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Abstract

Fourier transforms and Laplace transforms have fundamental value to electrical engineers in
solving many problems. Waves are ubiquitous or found everywhere. Perhaps the most basic
wave is a harmonic or a sinusoidal wave. Mathematical description of any type of wave was
recognized early on, to be a combination of sinusoidal waves. The Fourier series is a way of
mathematically expressing a periodic time domain waveform. For aperiodic or transient
waveforms, we use Fourier or Laplace transforms noting that Laplace transforms is a better
option for transient problems. Fourier and Laplace were contemporary mathematicians in France.
One of the popular books on Fourier Transforms is titled “Fourier Integrals and its
Applications” by Athanasios Papoulis published by McGraw-Hill Book Companies in 1962.
This book has 40 odd problems with some hints to solve these problems analytically. The trend
nowadays is to use numerical codes to get Fourier transforms. The art of putting pencil-to-paper
and solving such problems is going out of style. This note by a septuagenarian is an attempt to
walk a nostalgic path and analytically solve Fourier transform problems. Half of the problems in
this book are fully solved and presented in this note. Hopefully, one of the readers will be

inspired to solve the remaining half.
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Fourier Transform Problems and Solutions

Problem (1)

Show that if e/*® & F(w) and ¢ (t) is real, then

[F(0) + F(—o)] [F(w) - F(- )]

cos Pp(t) < 5 ; sing(t) « >
Solution: we know that, if
f(®) & F(w)
then
f©) & F(-w)
o if
e/?® o F(w)
then
e 1?0 & F(—w)
also
) 4 o—jd(®
cosp(t) = 5
and
el®®) _ o—jd®
sing(t) =

2j



Taking the Transform, and making use of the Linearity property, one can write.

cos(t) F(w) +2F(—a))
and

sing (£) & ) _zf(_w)
Problem (2)

Prove that if f(t) is causal, then the real part R(w) of its Fourier Transform Satisfies

2 [ee] [ee]
R(w) = Ef f R (y)cosyt coswt dy dt.
o Jo

Solution: For a causal function, we have,

ro=2[

o]

R (y)cosytdy -1 and R(w) = f f (t)coswt dt — (2)
0
Substituting for f(t) from (1) into (2), we have

2 [ee] [ee]
R(w) = Ef f R (y)cosyt coswt dy dt
o Jo

Problem (3)

Prove that

Solution: we know

sint sin®t

e © mp; (w), 7z o gy (w)
and Parseval’s relation

o0

J oy d=--f F-w) Fi) dw]

27

Using above result



© sin?t sint [
f 2 'Tdt=ﬂf 2 (w) p1(w) dw

_ﬂf1 () d _nfl I
—Z_quw a)—2_1 > w

= 3m/4
Hence,
® sin?t sin’t w2 [*®
f_oo 2 t2 dt:%[_(ﬁ‘lz (w) q2(w )dw
_n.f” . |w| zd _2m
2/, 2 ) 773
Problem (4)

Show that if f(t) is band limited
F(w) = 0 for |[w| > 0, then

sinat
f(&) * = f(®)

nt

Solution: From the band limitation on F(w) it follows that

F(w)p,(w)=F(w) fora>n

we further know

sinat

Tt < Pa (w)

we have the Convolution Theorem Saying
f1(©) * /,(8) © F(0) F(w)
sinat
() *—= o F(@) po(@)
o F(w) fora > 0.

sina
clearly f(t) *

t
= f 0.
— f(t) fora >



Problem (5a)

Show that

i(at2+bt+c) ﬂ . _(b_w)z
. fp[]{ —

Solution: Let F (w) represent the required Fourier Transform
F(w) = .f el(at?+bt+c) p—jwt g¢

