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I. INTRODUCTION

When reducing EMP test Photographs, readings are taken in <:)
the middle of the data trace. TIf more accurate data is needed,
one could consider the data trace that is supposedly hidden

vyithin the data trace that appears on the photograph. In this

wd

7 @easu§§ﬁgnt note a method for finding this hidden trace is pro- .
ﬁosed.
There are reasons for interest in this problem. More ac-
curate data is desired, especially when it is needed for key
parts of a test, better reliability, or greater confidence.
The middle of the trace method has some bias toward the time

axis for photographs where much blooming is present.
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II. THE PROBLEM

i The problem is finding the hidden data trace. To do this,

one could use a computerized flying spot scanner, to make den-
'sity readings d(x,y), for |
points (x,y) on the pho-

tograph. One might sus-

pect that for a constant Fig. 1
X, a cross-section of

density readings would

appear like figure 1 if

no blooming was present

and figure 2 if blooming o b
was present. Because of

the effects of blooming,

the point a in figure 2

may be more Epdﬂcétive of

the true data péhntﬂthan

-

b. Experience with a

Fig. 3
flying spot scanner has

shown that figure 3 is more typical of a data trace cross-sec-
tion.

The crux of the problem is finding a way to interpret den-
sity readiﬁgs. Smoothing the curve given in figure 3 is diffi-
cult and subject to a variety of individual interpretations.
For a given x, one could consider the cross-sections of density
readings for time points within the interval (x - a, x + a) as

being the data needed to determine the amplitude A(x) that
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represents the hidden trace at the time point x. Consider the
volume V(s,y,a) of density under the function d(x,y) over the
disc of radius a about the point (x,y). For constants x and a,
énd as y varies from the bottom of the trace
to the top of the frace the function V(s,y,a)
qay trace a more interpretable curve ﬁhan
ﬂigure 3. In this case a sequence of discs
iike that pictured in figure 4 is used. One
could define A(x) then as the maximum of

Fig. 4
V(x,y,a) as y varies or as d(x,y*) where
V'(x,y*,a) =0, if severe'blooming is not present. If blooming
i% present another method must be used.

Several theoretical and practical questions arise that can
only be answered with experience. We have assumed that the
density volume should be taken over a disc. One would guess
that this base region should be fully symmetric, that is sym-
metric with respect to reflections about both axes and both 45-
degree diagonals. The base region then could be a disc, a
s@uare, a regular diamond, or a regular octagon. Experience is
needed to determine the optimal radius or the optimal param-
eiers of the base region; the optimal distance s needed between
consecutive base regions to get an adequate description of
V(x,y,a) for a given x and a given base region; and the optimal
spacing between time values, x, to achieve the best amplitude
déterminations, A(x). What is optimal may change as the trace

width and other trace qualities change. A method must be found

for calculating the desired volumes. Because we assume a




ﬁlying Spot scanner will be used, we are limited to density
(:> readings over an uniform grid. We assume that software can be
created to handle data trace nonuniformities. We have assumed
that the hidden trace does in fact exist in our test data and
that it can be detected with a densitometer. We have assumed
that for each time x that the curves V(x,y,a) can be inter-

Preted into data more meaningful than that which the usual av-

ekaging technique yields. Several questions exist that can
ohly be answered by experience. In the next section we propose

nhmerical methods for calculating V(x,y,a).
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IIT. CALCULATING V(x,y,r)

For simplicity of discussion, we assume that the base re-
gion is a disc of radius a. To calculate V(x,y,a), the 2 di-
mensional trapezoic rule could be used. This would involve no
iqterpolation, but would involve a cumbersome number of points.
The resulting program could be expensive in terms of time and
core storage,

To minimize the number of density readings, quadrature
formulas could be used. Such quadrature formulas would have to
be for double integrals over fully symmetric regions. See the
agpendix. Most quadrature formulas of this type use the least
ndmber m of points p(xi,yi) to estimate the integral of p(x,y)
over our domain of integration, a disc. Using such minimum
quadrature formulas would probably involve interpolation. Such
formulas need values of p(xi,yi) at certain preset, and usually
irrational points. For instance (0,1/V3). The appendix, how-
evbr, deals with near minimum quadrature formulas. Such formu-
las have one or more arbitrary parameters, which can be ad-
justed to the advantage of the user.

In the remainder of this section we will construct quadra-
ture formulas for calculating V(s,y,a). We assume that an opti-
mal a has been determined and that slight, but convenient, |
chpnges in the value of a are allowed. For convenience we as-
sume (x,y) = (0,0). We assume that across a trace we can make
200 density readings in the direction of the y axis and 60 den-
sity readings in the direction of the x axis, all of these

readings being equally spaced a distance h apart on a uniform




Qrid. Investigatory use of near minimum quadrature formulas is
(:) not limited to the examples given below. Other formulas or
variations of the given examples are possible.

The moments Iij = fxlyldxdy over a disc of radius a are:

| 2
. | I00 = ma“, 120 = na4/4, I40 = ﬂa6/8
I = 1a®/24 I, = 51a8/64 I,. = 1a8/64
22 ’ 60 v gy =M/
I + I = ﬂa6/6 I - I = ﬂa6/12
40 22 ’ 40 22
I + 31 = ﬂa8/8 I - I = ﬂas/lG
60 42 ’ 60 42 .

Eormulas of third Jdegree accuracy: By third degree accuracy,

(:) We mean that the estimate of the integral of any polynomial
é(x,y) of degree 3 will be exact. THEOREM 5 of the appendix

qons1ders 4 points equally spaced on a circle of radius R where
32 = a2/2. Assume a2

|
make our evaluations at the following points:

= 2(17)%h%. Then R = 17h and we could

(17h,0) (-17h,0), (0,17h) and (0,-17h).

ﬁn this example, we used a minimum point formula, allowing a to
vary as needed, so that a convenient R could be chosen.
Instead of starting with a, we could start with convenient

choices of points of evaluation: (5h,15h), (-5h,-15h), (15h,

5h), (-15h,5h). These points could be used in THEOREM 6.

2 -~ 250n2,

=

hen, R Assume we want the weight of the center
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point A2 to be twice the weight Al. That is we want

_ 2 2
Too = 2I¢/R" = I,,/R",

which results in a® = 4R%/3 = 1,000n2/3. Then a. = A,/2 and

1
A2 = l,OOOﬂh2/9. The formula then is

2
v(0,0,r) = lLQ%gﬂh— a(o,0)

2
1
* ”Qggﬂg“[d(5h'15h)'*d(-Shr-15h)-Fd(lsh,—sh)-+d(-15h,5h)]

In THEOREM 6 we were free to select a and one of the weights.

Formulas of fifth degree accuracy: By fifth degree accuracy we

mean that the estimate of the integral of any polynomial px,y)
of degree 5 will be exact. THEOREM 7 is a minimum point formula
and may be too rigid to be applied to our problem. There is

not enough freedom in choosing p and v. We must have that u

and v be integral multiples of h yet have v/u = tan30° which is
an irrational number. Similar problems arise in applying
THEOREM 8. We must have h and u rational, yet have p = h(2)l/2
sinl5°. THEOREM 9 requires that v/u = [(v2-1)/(v2 +1)%/2];
this number is irrational, and we need rational v and u.

