovered that
the increase in computer time required to numerically Fourier transform not

only the digitized data but also many pseudo-digitizations of that data can be
quite noticeable. On the other hand, equation ?18) makes clear that, using this
scheme, it is desirable to transform as many pseudo-digitizations as one can
afford to (25 in the example in Appendix D). These two facts together make it
clear that it pays in the accuracy of the error estimate to employ the fastest
Fourier transform algorithm available (without sacrificing transform agcuracy).
This being the case we would 1ike to include here a description of a simpie
device which will greatly increase the speed of most numerical Fourier
transform algorithms when they are applied to these pseudo-digitizations. o
The device is this. Modify the transform program so that when it is calculating
the transform using the real digitized values for a piece of data at a
particular frequency it stores the results of eyery cosine and sine evaluation.
The number of words of computer memory required to do this is twice

the number of digitization readings from the data photograph, typically
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only a few hundred. Then proceed immediately, before changing frequency,
to calculate all the pseudo-transforms and error bars at that frequency.
In the subsequent pseudo-digitizations of that piece of data the values
of X; will not change (cf. paragraph 21 above). So the program can, for .

all pseudo-transforming, Zook up a]] quantities of the form cos wTi or
sin wTi,‘thus saving almost all the time otherwise required to evaluate

trig series. (Of course, all the trig series will still have to be
evaluated afresh when all the pseudo-transforming is complete at one

frequency and a new frequency is embarked upon.

not error bars are being ca]culated.]o)‘
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Appendix A

Some sources of system test data distortion:

1. Spurious pseudo-signals; noise.
2. Sensor.
A. Transfer function.
B. Placement.
I. Orientation.
3. Integrator.
A. 1/(1+iwRC) transfer function.
I. ~1/RC scaling.

II. Capacitor discharge ("integrator undershoot").

4, Balun.
5. Timing system.
6. Cables.

7. Amplifier.

A. Linearity.

B. Noise.
8. Attenuator.

A. Remote control.
9. Microwave relay system.

A. Transfer function (including temperature dependent dielectric constant).

10. Oscilloscope.
A. Common mode rejection.
B. Beam aim.

I. Placement (orientation) of deflection plates or yokes.

II. Power supply.
III. Linearity of vertical deflection.
IV. Linearity and triggering of hor1zonta1 sweep.
V. Calibration.
VI. Overshoot.
VII. Saturation recovery time.
C. Phosphor.
- I Sensitivity (beam intensity).
II. Bleeding (trace width; dynamic range).
D. Glass face.
I. Orientation (normal to centered beam).
II. Curvature.
III. Reticle.
E. Signal truncation.
11. Camera.
A. Lens.
I. Grinding (aberrations).
- II.  Placement (orientation).
III. Focus.
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. (11. Camera, continued.)

B. Film. '
“I.. . Placement (correct for lens focus).

II Orientation (parallel to lens and osci1loscope face).

ITI. Emulsion.
a. Sensitivity.
i. Age.
‘ ii. Temperature.
_ ‘ " Bleeding. ' .
12. Spurious film mark1ngs (scratches, etc. )
13. Digitization.
. . Translation.
. Rotation,
Sensitivity.
. Digital truncation.
. Positive trace width.
. Sampling frequency.
14, Numer1ca1 Fourier analysis.
A. Interpolation assumptions.
B. Periodicity assumptions (aliasing).
_C. Digital truncation and round-off.
D. Instrument transfer functfon unfo1ding.k
15. Operator procedures. ‘ &
‘A. Equipment care and hand11ng.
‘ ‘ . I, calibration. -
. 11, Shock (dropping).
B. Control settings.
C. Care of recordings
= I. ‘Data 1dent1f1cation and logging.
D. Digitxzatlon. ~
E. Computer program accuracy.
F. Entry of supplementary data into computer.

-nmCan:b
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Appendix B

\ariables Analysis.

- Take the view that information about a system must pass to the system
analyst through a succession of devices, as in the following figure.

system (integfator) ~ (pre)amp camera digitizer
A N T AT L b — -1 S AN
[ \=ik FHY 7K AL
. A4
environment current(dot) microwave oscillo- film
sensor system scope
1 2 3 4 5 6 7 8 9

Define Ti(“) a %%g%-(cf. Figure 1 and equation (4)) to be the transfer

function, as a function of frequency w, of the ith approximately linear
single-input-single-output component in such data transmission systems as
that pictured above, where 1 < i < N. Then the final value of y(w) recorded
is related to the true value x(w) put into the system by the equation

