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Abstract V

The time of firing of the output switch of a pulser is measured
from some fiducial, The experiment is repeated and the difference in
firing times is noted, The question under consideration in this paper
is the accuracy of the measurement of this difference. The method of
measuring the firing time in the presence of prepulse is by the zero
crossing of a signal, It is desired to know the accuracy of the jitter
measurement as a function of system bandWLdth ;

The conclusion is that for reasonable values of the parameters,
the jitter error introduced by the bandwidth limitations is less than the
oscilloscope reading error.
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SECTION I

INTRODUCTION

The p‘roblem discussed in this paper arose in connection with
the r'neasuremevnt'of the firing time of the final output switch on a Marx
generator, W-hen a Marx generator charges a ,peaking‘capacitor, there
is a prepulse before the output'switch fires. This arises from the
capacitance of the output switch., The general character of the pulser
waveform is the following: During the ‘pi'epﬁlse, the pulser waveform
starts at zero with zero slope. The prepulse waveform then rises to a
maximum, By Rolle's theorem, there is thus a zero in the second
derivative of the pqlse'r waveform between zero and the maximum.
Near the maximum of the prepulse, the out‘put'switch is fired, As the
rhain pulsér waveform rises to its maximum, there are two inflection
points: one is in the neighborhood of the output switch firing time and
the other is in the neighborhood of the maximum. On the other side of
the peak, there is also an inflection point.

The second derivative of the pulser waveform thus rises to a
positive peak and then crosses the time axis. This point corresponds
to the first inflection point of the prepulse wavefbrm. Thersecond
derivative then crosses the time axis at a point corresponding to the
firing of the‘ oufput switch, It is this second crossing that is of concern

in this paper. The second derivative rises to a maximum and then

o




 crosses the axis at a point corresponding to the inflection point before
the pulser wévet‘orm maximum, After an algebraic minimum which is
negative, there is a zero crossing corresponding to the inflection point
~after the pulser waveform maximum.

In puléer applications, the variation of the second crossing
from shot to shot can be considered as a mea‘s'ure of thé output switch
jitter. This paper will examine the consequences of finite bandwidth of
the measuring system on the accurécy of this variation, This will be
done with a one parameter représentation of the filtering properties of
the system, Two different representations of the 'pulser waveform will
be studied: In the first case, the prepulée rises asymtotically to a
4maxi‘mum. In the second case, the prepulse has a maximum, In both
representations, the pulser waveform and its first derivative-are
continuous,

To make the concept of jitter error'quantitativé, suppose that
on a given shot the output switch fires at time ty but that the measured
second derivative second zero crossing time is tl‘ Denote these quantities
on a subsequent shot by tota t, and t +a tl. Since Ato is the jitter, the
accuracy of the jitter measurement depends on Atl-At o rather than on
tl —to. Thus the relative error in the jitter mgésurement is (Atl-Ato)/Atos
(Atl/A to) -1 which in the limit A to + 0is (dtklA/dto)-l. The emphasis
of this paper VVIi‘ll. be on calculating (dtlv/>dto)-1 from two analytic repre-

sentations of the pulser waveform,




SECTION II

THEORY

Filtering

The first topic is a review of the concept of filtering, Let the

input signal (the ideal pulser waveform second_derivativé) be denoted by

f(t) and the output signal (from the instrumentation) by f£*(t),

The general

relationship between £(t) and £*(t) may be expressed through g(t) where

g(t) = £*(t) for the special case that f(t) is a unit impulse function. The

simplest way to relate these functions is to first take a Laplace transform,

The Laplace transform will be denoted by a tilde, Thus

(=]

f(s) = j e~ Ste(t)dt
: ]
The functions f(s), g(s) and f*(s) are related by
f*(s) = g(s)i(s)
In the time domain
| t
p(t) = f g(t-t")E()dt
v]

The form that will be chosen for g(s) is

B(s) = /(7 +8)

(1)

(2)

(3)

(4)
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For s = iw, wé have | g(iw)| = T /(T 2, wz)% which has the high frequency
asymptote | g(iy )| = T'/w and the low frequency asymptote | glin)] = 1.
These asymptotes intersect at w =T . We denote the frequency f=1T /27
as the cutoff frequency. |
In the time dorﬁéin, Eq. (4) becomes

g(t) =pe-rt ey (5) .