If interpolation is not a problem THEOREMS 7, 8 and 9 can
be{applied. In particular the example of THEOREM 8 could be
used if r is given a value of zero to make the domain of inte-
gration a disc. If the domain of integration is a square, the

example of THEOREM 9 could be used. Use of THEOREM 10 allows




‘us the freedom to choose R and a as we need. R can be chosen
(:> first and a can then be chosen in such a.way to make r conven-

ient. 1In this way r and R can be integral multiples of h. For

. this THEOREM, the weights are:
. Al = na6/96R4,

2 2,22

A2 = 3ma”[1 - a“/6R“] /8,

2
A3 = I00 - 1Ta6/24R4 - 3ﬂa2[l - a2/6R2] /2.

We want I22/I20 < R2 < az. That is

a2/6 < R2 < a2.

This last condition can be transformed to R2 < 5r2/2. These
conditions put bounds on our choices for R and r. In terms of

R and a,

r2 = 2a2R2/(6R2 - a2).

2

Solving for a“ yields,

a2 = 6R2r2/(2R2 + r2).

With this formula and the previously given restrictions we may
. ﬁictate any r and R we choose and obtain the proper a for the
formula in THEOREM 10 to work. For instance if R was 20h and

we considered the following values of r: 14h, 15h and 16h we
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would find that, to sliderule accuracy, a would be 21.7h, 23.0h
and 24.1lh, respectively. Exact computations to determine form-
ula parameters should be done on a computer. The user of this
formula should attempt to keep the weights, Ai' as close to
equal as possible and attempt to keep both r and R less than a,

It is possible that r could be greater than R.

Formulas of seventh degree accuracy: The formulas of seventh

degree accuracy listed in the appendix do not have the neces-
sary freedom to be applied to our problem without the need for
interpolation. Both a and o can be chosen freely. But there
is no readily apparent way to choose a and o such that r, R,
and T are all integral multiples of h. Thus, a user desiring
to use these more accurate formulas (THEOREMS 12 and 13) would
probably have to use two dimensional interpolation to obtain
results. Two formulas for the two by two square are given
after THEOREM 12. Two other formulas for the disc of radius h
aré given after THEOREM 13.

We have attempted to suggest a way to use the formulas
given in the appendix. Use of some of the formulas will re-
quire interpolation. Others are more convenient. The examples

given for this latter case are incomplete. Perhaps a code can

be created to create and test several such formulas.

10




IV. CODE DEVELOPMENT

Below we suggest a sequence of decisions, tests, and sub-
routines needed to develop the proposed code. In doing this it
has been assumed that a flying spot scanner will be used.

1. Develop a code to detect top and bottom of trace for
‘any time x.

2. Develop a code to gather d(x,y) readings for an organ-
ized given need.

3. Develop a code to calculate V(0,0,a) using a circle as
‘the domain of integration.

a. Test the trapezoid rule.

b. Test minimum 3rd degree formula, then test minimum
formulas of 5th and 7th degree,

C. Determine an optimal a for the above dquadrature
formulas.

d. Test near minimum, 3rd and 5th degree formulas.
Determine optimal values for a, r, and R.

e. Decide on a weight (Ai) policy. Should the larger
weights be toward the center, so that values of d(x,y) in the
center of the circle have a greater effect on the value of
V(0,0,a), or should the weights be as nearly equal as possible
#o that errors in reading d(x,y) will have equal effects?
| f. Compare above methods.

g. Decide if you want a to vary with the tracewidth
or if you want to use only one a.

h. Test other domains of integration: square, dia-

mond.

11
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4. Develop code to calculate V(0,y,a). Choose optimal
distance s between consecutive values of y.
5. Determine effects of trace quality on codes.

6. Develop code to calculate V(x,y,a). Choose optimal

distance between consecutive times x.
7. Test methods to determine A(x): simple maximum, de-

rivative equals zero, polygonal smoothing, fitting data to a
stétistical distribution curve.

8. Determine reasonableness of (x,A(x)) data.

9. Identify traces for which this method does not work.
The above outline should not be considered perfect, complete or

optimal. It is included as a suggested initial plan of attack.

12
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V. ALTERNATE METHODS

Baum has suggested another way of determining A that makes
use of the formulas given in the appendix. His method includes
adjustment of the data for the effects of curvature and bloom-

ing, and a study of moments to determine A,

&2

Fig. 5

A representation of the adjustment of the data for curva-
ture and blooming is pictured in figure 5. The method given in
the previous sections could be used to find the trace within
tﬁe left and right legs of the data trace pictured in figure 5.
Finding the data point at the top of the pictured trace is com-
g&icated by the greater accumulation of light at the bottom
cémpared to the top. Defining the data point as the point of
gyeatest density would lead to inaccurate data. Our point is
better illustrated in figure 6. The true data trace has been
aﬁproximated by connecting the centers of the circles that rep-
resent the trace. Point B is the data point for the maximum of
this trace. Averaging the top, A and the D of the trace would

yield C. Density considerations would lead one to choose a

13

Gl o Lt i ol i it b d il ot el IR Lol I b B e e e 1 e S e e

PR R T W Y







e P R S

point between B and D. Similar comments can be made about
points E, F, G, and H, but in this case the true data point G
appears to be in the middle of the area of maximum density, F
to H.

The procedure for making this adjustment would involve it-
eration. The procedure would start with averaging the top and
the bottom of the trace to gain a first approximation of center
of the trace. Next, one would adjust the density data in the
spirit of figure 5. The adjustment would be based on a model
of electron beam image, its speed, its direction and the amount
of blooming present. Several re-applications of this adjustment
might be necessary until two successive applications resulted
in little or no change.

Having corrected for curvature, a way to calculate A for a
given x is now considered. To determine A, Baum recommends a

study of the moments.

M =f c(x,y)d(x,y) |x' - x'|™axdy
n o
R(x")
e}
where c(x,y) is the correction for curvature, x' - x!| is the
distance from the center of the trace along a line perpendicu-
lar to the trace intersecting the center point we are inter-
eéted in, and R(xé) is bounded by the top and bottom of the
trace and two lines parallel to the x' axis and of equal dis-

tance from the x' axis.

15
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If R(xé) is a rectangle, the parameters of R(xé) could be
arranged so that it could be divided up into several squares.
The formulas in the appendix could be applied to these squares.
If R(xé) is a square, the Previous method applies along with a
sdcond method. The second method involves dividing R(xé) up
into several concentric Square rings and one small center
sqpare. These regions are fully symmetric. The formulas given
in the appendix apply.

Baum's suggestion raises several questions. Does the re-
cording film possess inconsistencies that should be accounted
fok? How would one interpret the moments Mn to obtain A? The
thoughts recorded here are based on figures 5 and 6. Is the
representation assumed within these figures adequate? Are the
circles always the same size? Does the oscilloscope always re-
cord with a sequence of dots? Further study is needed.

A topologist might suggest another method. He might con-
sider figure 5 and suggest that the arrow be reversed. If our
data trace is a straight line, points in the exact center of
that trace represent the trace within the trace. A topological
projection from this trace to the data trace could be created.
This projection could account for blooming, narrow tracewidths,
cuives, etc. Such a projection could be a sum of several pro-
jections, each accounting for a trace quality. These qualities
could be surmised from actual density readings, or smoothed
density readings. Smoothed density readings could be calcu-
lated using the quadrature formulas given in the appendix.