N
v = x() ] T ()
| < i=1

We invert this relationship to recover x(w):

x(w) = ——Tﬁiﬁﬂ———~

T; (w)

i=1

(Note that it is necessary that Ti(a) # 0 for all w and for all i.) However,
we can't really perform this calculation, since we don't know the Ti(w) exactly.
In practice we must use an approximation Ai(w) for Ti(w)’ so we recover instead:
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i
TT Ayt
i=1

w(w)

Define E(w) E ?%5% ; call this quotient the error in the estimate w(w)

of x(w), since if we knew E(w) we could divide it out and recover x(m)
accurately:

Elw w(w)/x(w)
N 'Ti | ;
Define B. = 20 10910 ﬂ—- dB. Do whatever analysis and experimentation

18 necessary to discover the mean . and the variance 0; of the distribution
of each variable B,. Then note that

E = 10918 (10910E) =
Cm 10918 (10910 ¥-)_‘=
BT y/TA,

= logq (1og )

10 10 y/o i

, T,
= logyg (]°910 )
. . 1

]

= tog7! [ogy (14t
‘ %90 [ Og]o(nv'A]T )]

R , T
= Tlogyy [2(Togyg g~ )]
b
1 oo T

= Togg (28y)

The Central Limit Theorem]9 states that if the Bi are mutually independent
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random variables with distributions (not necessarily the‘same) of known mean

M and variance of, where the distributions satisfy the Lindeberg.cdndition]g,
N ‘ :

then EZBi will tend to the normal distribution with mean u and variance 02
i=1

as N becomes large, where

N N
U= E:LH and o = 0?
“ P

1 1

Therefore, if the Bi satisfy the Lindeberg condition, E will be log-normally

distributed and we can calculate the values of the parameters of the distribution
from the results of the analysis and experimentation recommended in the sentence
italicized on the preceding page.

Finally, since

wlw) = x(w) * E(w)

and since x(w) is a fixed (even if unknown) number, we conclude that the
number w(w) which we recover as our recorded data is really a log-normally
distributed random variable and that the values of the parameters of the
distribution are the same as those for E (again, provided N is sufficiently
large and the B, satisfy the Lindeberg condition).
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Appendix C

Derivation of the vertical cross section ¢ of the trace as a function of
. electron beam traversa] speed s.

. - X2 :
Model: [ = — e describes effective intensity of oscilloscope
so V2n , ’

electron beam intensity, where x is distance L to direction of beam travel and
s is speed of beam travel. Then

- \2
W
"z) | jé
Sy ~2 s ~
I, = 0 o 2 = 0 e,80
s 42 so A2m B
2 2
— o8 . _ S0 &

g
B R .
80 8o
— e _ e :::4"\
““"*::> sy Sp
’WZ : W2 W2 2 2
-7 2z "2
T—— El = e 80 = e 86 80 . 85' .
S2. Wg = e >
- =5
e &
51 “’g - ’”? |
> wg s b
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2
_h
= w2 =\l =2+ in e T
,5]
s
= ol =21
Sy T
2
M B
\" %
_ S
'W-I"T«eyl’g.l—

By equation (10) in the text therefore,

c = (sec o) x/wf - T §~
‘ 1

or, in the case of negative radicand, ¢ = 0.
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Appendix D

Procedures for calculating error bars.

I. Procedure for determining o; as a function of'{(xi,yi)}.

1. Find two "straight" portions g7 and g, (g for "graph") of the curve
which have very different absolute values of sTope from one another.
For each gk'do the following: '

a. At 5 different abscissa values digitize the top and bottom edges
of g, to obtain the set E = {05 ¥ pi) (% g Ykbi) 3 15is5}

(E for "edges", t for "top", b for "bottom").
b. Calculate the vertical cross-section Vi (v for "vertical") of 9

by calculating the average of the set of differences {ykti - ykbiia

1<i<5}. - | B 4
C. Least squares fit this set of 10 points in E with the quadratic

Mk(x) = akx2+bkx+ck (M for "middle" line). Mk should "parallel" 9y -

d. Calculate the slope my of 9 by evaluating the first derivative of
Mk near the mid-point of 9 > i.e., m = ??kxk3+b
e. Calculate the angle 6 of 9 as 6 = tan m . ,
f. Calculate the width Wy (w for "width") of g, as wk =V, Cos 6.
g. Calculate the sweep speed Sk (s for "speed") of the writing beam
in 9 divided by the horizontal sweep speed as s, = sec ek.
2 2 | o
W2 oW

k*

2. Calculate T =

3. Calculate the slope m; of the curve at any point (Xi’yi) as the average
of the first two differences about (Xi‘yi)'

4. Calculate r; = sec (tan—]mi).

r. ' _
5. o; = 215 ri\/w§ -1in gl- . (In the event that this radicand is
] ‘

non-positive, set o, = maX{oj},.)
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II. Procedure for determining error bars for numerical calculations of the
“direct Pourier transform F(w ) of the function represented by {(x Y )},

1. Perform the fo110w1ng for all values of the indexing variable K from

1 to 25:

a. For all X; Use y; as the mean and o as calculated in the
procedure on the preceding page to generate Yik with the computer
normal random number generator.

b. Numerically Fourier transform the piecewise linear function
represented by {(x oY k)} by means of the same algorithm used
to calculate F(wJ) Let F’(wJ) denote the result.