=f exp (at? +b — wt +c) dt

b — w1? (b — w)?
2\/5] +lc— 4a

GO e b — w)*
F(w) = expj [c —Tl f_wexp] [\/Et +ﬁ} dt

writing (at?+ (b —w)t +¢) = [\/Et +

2
putting j {\/E + 27(:} = —x

—dx  dx |j
2jva/xj 2Vx,a

Differentiating dt =

(b= w)’] fwe-x j

F(w) =expjlc————|2 = dx
(w) 2 ia . 2veda
o h=w)? jj”e"‘ p

= expj |c da | Jal, 7z X

This integral by defn. I’ G) =+r

. b — 2
L F(w) = ﬁexp [f{c Jeow) }]

Problem (5b)

Show that

2

T b? w T\ (bw
cos(at2+bt+c)<—>\/:cos —+——c—= ej(Za)
a 4a 4a 4



Solution: Using the result proved in prob 1

w2 bw —7ri , b? w? bw
cos(at? + bt +¢) & = I ’n] J|¢ "E‘H Za] + ’ﬂe‘f[c‘ﬁ‘m‘m]
a

writing ,/j as e’+ and /—j as e ~/™/*

+ w? T
Y ——Cc——
/ cos yPaa

Problem (5c)

Show that

i3 n b? w?\ ;(bw
sin(at? + bt +¢) & |—sin|c+————— e](ﬁ)
a 4 4a 4a

Solution: Again, using the result proved in prob 1

sin(at? + bt + ¢)

. 2 2
’n b _w? b_w) T _-( _b7 w® h_w)
J ] 4a 4a+2a — __]e ¢ 2q da+2a
a

2,2 2,2
l ]<C+%_Z_a_i)a) ](C+4 4a+(:a)l
T . (bw
© —e](ﬁ) T
a ]
o [Fid) gn(ceZ b o
ae S ETY 4a 4a

Problem (5d)
Show that
1 (w + wy)? T (w— wy)?

i 2 T jm/4 =i
Sinwgtcosat” < E —l|e COS4— + e "4cos 4
a a a



Solution: We know

sinwyt cotat? = = [sin(wyt + at?) + sin(wyt — at?)]

N =

Fourier Transform of L.H.S in the sum of individual Fourier Transforms of the two terms on
R.H.S.
we know

1| |mj (- (@o—w)? —j _{(@otw)?
sin(wgt + at?) & — —]e]{ da } - —]e ]{ 4a }
2j || @ a

PN \/El [e—f%ej[_%] + ef%e_f[—‘(woz;;zw)z}l

Hence sin(wyt — at?)

o ﬁl [e—f%ef{%} . ef%e—f{%}]

a?

~ sinwgtcosat?

(wo w)2 (wo+w)2 (wo —w)? ) ((wo+w)?
(_)\/ﬁ [ _JZeJ[ ]_I_elze I \/ﬁ [ _]46' 4a }_I_elze ]{ 4a }

(wo-w)? _j(wo—w)2 (wo+w)? (wotw)?

Tl _.Ee] ia Fe 4q e] da +e ) 4a
o [—=|ea e
a2 2 2

T W+ wy)? T W — wy)?
<—>\/7 ]4cos( ) +e ]4cosu
4o 4o



Problem (6)

Snow that if f(t) is a solution of the differential equation % — t2x(t) = A[x(t)] then its

transform F (w) is a solution of the same equation.

Solution: use is made of the following properties.
if f(t) & F(w)

ang(t) , dazf(t) .
thendfT o (o))" Flw) - % o (jw)? F(w)

d?F(w)
dw?

and% o (HOf®) = (@)«

The given differential equn can be written as

d?x(t)
dt?

+ (—jt)?x(t) = Ax(t)

Taking Fourier Transforms of both sides,

iw)?2F CF@) _op
(w)F(w) + doZ (w)
or dF) w?F(w) = 1F (w)
dw?

This means F(w) is a solution of the same differential equation.

Problem (7)
Show that if x(t) is a solution of

d?x(t)
dt?

—t2x(t) = —(2n + Dx(t) wherenis an

integer. then except for a constant factor, x(t) is its own transform.