After the best projection had been calculated, it could be used

16
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to project the exact centerline of a straight data trace to a
test data trace. This projection would then be the trace

within the trace.

17
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APPENDIX

QUADRATURE FORMULAS OVER FULLY SYMMETRIC PLANAR REGIONS

CHARLES B. HUELSMAN, III

Ab@tract. The nonexistence of 10 point 7th degree quadra-
ture formulas over fully symmetric regions is proven. Two,
13 point, 7th degree quadrature formulas over such regions
are presented. The first can be a 12 point quadrature for-
mula, if a condition is satisfied. The second can be also,
ifjanother condition is satisfied. Five quadrature formulas
of 3rd and 5th degree are extended to fully symmetric re-

gions.

. Introduction. The purpose of this paper is to exhibit
two dimensional quadrature formulas for fully symmetric re-
gions. Polygonal accuracies of degrees 3, 5, and 7 are in-
vestigated. Integral inequalities needed to develop these
formulas are given in section 2. Theorems about the mini-
ma; number of points for quadrature formulas over fully sym-
metric regions are in section 3. The next three sections
contain formulas of 3rd, 5th and 7th degree accuracy. In
some cases near minimum point formulas are given. These

formulas contain at least one arbitrary parameter which can

18
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~be adjusted to the advantage of the user. All formulas are

listed in section 7.

The following notation is used. By (+x,+y) we mean the

four points (x,y), (-x,y), (x,-y), (-x,-y). By (+2,0) we

‘mean (z,0) and (-z,0). Zp (+x,+y) and Ip(+x,0) are sums over

' these points. By ¥ we mean the positive non-zero integers.

N, is the positive integers including zero. D is fully sym-
metric if (x,y) € D implies {(+z,+y), (+y,+x)} € D. When we

say D is fully symmetric, we assume D is measurable and that

1

0<m (D)<=, For i,j € N, I.j = fxtygdxdy.
‘ D

If D is fully symmetric, Iij has several convenient

properties.

(7Z) Iij = Iji .

(¢Z2) If 7 or j is odd, Iij =0 .

(¢i2) For <, e N, I2(i+j),0 > I2i,2j .
(Zv) If 2,4,n € No are even such that Z+j = n, and
In,0<w, then 0<I7:j<°° .
The proof of (ZiZ) results from the inequality

(x2t - y2$)(x23 - yZJ) > 0

almost everywhere in D. From (4i4) it is immediate that

j >T and I_.>T

227 60 "42°

40
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2. Integral inequalities. To justify the existence of
certain quadrature formula parameters, and to prove contra-
dictions necessary in section 3, a knowledge of relations
?between combinations of various moments, Iij’ is necessary.

All of these relations are developed using HSlder's inequal-

ity.
THEOREM 1. Let D be fully symmetric. If Tpo < ©s then
2 <71 7
20 00l40
If IGO < », then
2 2 3 2
T22 < Ta0Ta2 + Tao < Iyplgq + Tg < Igolgq
3 2 3 3 2 .
T22 < TooTya + I3 < Ipqlgqlsp » and Ijg < Iy0Teo

Let n be even, and p and q be rational fractions. Ig <

implies for any p and g such that p + q < n, that

[l2Py? | dzdy < » .
D

THEOREM 1 is proven by using this, HSlder's inequality and

xzyz < £4 + y4 (almost everywhere in D). An example is

2
. . 2

given in the appendix by proving I22 < I20I42.

THEOREM 2. Let D be fully symmetric. If Tgo <

2

2150 < IpglZyg * I55) -

20




2

(Igg * I55)7 < I,q(Igy + 31

42)

3 2

21 2207 < TooWgp = I4p)°

] | | 40 - T

2

_ _ 2
and (Iyg = Ipp)" < gg = Iyp) (Iy0 = I5,/7,,) .

The proof of the first two inequalities results from prop-
erty (<) and HGlder's inequality. The‘proofs of the last

two inequalities are given in the appendix.

3. Nonexistence of formulas. All three of our conclusions
(:) of nonexistence of quadrature formulas over fully symmetric

regions are applications of the following theorem.

THEOREM 3. Assume D is a measurable set in RZ, and m(D) > 0.
Assume there exists a m = (n+l) (n+2)/2 point quadrature

formula, exact for polynomials p(x,y) € P Then

2n+l(x’y)’
all n+l degree polynomials that are orthogonal to p(x,y) €

Pn(x,y) relative to D have m common zeros.

Proof. We have assumed

w, plx,,y,) plx,y) € Popt1 (&ry) -«

I~

[p(x,y)dxdy =
D

i=1

21
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Through m-1 points of {(xi,yi)}?=l, excluding say (@ 175

we put a curve Rk(x,y) of degree n, such that

+ 0, < =k
Rk(xilyi)
=0, % %k

thus defining m polynomials. Applying the assumed quadra-
ture formula,

2 2
0 < £Rk(m,y)dxdy = kak(xk,yk) k=1,2, <+, m .

‘ , |
As Rk(xk,yk) > 0 we have w, > 0 and Rk(xk,yk) # 0. Let
K(x,y) be any polynomial of degree n+l, orthogonal to p(x,y)
€ Pn(x,y) relative to D. K(x,y)Rk(x,y) € P2n+1(x,y). Thus,
0 = £K(x,y)Rk(x,y)dxdy = kak(xk,yk)K(xk,yk)
k=1, 2, ¢+, m .

Therefore K(xk,yk) = 0 for each k. All polynomials K(x,y) e

Pn+l(x,y) such that

[k (x,y)p(x,y)dedy = 0 for all p(x,y) € Pn(x,y) -
5 _

then have m common zeros.

COROLLARY 1. There does not exist a 3 point quadrature
formula over fully symmetric regions, with polygonal accu-

racy of degree 3.

22




L H B o [ EAR SR S R L e

Proof. Assume such a formula exists. By the previous

theorem (n=1), the 3 following orthogonal polynomials have

3 common zeros:

2

- - - _.2
Kl(xly) = X IZO/IOO' Kz(x,y) = XY K3(x,y) =y - IZO/IOO .

Since IZO/IOO # 0, 3 common zeros do not exist.

More general results for quadrature formulas of ac-
curacy degree 3 or less can be found in the writings of
Georgiev [25, 26, 27] and Stroud [115]. Their proofs, how-

ever are more involved than the one just given.

COROLLARY 2. There does not exist a 6 point quadrature
formula over fully symmetric regions, with polygonal ac-

curacy of degree 5.

Proof. Again we apply THEOREM 3 (#=2). The 4 following

third degree orthogonal polynomials have 6 common zeros:

= 2 _ = 2 _
Kl(xly) - x(x I40/I20)I K3(x,y) - x(y I22/I20) ’

Kpley) = y&? - I,,/T,0), Kyle,y) = y 2 - I,/1,0) .

One of the zeros is (0,0). Let a,b #% 0. Assuming («,0)
is the second common zero, yields the contradiction 0 =
I22/I20. In a similar way (0,b) is not a zero. Assuming
(a,b) is a common zero yields the contradiction

Iyo/Tp0 = a% = Tpp/Tpq < I4o/Tyg -

23
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Thus common zeros beyond (0,0) do not exist. We have the
necessary contradiction.

More general results can be found in the writings of
Rbdon [92], Mysovskikh [79], and Bykova and Mysovskikh [9]

Their proofs are more complex than the preceding.