2. The top "error bar" pf the Fourier trznsform graph is a graph of the
points (u);| Fmax(wJ)), where Fmax(wJ) = max{F (w ) D 1<k<25}
S1m11ar1y, the lower envelope is a graph of ﬁn1n(“ ) = m1n{Fk(w )
1<k<25 . (In the event F(w Y<F . (w ), for ‘that Wy the def1n1t1on
of F. (w ) is changed to Fm1n(w ) Ru)) l[max{F'(w ) @ 15k<25}-

min
min
-F(wJ)]. S1m11ar1y, when so requ1red def1ne F. o (w J) = F(w )+

max
+.1[Fw ) m1n{Fk(w ) D 1<ks25}]. Note: if these cont1ngency

‘ﬂ$ prov1s1ons result in m1n(“ﬁ) 0, redefine - m1n(w ) =0.)

III. Procedure for determ1n1ng error bars for numerical calcu]atlons of

transfer functions T(m ) L | A ,

1. Follow steps 1a and 1b of the precedin procedure for both the output
and input waveforms to generate {F (wJ? (w ) D 1<ks25}.  From this
set calculate {T (wJ) 2 1sk<25}, ,where Tk( ) = ,‘(w )/Fk(wj) (cf
equation (4)). ;

2. Follow step 2 of the preceding procedure using {Tk(wj):a'1sk525} to

generate Tmax(wﬁ) and Tm1n( J). Graphs of these two functions are

the error bars for transfer function graphs.
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Footnotes

Cf. reference [R3], pp. 2, 3.

cf. [R10], pp. 82, 83, especially equations (5-2) and (5-10).

This is the time convolution theorem. Cf. [R10], p. 26, equation (2-71).
Cf. [R10], p. 7, equation (2-3).

Cf. [R]O], p. 84, equation (5-14).

Another procedure has been proposed which is somewhat different from the
procedure and variations outlined in the text. This new procedure 1is
called SEM (the Singularity Expansion Method); cf. EMP Interaction Note 88,
by Dr Carl E. Baum, dated 11 -December 1971. In using SEM one puts into

the linear system an arbitrary test stimulus f(t) and records both %(t)
and g(t), as in steps I and II of the procedure in paragraph 8. Then one

Laplace (instead of Fourier) transforms f(t) and g(t) at enough complex
values of s = o+iw to search out the principal singularities of those
transforms. These two sets of singularities determine the entire Laplace
transforms. Accordingly, these two sets of singularities determine a
transfer function of a complex (as opposed to purely imaginary) variable
for the Tinear system. With this SEM transfer function one may calculate
the response of the linear system to stimuli with different angles of
incidence than used for the test stimulus. If the angle of incidence is
unchanged for a new f(t), then the transfer function of a purely. imaginary
variable is still contained in that of the complex variable, so the SEM
approach still allows one to complete the procedures of paragraph 8 to
discover g(t). -- For purposes of the present paper the point of interest
is that SEM procedures also require transforming field test data, albeit
Laplace instead of Fourier transforming, at enough complex values of s to
discover the singularities of the transform. Consequently the problem
raised in Part II of this paper exists for SEM procedures also. And the
solution to that problem suggested by this paper should therefore aid in
application of SEM procedures, too. ‘ ‘

Cf. [R9], p. 7 and pp. 9 through 14, inclusive.
Cf. [R4], Part IV: "Conclusions and Recohmendations".

That this is so is apparent from the necessity for the term "writing
speed" among those who design, manufacture, and use oscilloscope-camera
systems. The term means "the maximum spot speed which can be adequately
photographed", or "the speed of the fastest trace the [recording] system
will record" (cf. equation (10) in the text). Cf. [R2], pp. 3-16/4-1 ff.
Or cf. [R8], pp. 173 to 175.
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10.

11,

12.

13.