Note that f g(t)dt = 1. Thus there are no low frequenéy‘errors.

Representations of Pulses

It is convenient to use dimensionless quantities, The normaliza-
tion will be to t, — a characteristic time for the rise of the main pulse.
The dimensionless time T is defined by T = t/t The pulser waveform in

the first representation may be written
- Il(T) = QU(T) [1-(1‘4¥aT)e"“T]
+(1—Q)UV(T-TO) {1 - [1+(T-To)] e™(T-To) (6)

In Eq. (6), U(T) is the step fu’nction; Thus U('I‘) - l1forT>0 and U(T) =
for T <0. The parameter o ié defined by o = tr/ti'p where trp is a
characteristic time for the rise of the prepulse. The parameter To is
defined by T = to/tr where t_ is the time at which the Qutput switch fires.
The \parameter Q is related to the maximum of the prepulse. If the out'pUt
switch never fired, the rﬁagnitude of the prepu:lse in the first representation

would asymptotically approach Q.




Note that as T» >~ , 11, > 1. Thus the curve of 11 against T lacks

‘one of the inflection points mentioned in the introduction, However, since

the interest is in the neighborhood of T, the lack of this inflection point

does not affect.the conclusions of this paper.

Just as it is convenient to use a dimensionless time, so it is

also convenient to use a dimensionléss Laplace transform variable,

| Consequently we define the dimensionless variable S by S=

str. In terms

of this variable, the Laplace transform of Eq. (6) is given by

_Qa? | a-geTo
S(S+a )2 S(S+1)?

il(s)/tr =

The second representation of the pulser waveform

paper is given by

I(T) = (Q/Q,U(T) {e—at_ [1+(a-6)T] e

)

used in this

-at}

+ U(T-T ) {1- [1+(T-’To)] e"T‘To)} | (8)

The parameter § is defined by &= t./t; where t, is the decay time of

the prepulse, 4The quantity Q is the maximum of e~ 8T . [

Note that I2 +1asT+w .
The Laplace transform of Eq. (8) is given by

ST

'fz(s)/tr —~ 5
(S+g) (S+q)2 S(8+1)

@/Qy) (a-s)* , Mo

1+(a -5 )T] e" T,

(9)
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. Filtered Pulses

- As explained in the introduction, the signal used in the jitter
determination is not the pulser waveform but its second derivative,

From Eq. (6) and Eq. (8) we have
a’5, /aT” = QU(TIa 2(1- o Tye™ @7
+(14Q)U(T-To) [1-(T;To)} e~ (T-T,) (10)
dzIzldez = (Q/Q)U(T) {6 27 0T, [az-ZaG -az(a-a)T] e~ T

+U(T-T ) [1-(T-To)] e™(T-To) | | (11)‘

Introducing the dimensionless parameter y =T t , from Egs. (3), (5), (10),

(11) we have for the filtered signals

2 2 _ 3 _
(a%1/aTd* = Qu(m) | 2 (72 T-e"TT) -2l . “T]
(Y—q) . o
|2 ey -yer-Ty YT (ot )Yi
+H1-QU(T-T )/_y e o’ -e” ¥ o]- _Y__l_"_ e "7 0l (12)
(v-1)°
2 2 % ‘ ys2 - 8T -yT
(d"1,/dT7) " = (Q/QU(T) 3 (e” °"-e )
; 2 2 -aT
(a2Y2-2 ouSY2+0tz<3Y) (e-aT_e"YT)"a y(a-s)Te ]
e 2 - Y- a
C(y-a)
2 e V(T-T ) _oms
wor-ry | [e"T'To’-e Y (T To)] ALACARG SR
(y-1)

(13)
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The analysis of jitter measurement accuracy will be based on the second
. 2 2% 2 2% .
zero crossings of (d Il/dT ) and (d Iz/dT ) as given by Eq. (12) and

Eq. (13).