C?ROLLARY 3. There does not exist q 10 point quadrature
formula over fully symmetric regions, with polygonal ac-

curacy of degree 7.

'

Pfoof. To apply THEOREM 3 (n=3) we consider the following

5 polynomials:

Kl(x,y) = 4z? + Bx? + Cyz + E where

A= (TyomTy) [T (T,0+T,,) 2Izo] '
2 —
B = g Tgp) goTgg=I501 = (T40=T99) [1ggT 45T 401001
2

¢ = goTyp) [TgoTap7I50) = (T40=T5,) (1507 ,," TaoZ201
Bo= ygmIp) Mg (Tgqtly)) =Ty (I,0+I,5)1 ,

K. (x )=x(x2—I /I.,)

2\ Y Y 42/ %227 1

K3(x,y) = Ax2y2 + F(x2+y2) + G where

24
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B =g Iyp) gl yn=T 00,1

G = Ugmlp) [21,50T45=Tp) (Typ+Iy00 10
Ky(z,y) = xy(y2—142/I22) ’
Ks(x,y) = Ay4 + sz + By2 + E .
Since I

ey 2

40 > I5p by (iiZ) and IOO(I40 + I,,) > 2715, by
HGlder's inequality, we have 4 > 0. Thus each of the above
polynomials is in P4(x,y). Direct calculation shows that
they are orthogonal.

Let us denote the 10 zeros by (xi,yi) for ¢ =1, 2,
+»+, 10. When Kz(xi,yi) = 0 and K4(xi,yi) = 0, we must
have one of the coordinates x; Oor y. equal to zero, or have
the absolute values of both coordinates assume the value

(I42/I22)l/2. Four cases result.

Case 1 *q 0 and yq = o,

I

Case 2 x 0 and y, ¥ 0 ,

Z
Case 3 y; = 0 and . £ 0,
1/2
Case 4 ]xi[, [yi| = (I42/I22) / .

Case 1: If (0,0) is a zero of Kj’ J =1, 3, then

25
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= Kl(0,0) + K3(0,O)

B} i 2
Fao = T9) 50 g + 3745) = (144 + 1,021 > 0

- where IZO(IGO + 3142) > (140 + I22)2 results from HSlder's

inequality. Thus contradiction and (0,0) is not a zero of

Kj(x,y), J =1, 2, «++, 5.
Case 2: 1If xz, = 0 and y; ¥ 0, we have:

2
Cy. = -E, Fyi = -G, Ayg + Byg = =F .

Three subcases result:

Subcase 2'1’; If ¥ = 0, then

- (3.1) TaoWUgo + I4p) = Iy(Iyg + 1,5 ,
%and
2 -— — -—

"By (217) IGO > I42. The right most factors of both sides

‘of (3.2) must be zero or have the same sign. If both are

zZzero then

‘(3.3)

Ta0la2 = T40lan -
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Deducting this last equality from (3.1) leaves IZOIGO = Izo

in contradiction to a result of HSlder's inequality, I20I60
> Izo, listed in THEOREM 1. If these two factors are non-
zero, we reach (3.3) by adjusting each side of (3.1) by

—2I20142, substituting the result into (3.2), and cancelling.

Subcase 2.2: If G = 0, then F = 0, yielding ZIZOI42 =

I22(I40 + I22) > 0 and Tyolas = T9olgy > 0. Multiplication
. 2 , . 2

yields 2I20 = IOO(I40 + I22) which contradicts 2I20 <

IOO(I40 + I22) of THEOREM 2.

Subcase 2.3: Assume E, G + 0. Thus yg must simultaneously
satisfy the 3 given conditions. This occurs only when the

region D is such that

(3.4) -E/C = -G/F = (C - B)/4 > 0 .

Let a2 = -F/C. In terms of the moments, none of the above

expressions is algebraically identical to any of the re-
maining ones. When (3.4) is satisfied, there are 2 common
zeros (0,+a). Otherwise, none. Thus case 2 yields at most

2 zeros.

Case 3: 1If y; = 0 and . + 0, we have:

NI
NS

2 _ 2 _ ~ - _
Ax. + Bxi = -F, in = -G, Cxi E

By substituting Y; for x, we have the equations for case 2.

The same conclusions apply. If condition (3.4) is not
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satisfied, we have no zeros. If it is satisfied, there are

% zeros. Thus at most 2 zeros result from case 3.

!

qase 4: If oY, = (I42/122)1/2 we have the condition on

the region D that

93.5) (B + ¢ - 2F)I42/I22 =G - E .

In terms of the moments, the two expressions above are al-
gebraically unequal. If condition (3.5) is satisfied, case

4/ yields only 4 zeros:

1/2 1/2
(£0T45/ 150075 +(1,,/1,507 %) .
If condition (3.5) is not satisfied, no zeros result.
Even in the questionable case when conditions (3.4)
and (3.5) are both satisfied, we still only have a total of

8'zeros. The desired contradiction is attained.

4, Formulas of third degree accuracy. In the remaining

sections we assume the following theorem is obvious.

THEOREM 4: Let p be a polynomial of odd degree n. Let D
be fully symmetric, and In—l 9 < If there exists a set
of points {(xk,yk)}z=l and m associated weights Ay .+ such

that
m i 3
(4.1) I..= )] A J 0<i+4 <n
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then,

m
Jp(xiy)dzdy = § 4,p(a,,y,) .
D k=1 KT TRTTE

It is well known that in the 3rd degree case the mini-
mum number of points is 4 [27]. The formulas given in this

section are simple extensions of ones well known for simple

regions [3].

THEOREM 5, 3RD DEGREE, 4 POINT FORMULA. ILet plx,y) €

P3(x,y). If D is fully symmetric, and I20 < », then

Too

[p(x,y) dedy = = PLOLYV) + p(=u,=v) + p(v,=0) + p(-v,u)]
D

where U and vV can be any pair of real positive numbers sqt-

isfying the relation uz + v2 = 2I20/I00.

Proof. Consider the following points and weights:

weight A A A A
x-coord. u - v -V
y-coord. v -V -u u

From equations (4.1) for n = 3 the following equations need
to be satisfied: 44 = IOO’ 2A(u2 + vz) = I20' These equa-
tions are obviously satisfied by 4 = I00/4, and uz + v2 =

2I50/Tgp-

29
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With this method one is free to select one point on
the radius of a predetermined circle. If U = Vv the method
is the well known Gaussian 4 point cross-product formula.
The case where v = 0 is also well known. The following
iformula is an extension of a formula published by McNamee

and Stenger [69].

j

THEOREM 6, 3RD DEGREE, 5 POINT FORMULA. ILet plx,y) €

P3(x,y). If D is fully symmetric, and Iyg < @ then,

[p(eyrdady = (140 - 21,,/8%)p (0,0)

+ (IZO/ZRz)[p(u,V)+p(-u,—v)+p(v,~u)+p(—v,u)l

@here R >0 and u, v > 0 such that uz + v2 = R2.

Proof. Consider the points and weights:

weight A2 Al Al Al Al
x-coord. 0 M ~-u v -V
y—coord. 0 v -V -u U

From equations (4.1) for n 3 the following equations need

. . _ 2 2, _ _
to be satisfied: 4Al + A2 = IOO' 2Al(u + V) = I20. Sub

stituting the claimed solution into these equations yields

the necessary verification.