~ checks for independence). We (the authors) are unaware of any such

These remarks of course apply only when the person operating the digitizing
machine chooses the points to be digitized. They don't app?y when the
digitizing machine is of a kind in which the operator tries to slide a
cursor along the trace and the machine automatically digitizes at uniform
horizontal intervals. For this latter kind of digitizing arrangement
appropriate adjustments would have to be made to the simulation model ‘
which we are developing here. The same kind of observation about necessity
for tailoring the model can be made for the case in which the digitizing
machine is a microdensitometer which scans automatically. Of these three
kinds of digitizing machines we are developing our example model around

the first not because it is necessarily the best, most accurate, or most
common, but because the experimental data of [R4j which we must use to
validate our simulation idea was taken with the first kind of machine.

This assumes that the errors in one distribution in Figure 12 are wholly
independent of the errors in all of the other distributions in that
figure. Another way of stating this assumption is to say that the errors
accumulated from the first thirteen sources in Appendix A yield a mutually
independent discrete parameter stochastic process. However it is stated,
the assumption is subject to experimental verification (i.e., statistical

verification to date. Pending report of such verification, however, we
believe the assumption to be sufficiently accurate to allow us to proceed
with the error estimation proceduregbeing‘deyeloped in this paper. '

This is Figure 9 in [R4]. -- "DFDT", the vertical axis label in

Figure 19, is explained in [R4] to mean the absolute value of the

first time derivative of the data. This derivative is in "engineering
units", such as volts/second, not in the units of the trace slope m
(viz., cm/cm). The trace slope m is not given in [R4] for the data which
generated Figure 19. However, to the degree.that the oscilloscope is a
linear instrument, the slope of the trace is simply the derivative of

the data multiplied by scaling constants with appropriate units. We

have been equally unsuccessful at discovering the values of these scaling
factors from [R4]. ‘ IR , : :

One would prefer to make a quantitative argument. For the moderate:
values of |m| which we believe to be represented in Figure 19, a
quantitative argument might begin in this way. The hypothesis contained

in equation (16) states that o = k*c. Invoking the estimate in equation
(17), the hypothesis becomes o = .215xc. According to Figure 18, for

small values of |m| (say, |m| < 12), c 2 [(.71/12)?m|+.1] cm 2 (.059|m|+.1)
cm. Therefore combining the information from Figure 18 with the hypothesis
yields o = .215%c = .215%(.059|m|+.1) cm'é'(;0127$m£+.0215)(cm. It

should be possible to compare the estimate o = (.0127|m|+,0215) cm,

which is based upon the hypothesis contained in equation (16), with the
experimentally determined relationship between o and |m| shown in Figure
19. Unfortunately we cannot at present complete this quantitative
argument, for two reasons. First, we have not been able to determine values
for the slope and bias of the (generally linear) experimental function

in Figure 19 because of the missing scaling factors (cf. footnote 12,
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14,

15.
16.
17.
18.
19,
20.

above). Second, the photograph parameter values used to construct

Figure 18 are merely typical, round numbers, not at all necessarily
identically the same as those of the data photographs which produced

Figure 19 (Figure 9 in [R4]). The values of the parameters of equation (14)
for the latter real photographs were not available to the authors during
preparation of the present paper, since they were not included in [R4] and
the authors of the present paper do not at present have the photographs
themselves.

Cf. [R61, pp. 197 to 199, especially equation (22-10). Or cf. ER7],
pp. 220, 221. Or cf. [R1], pp. 18, 19, especially equation (13

Cf. [R7], p. 293, Theorem AII.2.
cf. [R7], p. 302, Corollary.

Cf. [R5], p. 47.

Cf. [R7], p. 307, Theorem AVI.10.
Cf. [R5], p. 256.

This report is actually named somewhat erroneously, since the digitizer
used would more accurately be described as semi-automatic than manual.
The human operator positioned the crosshairs manually, but at the touch
of a button the coordinates of the crosshairs were read, digitized, and
recorded automatically. This difference is significant for the present
paper since it means the detailed example of the error simylation
technique which we develop here does not include the error a human
commonly makes in reading precise coordinates due to early, unrelieved
boredom. The absence of this error source is assumed by paragraph 19
in the text.
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Symbol

&

—>
<=>

1]

(%,y)

{a,b,...,2}

Definitions of symbols

~ Meaning

15 defined to mean

~implies

implies and is implied by
logical "AND"

is identically the same as

~is approximately equal to

a pair, or "two-tuple", giving the coordinates of a point in
two dimensional space; also stands for the point itself

the set containing the elements a,b,...,z'
unfon (of two sets)

such that

is perpendicular to

the‘absolute‘value of a

"times" (i.e., ordinary multiplication; this operation is also
indicated in some places by juxtaposition)

the product'x]*x2*~--*xN (produdts are also indicated by the same
symbol typed: I )

the natural, or Naperian, logarithm (base e)
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