Qualitative Error Discussion

Let us first consider the unfiltered pulse as given by Eq. (10).
In Eq. (10), take the case that T, > 1/a. The first zero crossing for the
unfiltered pulse can be seen from Eq., (10)tobe at T=1/4. To see how
this is affected by filtering, take the special case that y = « in Eq. (12).

By L'Hospital's rule, Eq. (12) becomes

(@1, /a13)* = L QU(T) o *2a T- o *1?) e o T
2
H1-QU(T-T,) { L '[e'(T'To)-e' (T-T)
(y-1)

y(T-T) e_(T-To)

— (14)

From Eq. (14) it is seen that in the special case y =a, the filtered pulse
has the f;rst zero crossing at T = 2/a provided that To >2/a ., On the
other hand, if 1/a < To < 2/a , the unfiltered pulse has a first zero
crossing at T = 1/o and a second zero crossing at T = T, but the filtered
pulse for the case y = a does not have these corresponding crossings.
This special case illustrates the point that for a given separation of the
first and second zero crossings of the unfiltered pulse, too small a band-

width can wash these crossings away. To put it another way, the greater
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the separation of the first and second zero crossings in the unfiltered

pulse, the less bandwidth is required for a given jitter measurement

accuracy.

In the numerical studies based on Eqs. (11) and (12), it was

found that (dti/dto)-l could have both positive and negative values, Since -

it may not be clear why this is so, let us introduce an approximation to
* o . o
(dzl/dfl':2 ) to gain insight into how (dtl/dto)-—l varies with a change of

parameters, The function Imay be either I, or I,. We first introduce

the qtjantitieé py and py which are the slopes of (dZI/de)% at T = T{-0 and

and T = To+0 res_pectively. For the representations used in this paper,

Py and Py are distinct., We define the parameter Z by |

-z = (1T
IT=T,

Since Z is the value of the prepulse at T = T_, then
dz/dT = p;
For T > T_ we may approximate (dz_I/d’Iz)* by

(d®1AT)™ = Z + py(T-T,)

Since at T = T,, (d°1AT)" = 0, Eq. (14.3) implies that

(14.1)

(14.2)

(14.3)

(14, 4)




Equation (14, 4) is exact in the limit that Z-» 0. If we differentiate

Eq. (14.4) with respect to T | we have
(dT /4T g)-1 = ~(dZ/dTo)/py + Z(dpy /4T )/ p} (14.5)

Since (dTl/dTo) = (dtl/dto)’ the combination of Eqs. (14.2) and (14. 5) gives

220 [(dtl/dto)'1]= -P1/p2 B (15)

To apply Equaj:ion (15), let us fix all paramweters- except T .. Let
T, approach the first zero crossing which ifrriplies that Z goes to zero. fn
the neighborhpod of the first zerO’chSSing, Py is ﬁegative and Py is positive.
From Eq, (15) this means ’if Té is “in the neighborhood' of the first"zero
crossing then (dfl/dto)-l is positive, On the other hand, if To is in the
neighbor‘hood of infinity, Z is in the neighborhood of zero but p; and p, are

both positive so that (dt,/dt )-1 is negative,

| - We have jusf seen that it is possible to choose tﬁe parameters so
that'(dtlldto)ély-is negative. Let us choose a set of parameters so that this
is so and fix ailthe parameters except the bandwidth parameter y . Let us
now decrease Y. As seen from the example for which Y = Q ,“ as the band-
~ width parameter decreases, the time at which the first zero crossing
occurs incrt_éaseé. As,thé time of the first zero crossing approaches To’
we would efcpect that the sign of (dtl/dt o)-1 would change from negative to
positive. Thus there would be a change in the sign of (dtl/dto)-l with the
variation of the bandwidth parameter. This behavior was obseryed in the‘

numerical studies.
' 10
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- Asymptotic Forms for Large Bandwidth