2

When R~ > 2I20/I A, > 0. With this method one is

00’ 2
free to select any one point as an evaluation point, or the
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value of any one weight. 1If equal weights are desired one
should use the 4 point method or B = (5I20/2Ioo)l/2. If
positive weights are desired one should use

R > (2120/100)1/2.

5. Formulas of 5th degree accuracy. For formulas of 5th
degree accuracy, the nonexistence of a 6 point formula has
only been proven for regions of radial symmetry [9]. A 7
point formula exists for such regions. See Radon [92]. For
completeness we include Radon's formula restricted to fully
symmetric regions. Equations (4.1) are solved yielding a

solution that agrees with the results of Radon.

THEOREM 7, 7 POINT, 5TH DEGREE FORMULA. ILet plx,y) €

Ps(x,y). If D is fully symmetric and I40 < o, then

[p(x,y)dady = A11p (#3,0) + 4,0p (+u,+v) + A4p(0,0) ,
D

1/2 172 1/2
I, Eo T,0+ 5,
where: u = T , V = > , A= ——== ,
20 20 20

2 2 2

4 = LZ20 7407722 Iy P 1)
5 ’ - AT = T LT

17271, I,.%,, 2 T a1, 37 foo T T, 5415,

and all Ai > 0.

Discussion. Consider the points and weights:
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weight Al Al A2 A2 A2 A2 A3
x=-coord. A - u M -u -u 0
y—coord. 0 0 v -V v -V 0

From equations (4.1) applied to these points and weights,

- the following equations remain to be solved:

24 + 44 + 4, =T

1 2 3= Ipo v

2A1A2 + 4A2u2 = I,q
442v2 = I, ,

2424 + 4A2v4 = I,

44,0 = I,

4A2u2v2 = r22 .

'The claimed values of u, v and 4, are immediate. By sub-

traction

4A2(V2 - }12) ’

N
h S
>
It

N
N
>
|

= 4A2(v2 - uz)(v2 + uz) '

rand thus
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I + 7
where: all Ai >0 , A= ( 40 22)

AT = VT o+ o= (I40 + I22)/I20 .

wn

imple computations yield the claimed values for 4, and A3,

s

hich are positive by the previously used inequalities.

It is possible to rotate 6 of Radon's points 45° and

n

till obtain a quadrature formula. Albrecht and Collatz [3]

for

oted this for the square. The theorem below generalizes

their quadrature formula to fully symmetric domains of in-

ct+

egration.

THEOREM 8, 5TH DEGREE, 7 POINT FORMULA. [Let plx,y) €

Ps(x,y)., If D is fully symmetric, and Ly < @+ then
fp(x,y)dxdy = Al[p(k,l)+p(“X,-X)]
D

+ Ay [p (W =V)+p (=1, V) +p (v, =) +p (=v, 1) ]

+ A3p(0,0)

1/2

1/2

T, +T
4022 1 1/2
0y = ( + ((1,0+3T,.) (I, .=I.,.) ) ,
‘ 2T, 21,5 40737 22) g7 In
2 1 2 2

Al - *T20%22 A= 2720, 2T

1 - 14

1 (I40+3I22)(I40+I22) 2 I,gt3I,," 73 00 I,4*1,,
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Proof. Since 0 < Iij <®for i + 4 <5, 7 and J even, we

have that A}, Al, and Az are positive. A3 is positive by

2

HS1lder's inequality. From I55 > -3I§2 we can obtain

2
(Tgo+Tp2) " > (T,*+31,,) (T,,-I

22) :

Thus p and v are well defined. When the points and weights

welghts Al Al A2 42 A2 A2 A3
x-coord. A -A u -u Vv -V 0
y—coord. A - -V Vv -u M 0

are considered, the following equations of (4.1) remain to

be verified:

24, + 44, * A3 =14, .,
2 2, 2
24.3% — 44 uv =0
l 2“ ‘ 4
4 4 4 _
2A1A + 2A2(u +v ) = I40 ’
24.0% = 24 pv (203 = o
1 2
4 2.2 o
2A1A + 4A2u V = 122 .
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The first equation is verified by routine computations.

2

Verification of the second is clear after noting 2A2 M

V2

+
. Verification of the fourth equation is a matter of com-

putation after calculating

2
(I40+I

4 22) 22)

+ (I40+3I22)(I40—I
' )
I20

2

To solve these six equations, we observe that A2/2 =
2

(™ + vz) = I

3 00
Treating pv as one variable we then can solve the

2 .
(I40 + I22)/I20 and 4 - IZO/A are immed-

iate.

following 3 resulting equations:

_ 2 _

44, = I,,/A 24
222 2.4
16A2p v© o= 4A1A ’

2.2 _ _ 4
4A2u voo= 122 2A1A .

The claimed values for Al and A2 are attained, and uv

2 L2

I22/120. ‘The system pv = I22/I e+ v

20" = (Tyg + I3p)/ Ty,
is easily solved to acquire the claimed values of v, v from
a quadratic in uz.

If we let the domain of integratiqn be the area of a

torus between 2 circles of radii » < R, and define

n = R4+R2r2+r4
= ’
R2+r2
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then the parameters of THEOREM 8 become:

Ay =4y = &Y rhy/en 4y = w(r2-r?) (1-3(:%4r2) Jan)

’

= /Y2 u s (e 2,y 2 ((2-v3)n/6) 12,

THEOREM 9, 5TH DEGREE, 9 POINT, FORMULA. Let p(x}y) €

P5(x,y). If D is fully symmetric, and I40 < ®  then

ép (2,y)dedy = A, [Jp (+1,+V)+]p (+v,+1) ] + A,p (0,0)

where: all A. > 0, A. = % Igo A, =T 2I§0
; ’ r T F X T e = T F o rxT
1 1 I40+I22 2 00 I4O+I22 ’
1/2

I,0+I
N ( 407722 . 1

+
2I20 — 2T

1/2
oo Ta0%122) (T4 T5))) ) :

Proof. By previous inequalities Al, A, > 0. Parameters u
and v are well defined as (I4O+I22) > (I40-I22) implies the

necessary inequality. We consider the points:

weights A A
x-coord. U u -u -u Vv Vv -V -V 0

y~coord. v -V v -V u -u u -u 0

The following equations of (4.1) remain to be verified:

36




P

o R

i3 SRR AN

84. + 4
4Al(u2+v2)

4Al(u4+v4)

]

2
8Alu

2

AY

Elementary calculations show the

00

20

40

I22 .

claimed solution solves

these equations. Defining R? = uz + vz, reduces the last 3
equations to 4AlR2 = I,, and 4AlR4 = Iyt Iy,. Thus R? =
(I40 + I22)/I20 and Al and A2 are the values we have claimed.
The remaining equations, uz + v2 = Rz and uzvz = I22/8Al

yield a quadratic in uz. The solution to this quadratic

ylelds the claimed values of u and v.