Hint. Try a solution of the form x(t) = H,(t)e~t*/2 where H,,(t) is a polynomial. show that
there is only one soln and use the result of problem 1.



Solution: Let x(t) « X(w)

we need to show, x(t) = (const) X(t) ...

d?x(t)
dt?

—t2x(t) = —(2n + Dx(t)

we try a Soln of the form x(¢) = H,(t)e~**/2 where

n
H, (t) is a polynomial = Z a,t"

n=0

dﬁ;(tt) = H,(t) e—tZ/Z(_t) + e_tz_an(t)

d;"t (Zt) = e /2[H, () — 2tH, (t) + t?H,(t) — H,(1)].

substituting into the given differential equn.

{e-tz/z [Ha(8) = 2tH,(8) + t2H, () —Hyn(t) — t2H, ()]
= —(2n + DH,(t)e t"/2
This reduces to
[H.(6) — 2tH,(t) + 2nH,(t)] = 0 > Hermite equation

we had H,(t) = Y"_, a, t™
n

~Hy(t) = Z na,t" !

n=0
n

() = z n(n—1)a,t"?

n=0
substituting into the Hermite equn.

n n

n
Zn(n—l)ant"‘z—ZZnant"+2nZant" =0

n=0 n=0 n=0

equating the coeffn of t* on either side we get the recursion



(k+2)(k + Dayyy — 2ka, + 2na;, =0

- _ 2(k—n)ay for all k
T Gy D2 00

Thus x(t) = H, (1:)e‘t2/2 is an unique soln of the given differential equ. We also know, using
the result of Prob 6 that x(t) is also a Soln. [x(t) & X(w)]. since x(t) is an unigue soly.
&X(t) is also a soln, we conclude that they differ only by a constant, that is

x(t) = (const) X(t)

Problem (8)

The Fourier Transform of a function f(t) is an unit step F(w) = U(w) : find f(¢t) ?

Solution:

_ (1 for w>0
U(‘”)_{o for w<0

Let f(t) & U(w)

1 ® .
f(t)=§j_ U (w)et®tdw

1 r® .
=— | e/?dw
2m J,
1 0 0 2
_ jwt _ 2w
o _Ooe dw Zﬂf_we dw
1 eja)t 0
=6(t) ——|—
(t) 271[ jt _Oo
= 6(0) —
B 2mjt
J
~f(t)= 6@t)+—
fO= 60+

Problem (9)

The function f(t) is real and its Fourier Transform is F (w) with

%LwF (w) e/t dw = f(t) +j f>(t)

10



show that £,(6) = £(1), fo(0) == L2 ar

o (t-1)

Solution: The Fourier transform of f; (t) + jf,(t) equals 2F (W)U (w) where U(w) is an unit
step.

FOoF@
20(w) © {5(1:) + %} from problem 8.
also
[ 5 @a6- i AR
f £, (D) 6(t—r) ot )}dr o F(w) 2 U(w)
But

f1(®) +jf(0) © F(0) 2 U(w)

f ()
-0 dt

fl(t)+]f2(t)_f fi (™ 5(t—f)+ dT —f fi (@Mt —1) dT+]f

(T)

* f@

~ i) +jfa(t) = f(©) + o) dt
Equating real and imaginary parts,
fi(®) = £
_1r® f@
and f,(t) = p- R dt.

Problem (10)

Find the Transform of a finite pulse train = Y323 § (t — kr) —jwKT
Solution: we know that §(t — kT) < e J@kT

=~ using the linearity property

11



n—-1 n-1
Z S(t—kr) e Z e ~J@kT
k=0 k=0
F(w) =1+e 0T 4 7J02T 4 ... 4 g-Jo(-1T

F(w)e—ij — e—]wT + e—]wZT + e—]w3T 4+t e—]amT

subtracting
F(a))[l + e—ij] =1 — e JwnT
1 — e JonT  p—jwnT/2 gjonT/2 _ p—jwnT/2
Flw) = 1+ e 0T g Jol/2 gjal/Z — g—jal/2
_ {e—j(n—l)wT/Z sin an/Z}
sin wT /2
Problem (11)