I.et us now examine the question of how the jitter measur-ement :
accuracy varies for large bandwidth, which corresponds to large values

of the parameter Y. We expand Ty in a series in 1/y and write

Equation (16) is substituted into Eq. (12) and Eq. (13) and these

equations are expanded in power series in 1/y . Since this expansion is

valid only for large Y, we neglect the terms e TO. ‘From Eq. (12) this

procedure gives

T, = In(1-Q) - In [a Qe *To(1-a ) + 1-Q] (17)
O Since dty/dt, = dTy/dT, then Eq. (17) gives
L , [o’@e *To-0t)
dt;/dt ,-1 =7dT11/dTO=? 7 T aT. (18)
. o “Qe (1- 4 T J+1-Q
The corresponding equations for Eq. (13) are
T, = -1nj1+<Q/Q ) [s’ze' 5To + (a2-245 -a 2T (a-5) )e'“To] (19)
1 l o o J
@/Q) | 53¢"* Toy [203-34% 8- 4o (a5 )] &= To (20)

dtl/dto-l = 5 5 T
ze"(S T‘o +(a“~2a8 -q (a"d)To)'e * 0]

v 1H@IQy) [8
Let us draw some conclusions from and make some Smellflcatlons

- of Eqs. (18) and (20). Firstnote that in both Eqs. (18) and (20) that as To>® ,

O
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-4

dtlldto-l “’0,_’- Note also the change of sign of (dtl/dt('))—l"as T, increases.
In particular h_dte in Eq. (18) that for large Y, there is a change of sign
in the neighborhood of «T = 2, |

As has'v-béen discussed previously, if we ‘vfix'the other parameters,
we would expect the jitter error to incfeas’ev as T o approa’che’s the first
zero crossing., In Eq. (1 8) let us take oT, =1 This gives |

| 3001
» 4~ 0Q ‘ .
(dty /dto)-1 = = ) o (21)

In the regiop whe;rre the asymptotic expansion is valid; if is exkpekc_tked that
" Eq. (21) would give an upper limit to (dtl/dto)-‘l.‘
A similar approach may be taken to Eqv. (20), Frofn Eq. (1;) it
i‘sv seen that as v‘+'°° » To Will be in the neighb‘orhood of the"first zero crossing

provided that
§2.-6T, . [.2 2 AT -
‘ 6 e o+ [a =208 -a (o -8 )To e 0 =0 (22)

- Combining Eqs. (20) and (22) gives

@/Q,)

(dtl/dté)-l 3 [( 63"'0, s 2)e’ 8T, . (ot,3' a 25 e~ 8 TO] (23)

Effec;vof Prepulée on Frequency Domain

If we lbok at Eq. (7) we see that the prepulée. cﬁanges the fre-
quency domain ‘Characteristics of the pulser waveform. As a basis for
comparis‘o.n,; le“tv us define ~Io(s) by

1

e s (24)

12
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O By comparing with Egs. (7) and (9) it is seen that Eq. (24) may be ;regarded
as a frequenc{y domain waveform with no prepulse. To see the cffect of the
prepulse, let us divide 'Eq. (7) by Eq. (24) and note that st = STO".'“’ Thus -

as s becomes infinite we may write
. N N -st N
Li(8)/I(s) = Qo + (1-Q)e” "0 (25)
For the case s = iw, the minimum absolute value is given by
| /1] = | 1-Q(i+a ) L | (26)
NUMERICAL RESULTS
As stated earlier, the approach to the problem is to set the right
hand sides of Egs. (12) and (13) equal to zero and solve for T in the neigh-
borhood of T . Newton'$ method was used to solve the equations, The
initial value used was T = T,+0. The convergence criterion used was that
the change in T between successive Newtonian iterations be less than 10”2,
The calculation was repeated with T | increased by a T . Denoting the
corresponding value of Ty by Ty+ ATy then {4 T/ 4 T )-1 is an estimate
of (dtl/dto)—l. ‘By chosing various values of A T, it was found that the
choice of A 'I‘o = 10-2 gives a value "iof‘(*A‘Tl//"» ATb’)-l which differs from