If we allow D to be a 2kx2h square about (0,0) we have:

h &

2
[ [ p(x,y)dedy = &2
-h -=h

—— p(0,0)

. 1/2
(5 7)

v iel o (D™, 7))

15 - 15

The following formula is a generalization of one pub-
lished by McNamee and Stenger [69]. It is included in this

section to increase the variety of formulas.
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THEOREM 10, 9 POINT, 5TH DEGREE, FORMULA. [et plx,y) €

Ps(x,y). If D s fully symmetric, and I40 < ®, then for any
1/2

R > (I,,/T,,) ’

ép(x,y)dxdy = AlXp(iﬁ,iﬁ)+A22[p(ir,0)+p(0,ir)]+A3p(0,0)

where: Al’AZ >0,

2
_ 4 2
A1 = Dpp/4RT 4 Ay = 1Ty0-T)0/R°) /2(1,,-1,,)
2 ) 1/2
4o = - T [Izo _ a0, I40+I22} o - [ fa0722
- ’ -
30700 TTos1 T, T R2 2r* T,0=I,,/R

2

}Proof. Clearly Al > 0. As R > I22/I20 and I40 > I22, one

‘has A2 > 0 and that r is well defined. We consider the

points:
weight Al Al Al Al A2 A2 A2 A2 A3
x-coord. R R -R -R r -r 0 0 0
y—-coord. R -R R -R 0 0 r -r 0
Equations (4.1) yield:
44, 4 44, + Ay = TIo s
2 2 _
4A1R + 2A2r = I20 ’
4 4 _
4A1R + 2A2r = I40 ’
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Elementary computations verify the validity of the claimed
- solution. We have four equations in five variables. Select-

ing R as a variable, we immediately have the claimed value of

, f . 2 _ _ 2 4 _
Al. The equations 2A2r = IZO I22/R and 2A2r = I40

are readily solved to obtain the claimed values. The first

Ty

equation then yields a value for Age

Depending on the set D and the choice of R, A3 may be

positive or negative. For example, if R = «I40 + I22)/2I20)l/2,
_ 2 . .

then A3 = I00 2I20/(I40 + I22) > 0. 1In this special case

we have 2R2 = r2. Thus the outer 8 points lie on a circle

of radius R.

6 Formulas of 7th degree accuracy. Tyler has published a
12 point method of 7th degree accuracy for rectangles [133].
This formula‘can be applied to a disc. By rotating these
points 45°, a different array of 12 points results. This
array was used by Hammer for a formula over the disc [41].
Mysovskikh applied Hammer's 12 point array to the square
[76]. We gain generalizations of these two formulas by add-
ing a point to the center. If any one of two conditions on D

is satisfied, a 12 point formula results.

- THEOREM 11. Let D be fully symmetric, and I60 < o, TIf the

moments over D satisfy any one of the following inequalities:
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_ 2 _ 3
(6.1) Toallgg Tg=Typ) "-2(1,0-1,,)"]
, 2
[0 (Tg0 Tgp) = (Tyg=1,,0°1
(6.2) (I, =T )T 12 -13] > 2[IT T —12]2
(6. 4071227 Mool 15, 20la2715,21 4

‘then there exists a 12 point quadrature formula of 7th de-
ﬂree accuracy over D. In any case there exist several 13
boint quadrature formulas of Tth degree accuracy over D.

The proof of this theorem is contained within the proofs
Pf the two following theorems. Much of the algebra in these

|
two proofs is identical. Thus the proof of the second is ab-

breviated.

THEOREM 12, 7TH DEGREE, 13 POINT, FORMULA. [Let plx,y) €
P7(x,y). If D is fully symmetric, and Teog < ®r then for

every o > Bz/y there is a quadrature formula

[p(x,y)dedy = Aop(0,0) + Alip(iﬁ,iﬁ)
D

<

+ 4,1 (p(£7,0)+p (0,+7)) + Aylp (+2,47)

where Al, Az, Ay > 0. If we define:
2
(Typn=I,55)
40 22 - -
BEI D Y Y:I ’ § = T ’
20 I60 I42 22 42

40




RSO R N5 O U 0 0 00 1 A SR S B s M S g

the parameters agre:

PR L Y e Y LA N 4 - 1 g-ar?
o = Zoo T 1.2 17T 33
60 42 o
_ 3 1/2
4o L Ya07Tp)) 4 - LR’ - (Iso 142)
2 7 2 _ 2 374 2 2/ I,nI
(Tgo=Iyo) R%-p 40 122
where :
1/2
i 1/2
Ry o= [BY L ((46-gy)2oa (ay-82) (85-y2)) } :
2 (ay=-B8“) 2 (ay-B87)

Proof. First we show that r, R and T are well defined and

that Al' A2 and A3 are positive. Initially, we want to show

y2 < BS. It has been claimed in THEOREM 2 that:

2
(140-1 )

2
220 < U715,/ 145) Tgg=I,,) -

By solving this inequality for I§2/I42 and multiplying by
142 we have yz < BS. The above inequality also shows that
B > 0. To prove that » and R are well defined we need to

show that

(a8-8v)2 - 4 (ay-82) (85-v2) > 0

for any o. The above expression is a quadratic in a:

6202 - 2y(386-2y2)a + 2 (486-3v2) .
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Using calculus we obtain that the minimum value of this quad-
3

ratic is 4(86—y2) > 0. The product of ay > 82 and BS > yz

yields o8 > By. Thus r and R are well defined. We have ob-

served that I40 > I,, and Teo > I4o+ Thus 45 > 0 and T is

real and positive. To show Aq s A3 > 0 we need only show

R? > B/a > rz, This inequality can be obtained from

[(308y-283-0%8) /a1? < (46-86)2 - 4(ay-82) (B5-y2) .

By cancellation we find that proving the above inequality is
3

equivalent to proving that 4(Ya—82) > 0. This is obviously

true for a > Bz/Y-

We have the following points and weights:

weight AO A
x-coord. O R R ~R -R T =T 0 0 r r =y -p

y—-coord. O R -R R -R 0 0 T -T r -r r -r

From equations (4.1) the following equations need to be ver-

ified:
Ag + 447+ 44, v aa, =TI,
44,8 + 24,7° + 44,7% = Ino »
a4 8 + 20,7 + a0 = Ty

(6.3)
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4 4 _

4AlR + 4A3r = I22 ’
6 6 6 _

4A1R + 2A2T + 4A3r = I60 ’
6 6 _

4AlR + 4A31ﬂ = I42 .

After noting that 4Al + 4A3 = o, verification of the first

equation is a matter of computation. Noting that 2A2T2 =
2 + 4A3r2 = B to.be verified

in the second equation. Again this is a matter of computa-

2
(I40—122) /(I60-I42) leaves 4A1R

tions. The fourth equation can be simplified to B(R2+r2)

aRzrz = Y. After noting that

R2r2 = (BS—YZ)/(uy—Bz) , and

(6.4)
B% + »2 = (a6-8Y)/(ay-82) ,

confirmation of the fourth equation becomes routine. Having

proven 4AlR4 + 4A3r4 = Yy, to satisfy the third equation, we

need only show that 2A2T4 = I40 - 122. But this is obvious.

The sixth equation can be simplified to:

2,2

B(R4+r R +r4) - urz 2 $

R (R2+r2) =
Recalling (6.4) and observing that

2
44 0202 4 ot o (RRen?)” - 252
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simplifies verification into routine calculations. To ver-

T6 = T

ify the fifth equatioh we need only prove 2A2 60 = Lgo¢

which is obvious. The sign of 44 is a complex matter involv-

ing several céses. | h
To solve equations (6.3) we first remark that the

claimed values of Az and T are easily obtained. This leaves

the following 4 equations in 5 variables:

4Al + 4A3 = I00 - 4A2 - AO ’
2 2 _
4AlR + 4A3r =B ,
(6.5) s s
4A1R + 4A3r =y ,
6 6 _
4A1R + 4A3r =6 .
Defining a = I00 - 4A2 - AO we allow o to be a variable.

Solving for a and rz we obtain:

(aY—Bz)r4 - (aG—BY)r2-+(BG—Y2) =0 .
The solution to this quadratic in P2 is

1/2 )
LB L [(a6-87) 24 (ay-82) (Bs—yD)] .
2(ay=g")  2(ay-p")

<+

At the beginning of this proof we showed that the two above

values were real and positive. By symmetry of equations
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(6.5) these two solutions are R2 and‘rz. With further

algebraic manipulations we acquire the claimed values of Al
and A3. The value of AO depends on the value we select for
®. Within this proof the only restriction on o has been
o > Bz/y. Thus for each such o we have a quadrature formula
of 7th degree accuracy.

To prove the first part of THEOREM 11, we remark that
if I00 - 4A2 is an acceptable value of o, AO becomes zero

and THEOREM 12 yields a 12 point quadrature formula. The

needed condition is:

(T 0-T05)° (I,n-T )22
Iy - 2 40 22 s > Il [}20_ I4O—I22 J .

(Teo~T45) 22 60 “42
This is (6.1).

Users of this quadrature formula should note that for
relatively large values of a, the sign of AO will be nega-
tive and the magnitude of AO may be unacceptably large.

For an example of this formula select D‘to be the square
with corners at (+1,+1). When a = 636/Y3, we have‘the fol-

lowing formula.

1 1 ‘
34,336
{1 {lp(x:y)dxdy = WP(OIO)

v 8 [0 (p (20677 2/2,0) 45 (0, 16/1) 1/2))
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+ Ay Ip (2B +R) + 44]p (+r,42)

_ 961(1643+81v159)
A3,Al = 5.366,250 % 0.477141516, 0.111322681

(84i3/159)l/2

155 ~ 0.886561173, 0.545784072 .

Tyler's 12 point formula [133] has the form

1 1 o

+ A11p (#R',#R') + A3Tp (42", +r")

where:

1 - ,
| 1/2
R',pt = (RLAE3V583)7T . 4 805979782, 0.380554433

The two formulas are similar. Both sets of parameters are

solutions to equations (6.3) for the considered square.

THEOREM 13, 7TH DEGREE, 13 POINT FORMULA. Let p(x,y) € “

P7(x,y). If D is fully symmetric, and I60 < o, then for

every o > Bz/y there is a quadrature formula




ép(x,y)dxdy = A4gp(0,0) + 4] (p(+R,0)+ (0,+R))

+ A Jp (+7,47) + 430 (P (+r,0)+p (0,+r)) ,

where A A

17 427 43 > 0. If we define:

i} 2 - _
R VIR YY2 FTRRIL SR ST U Te07T4p +

the parameters are:

| 2
— - 73 2 L 4 _ 1 B=ar® .
f0 = Too = I22/T4p = 20, 4) =35 S,
R™=p
A, = 13_/a52 4, = L ar®-g T = (j 1/2
2772220 4377 a5 42/%23) ’
where:
1/21/2

R,z = [ WBY v L ((a6-8v) 24 (ay-82) (85-v2))

Z(aY-BZ) Z(aY"Bz)

Proof. We have already observed that property (7<) implies

that y and § are positive. HSlder's inequality and 4x2y2 <

2
2+y2) can be used to prove that B is positive. The last

(x
integral inequality of THEOREM 2 is yz < B8. The claimed
values of R and r are algebraically the same here as in

2 < BS, the proof that R and r are

THEOREM 1l2. As we have vy
well defined is identical to the proof given in THEOREM 12.

This proof is thus omitted. To prove Al’ A3 > 0 we need
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2

> B/a > rz. The 'proof of this in THEOREM 12
2

only prove R
was dependent on y“ < BS and ended requiring that o > Bz/y.
As the algebra is the same,this part of the proof can also
be omitted.

We have the following points and weights:

. weight AO

x=coord. 0 kR =R 0 0 T r -7 -7 r =r 0 0

y-coord. 0 0 0 R -R T -7 T -7 @ 0 r -pr
Then equations (4.1) assume the form:

A+ 44 + 44. + 44 =7

0 1 2 3 00 ’
2 2 2 _
24,R% + 44,7° + 2447° = Tyo
4 4 4
241R" + 44,77 + 2447 = Tgo +
(6.6) |
44.7° =7
2 22 7
6 . . 6 6
24,R k+_4A2I + 2A3r =TIcqy »
. , R
44, | =TI, -

Verification of the first equation becomes routine after ob-

serving that 421 + 4A3 = 2a. It is obvious that
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The last two equations verify the fourth and sixth equations
of (6.6). 1In view of the above results to verify the sec-

ond, third and fifth equations we only need show:

2 2
2A1R + 2A3r

Il
fo)
~

N
h S
o
=]
<+
N
h
i
It
<

6 6
2Alﬁ + 2A3r §

After the claimed values for Al, A3, R and r are substituted
in the above equations, the resulting expressions are iden-
tical to those appearing in the proof of THEOREM 12. The
algebra of THEOREM 12 applies and yields the desired results.
Complex rules can be developed to determine the sign of AO.
Next we demonstrate how equations (6.6) are solved.

Values for A, and T are immediate. Simplification by sub-

traction produces:

2Al + 2A3 = (IOO-4A2-A0)/2
2 2 _

2A1R + 2A3r =g
4 4 _

2AlR + 2A3r =y
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241R° + 243r° = s

6

Defining o = (I00—4A2—AO)/2, we have equations (6.5) of
THEOREM 12 when each coefficient, 2, is replaced by a 4.
Again o is a variable. The algebra of THEOREM 12 applies
yielding the claimed solutions for R, r, Al and A3. ‘The
value of AO depends on the value we select for o. Thus for
every o > BZ/Y we have a quadratufe formula of 7th degree
accuracy. ’

To prove the last part of THEOREM 11, we note that if
(I00-4A2)/2 is an acceptable value of a, Ao becomes zero and
THEOREM 13 yields a 12 point quadratufe formula. The condi-
tion is:

/(Tgo=Iny) -

hoo'fgz/i225/2’> [1507T52/T45]
This is (6.2).

Again users‘shOuld beware of what large values of a do
to 4. Various selections of o within both of the previous
theorems offer the user a varietyVOf formulas. For an ex-
ample allow o = B38/y>. If D is the disc S(0,%) of radius %

about (0,0), then we have
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21 2
(¢,y)dady = 1h° |z p(0,0) + 2= (+hV3/V8,+hV3/v8
Lo n P L) dady B 27 1o (hV3/Y8,41/3//8)

+ A 1 (p(+R,0)+p (0, +R) )

+ A3](p (2,00 4p (0,42))] ,

where:
_ 25(5+13//17) _
45,4, = 2305413/ = 0.117953749, 0.026722177 ,
1/2 |
Ryr = BRIEATYT | 69920851384, 0.604786804%

Hammer's 12 point formula for this disc takes the form

/ p(x,Y)dedy = nh2[§7 Yp (+h3/V8,+1/3/V8)
5(0,%)

+ AT (P (+R",0)+p (0,4R"))

+ 43T (0 (421 ,0)4p (0,42))]

where:
_ 97,983%1,107/573 _
Ay, Ay = e = 0.111751846, 0.064174080 ,
1/2
R',r' = (31§§§13) h ~ 0.989730134k, 0.242684568%
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Again the two formulas are similar. Hammer's parameters

also solve equations (6.6) for the disc, where AO is equal

to zero.