(dt,/dt )-1 by less than 1%,

- The nhmerical work was carried out on the AFWL CDC 8600,

13
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Discussion of Graphs

The éurvesvpresented‘ here are only-ab sample of the calculations
performed. The reason for only giving a sample will be discussed in the
section oﬁ éonclusions.

'Figt.;lrevlv is a schemaficof- a scope trace. The point marked 1:1
is the second zero crossing. For the other curves, éorﬁe things must be
said on how to calculate thé parameters. A common way of specifying the

rise is with the 10-90% rise time. For the representati'on used, the rela-

ﬁonship in the absence of prépulsé is given by
(10-90) = 3.3579 ¢ S (27)

In Eq. (27) t(10-90) is the 10-90% rise time,
The parameter I is related to the‘ cutoff fr,equenéy f by the
" relationship v R FE

r=2nf R S (28)

Thus the parameter y is given by

| 27 £4(10-90) . '
= = = ] 7 ft 0"
y=Tt, 53579 1.871 ft(1 90) (29)
For example if t(10-90) = 10 nanoseconds = 10"8 seconds and f = 10 megaHertz =
107 Hertz then Y = 0.1871. If we look on Figure 2 we see that for v = 0,1871

3

and o = 0.3 that (dty/dtg)-1 = 1.3510" ", using the first representation for

the 'prepulsé. ~
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‘As explamed prev1ously, the value o = 0,3 me‘ans that the mam
pulse rise txme is 30% of the prepulse rise t1me. | Flgure 2 is for Q= 0 2
and a t = 3, Thus in this case the prepulse maxtmum is 0.2 of the final
pulser waveform max1mum. The value o T =3 correSponds to ftring
the main sthch when the prepulse has reached about 80% of 1ts max1mum.

‘In the calculatlons used to plot Figures 2 and 3 the parameter Y.
varied in steps of O 1 m the ran}gieao >1’ < Y < 1.0, In the range 1 0 < y< 10.6
p the step was 1 0 The step was 0 05 for Fxgure 2 in the range 1 <y <2 and
for Figure 3 in the range 2 <Y<3 Both Flgures 2 and 3 show a cutoff in
the curves on the left For example, in F1gure 2 the curve a = O 4 does |
not extend to the next step of Y = 0 1 nThe reason is that for ¢ = 0,4 the
bandwidth of y = 0 1 is so small that the first and second zero crossmgs
are washed out As 1nd1cated in Flgures 2 and 3, the curves on the right
correspond to negatlve values of (dtl/ dto) 1 whlle those on the left correspond
to positive values of (dt, /dt ) 1, | |

In figures 3, 5, and 7, the symbol k"y'I;rqnax" occurs. b'xl‘he numher

Tmax is the value of T for which e” §T. [1+( ‘ai= §;)ff] e °T

is a maximum.
Thus T, ., is the dimensionless time when the maxtmum of the double
exponential prepulse occurs,

Using E‘qs. (185 and (26) the aymptotic‘forms were ealculated.
Figure 4 is the asymptotic form eorresponding to F_igure 2 while ‘Fig’ure_ 5

oorresponds‘t_o,;'thgyur,e 3. The comparison of the curves shows that there

is good agreement between the asymptotic forms and the ‘exact forms for

15
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= 10 but that for lower values of Y the asymptotic form overestimates

The results of calculatlons for the parameter values not
shown mdicate that th1s is generally true, |

In Flgures 6 and 7 are shown the difference between the roam |
switch fwmg tlme and the second Zero cfossmg. Flgure‘G corresponds to
Figure 2 whlle Flgure 7 correSponds to Flgure 3. As expected the .
curves go to zero as Y becomes mfmlte. What may be surpmsmg is that'
the curves have a maximum. A way of explammg it is from the relatmn- .
ship ty <t < tl where tf is the f1rst zero crossing. As Y decreases, -
ty - tp> 0. If we defme Y o @s the value of Y for whlch tp =ty = tl, theh
for y < Yo the flrst and second zero crossings are washed out.

The flnal f1gure is a graph of Q agamst 8§/a. The quantlty Qo
is the'mammum of e~ - 8T -k [1+(a -§ )T] aT. We may erte §la = |
trb“d wheretrp is a characterlstlc txme of the rise of the prepulse and

tq is the decay time of the prepulse.

Oscilloscope Reading Error

If &ty and A t, are small we may write .
t, = (dt /dt ) 8t = At + [(dtlldto)el] Aty (30)

Up to now, the error analysis has been based on Eq. (30). Nothing has -
been said about the error introduced by reading the oscilloscope. Let us

denote the actual observed jitter as At,. For the case of no reading:

16




error Aty = aty. We start with the identity

(8tg- 8ty + Aty | | (31)

1}

At2

Combining Eqs. (30) and (31) gives
Aty = (Bty=4 ty)+ [(dtlldt,o)-l‘] At Faty, (32

The term 4 ty- Aty is the oscilloscope reading error while the term

[(dt_l/dtok)jl} AtO is the.error intrdduced'_by the gecond zero cro§sing_ :

Af

.

method. It is to be expected that A tz- Atl is a few percent of A to
_ ) . . . R 0 T LA R 2 S
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SECTION III

CONCLUSIONS

~ The regions where it is to be expected that the error of the second
zero crossing method would be a few percent greater than of At are where
the rise time of the "prgpulse is corhparable to the risé time of »the' main
pﬁlse 6r wheré. the ma,ln’switch fires well before the prepulse maximum
or both, Wé may want to fire at the prepulse maximum since this-approxi-
mately corréspbnds to the maxitrium current from the Marx into the peak—
ing capacitof. If the rise of the méin pulse is hot significantly faster than
the prepulse this means t?at the Marx charges the peaking capacitor about
‘as fast as the peaking‘capacitor discharges into the load.

To put it another way, if for some pulse a problem arises from

the second zZero crossing method then perhaps the pulse itself is bad.

18
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*To=3.0

| : Q=0.2 o
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Figuré 2. Jitter error against bandwidth for simple prepulse. (1) Waveform) | O




To= (3/4) Trgax™
Q=0.2 z
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; OFigure 3. Jitter error against bandwidth for:-double exponential prepulse. « =

(I Waveform)
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Figure 4. Asymptotic jifte_t.’,error against . bandwidth: for simple prepulse. (I, Waveform) O
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To= (3/4) T
Q=0.2

O ' R §=z0.2

max

11l N LN N
107! : 2 3 4 5 6 7 8 9100 2 3 4 5 6 718 910

P RN

103 -

C) Figure 5. Asymptotic jitter error against bandwidth for double exponeritiol prepuise.
(I Waveform) 23
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Figure 6. Difference between output switch firing time and measured firing time
against bandwidth for simple prepulse. (I} Waveform) ‘ O
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To= (3/4) Tmax

1 : Q=0.2
O : §=0.2
107 . ‘ :
s - ! | ' LA LA N D B ! | ' R I ]
8 -
7 -
6 = ——y
5 | _
4 - o -
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3 : -
2 e )
162}— —
(9 |- -
8 "‘" ‘ . ' q_\ —
7+ o -
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5 |-
4
3 .
2 _—
107! 2 3 6 7 8 9

O Figure 7. Difference beiween'output switch fin"yiﬁﬁigv‘tim'e and measured firing time
against bandwidth for simple prepulse. (I, Waveform)
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Figure 8. Maximum of double exponential prepulse against roflo of prepuise decay
to prepulse rise. (Io Waveform)
26

TR T P

ot