7. Summary. For the convenience of the user, we list in

this section all the formulas within this paper. We have
assumed that D is fully symmetric, that all moments Ii‘ =
x*y?dzdy are finite, and that p(x,y) is a polynomial of the
3 y Y at p Y ‘

indicated degree.

3rd Degree Formula, 4 or 5 Points.

2

fp(x,y)dxdy = (I00—2I20/R2)p(0,0)
D : ' 1

o+ (120/2R2)[p(u,v)+p(—u,4%)+p(v,-u)+p(-v,u)]

for any W, v and R > 0 such that u2 + vz = Rz.

5th Degree Formula I, 7 Points,‘Radon.

[p(x,y)dzdy = ALlp(+X,0) + Ayl (+u,+v) + A4p(0,0)
D

1/2 1/2

: e ‘ : I ' T atT .
' ' 40 C 40 221\
where: u = (_EZ) ’ v o= (___) Y =(___;a__) ,

I




5th Degree Formula I, 7 Points.

]{p (2ry)dedy = 4 [p (A, N)+p (=), =2) ]

1 i li g
i il b b Rl o b 1

+ AZ [p(l«lr"\))'*'p(-U:V)+p(\)rf11)+p('\)rll)] + A3p(010)

where:
1/2
\ - (I40+122)
- 14
2130
(T, +I 1/2
_ (fa0%22 1 _ 1/2
Mo = ( 2T,, L 35,5 ao*305;) (140=T55) )
20 20
2 1 .2
4 - 215012, . - 2 T2
- 14 —_-_—I
1 7 (T, 03T, (1, 5%T,,7 2 T I,0%3T,,
212
A, = T -————.30___‘
3 00 7 T, FT,,
‘%
5th Degree Formula 11, 9 Points.
Ip(x,y)dedy = A7 [Ip (+1,+v) +]p (+v,+u) 1 + A,p(0,0)
D
where:
T+ 1/2
_ (*fa0ti22 1 _ 1/2
. Hev = ( 2T,  * 21,5 (Ta0*T22) (T407122)) )
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1 2 2

4 - & 7120 4 =7 215,
T r - T me——m—— .
1 I40+I22 2 00 I40+I22
5th Degree Formula Iil,9 Points. -

[p(x,y)dady = AlZP(iﬁyiﬁ)
D

+ 4,][p(+2,0)+p (0,42) ] + 43p(0,0)

for any R > (I22/I20)l/2 where:

1/2

I, ~I
. 407722 ; L a4, =1../a8%
I. -I. /& 1 22

20722

2
_ _ 2.7, ;
Ay = [Ty mIy /B /2(T0-155)

2
47 Mo [Izo _ 220, 140122
30700 TyomTapllan g2 28%
7th Degree Formula |, 12 or 13 Points.
2
(I a=T55)"
. _ 40 722 - -
Define B = I20 e ey , Y = I22 ’ § = I42

60 “42

[p(x,y)dedy = Agp (0,0) + A;)p (+R,+R) -
D

+ 4,0 (p(+7,0)+p (0,+7)) + A]p (+2,+7)
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for every o > 62/Y where:

1/2
S= 1/2
R,r = [ ¢ BYZ + L > ((ad-BY)2—4(aY-82)(BG—YZ)) ,
_ 2(ay=-B“) 2(ay=-87)
_ 1/2 3
. Te0714a2 (T40-137)
T'=\r = 49 = Ioo ~ 2 z - ¢
40 ~22 (I60—I42)
2 (I,.~I,.)3 2
4. = 1 B-or 4. =1 40 22 4. = 1l aR"-B
1 4 227 2 7 2 2! 37 47272
R%-r (I_~=-T,,) R%=p
60 “42
/th Degree Formula Il, 12 or 13 Points.
. _ 2 - -
Define B = I20—I22/I42 ’ Y = I40-I22 ’ § = I60-I42 .

[p(x,y)dady = Agp(0,0) + A;](p(+R,0)+p(0,+R))
D

+ Azip(iz,if) + A3§(p(i¢,0)+p(o,ip))

for every o > 52/Y where the formula given previously for R

and r applies here and:

_ 1/2 ~ 3,2
T = (I,5/15,) v Ag = Igg m Ipp/Tyy - 2a
2 2
) 1 g-or 3,2 _ 1 ar®-g
173 a2 A = I/ 43 =3 22
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8. Appendix. For an example of the methods used to prove
-THEOREM‘l, we prove Igz < I20I42. Since xzyz(x2+y2) and
xzyz/(x2+y2) are unequal almost everywhere, applying
Holder's inequality to these functions yields a strict in-

equality.

Igz < fxzyz(x2+y2)dmdy f(xzyz/(x2+y2))dxdy
D D

1 2, 2 _
< (I42+I24)Z £(x +y“)dady = I20I42 .

2
Above we have used the inequality 4x2y2 < (x2+y2) which

holds almost everywhere in D.
DEFINITION. If D is fully symmetric,
s = {(x,y) €D : |x| > |y|} .

Proof of THEOREM 2. To prove the third inequality we con-

sider (z,y) €& S. Clearly

2 2/3 4/3
(22-y2) < 2242 T |22-y2)

almost everywhere in S and thus
2,2 2 2 272
(I40-Ipp) = éx (z“=y°) = é(x -y“)

2 2/3
<.f|(x2+y2)(x2—y2) dxdy .
S

56




H 1 i il
-t bbb o i MA:‘.«‘.Mil‘l‘n.mw fihsi

Preparing to use HOlder's inequality we observe that 1 and

2 2/3
(@?+y?) (@?-y?)
are unequal’alm0st everywhere on S"IOO < © and that
2,2 2 22
é(x +y%) (x%-y“) dxdy‘=‘IGO—I42‘< o
Thus we have
,12/3 3
0% < 2lf] et w22 |
2(Iy0=I55)7 < 2[8 (xT+y ") (x%-y ). dxdy]
_ , | | , 2/3 3/2
2, 2 2 2 |
<2fdxdyf‘(x+y)(x -y“) dxdy
S S
= I, (I _.~-T )2
T 700'"60 42 )

Consider the 1last inequality. The two functions

2 2
(x2+y2)(x2-y2) and (xz-yz) /(x2 +y2) are unequal almost
everywhere.
; 2 2
2 2 ( 2+ 2)
. ; {e7=y7) dzdy <./._£__i___ dedy = I.,. < ® |,
2, 2 2, 2 20
S xT+y S xT+y

proves boundedness. Applying HO6lder's inequality we have
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2

2 2 2.2 2 2

2
< [ (e®+y?) (@Py?) dndy [ LEyD) thnoytodety
S S Ty

x+y Xty
< (I n=I,.) [I, ~I> /T,5]
60 “42 20 “227742

Between the last two lines of the above we used

T—g ___17 dzdy .

x +y ;

This was proven at the beginning of this appendix.
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