The Fourier spectrum of a sequence of pulses

[ce]

x*(t) = Z X, 6(t —nT) is A*(w). we form

— 00

the fn. y*(t) = X% y,, 6(t — nT) where

Vy = {% Ren—N+1 xk} is the average of N consecutive values of x,,. Show that the spectrum

of y*(t) is given by
1 sinnTw/2
—A* —————
N (@) { sinwT /2 }
Solution:

o)

() = 2 %, 8(t —nT) & A" (w)

o)

] ] sin%
A*(a)) — Z X, e—]amT — e—](n—l)Tw/an

—00

using the result of prob.10.
We now form the fo: y*(t)

12



n

y () = Z

—00

yo=1Y

— 00

n

% Z xk] 6(t —nT)

k=n-N+1

Zn: xk] 6(t —nT)

n—-N+1

using the convolution Th, f; (t) * f,(t) © F;(w)F,(w)

In place of integrals, we have infinite summations which are essentially the same because
of multiplication by a delta function

= The spectrum of y*(t)
1
=y [ Spectrum of ¥.x,6(t — nT)]
LY
=A@
Problem (12)

Show that the Transform of a train of doublets is a train of impulses

= , 4r = ~ 2mnt 2n
Z 1) (t—nT)=—ﬁZnsm T Wy = —
n=

T
n=-—co

Solution.: we know that

Sr(t) © wo S, (@)

Wo SNo(M)

i

>
—p—
-

g

[+]

17l
415

o o . . TR i ‘
l-2Wo  -Wo D wq‘ f# ° Wy

_ﬁ__t-%__
l'
o -

also

13



af () .
O Uw) Flw)

we have

Z 6 (t —=nT) © wS,,(w)

Z 8' (t = nT) © (jw) Wo S, (@)

ijSZwS(w — nwg)

ijOZna)OS(a) — nwy)

—00
o

<—>jw§2n5(w — nw)

— 00

. . 1 .
But the inverse transform of }né(w — nw,) is Py g/nwot

co .a)z 00} '
Z §' (t—nT) = ]Z_noz n e/n®@ot

(00}
J'Zﬂz -
=Tz )" cosnwyt + njsinnwyt

— 00
[ee]

_ an - 2mnt
= T2 nsin T

—00

Problem (13)

Using Poisson’s Sum formula, prove that

i sina(t +nT)  wcsin(2N +1) w.t
(t+nT) sinw,t
n=oo

Where w, = gand N is such that
aT
N<—<N+1
21

14



Solution: Poisson’s sum formula: if f(t) is an arbitrary fn. and F(w) its Fourier Transform,

then the following identity is true. (wy = 21t /T).

i f (t +nT) =% i e/t F(nw,)

n=-—oo n=-oo
we know

sinat T 21
onh(w), a=w.= T'ch =T

Using Poisson’s sum formula, we write

i T
Z % T Z em2@ct po(2nw,) - (1)

n=—oo n=—oo

but

pn(2nw,) =0 for |2nw. >a
ie when |2nw,| = |2n§| =a
ie when |n| = % if% is an integer
or when n > N such these N <% <N+1-(2)

The summation on the RHS of equn (1) is nonzero for n=-N to N. outside this rang
pa(2nw,) = 0 & hence RH.S = 0

[ee) N
. Z sina(t + nT) _m Z 2wt
(t + nT) T

n=-—oo =_

sin(2N + 1) w,
We sinw,t

} for N described by (2)

We get the required result by writingg = w, and summing up the Geometric series.

15



Problem (14)

The input f(t) to a linear system H(w) = ﬁ is a time limited function [f(t) = 0 for |t| >

T] of total energy E. Determine f,,(t) so that the energy of the output is maximum. Try a
soln. of the form

_ (acoswt for [t]| <T
fo®) = {O for|t| > T.

Solution: The optimum input f;(t) that maximizes the energy of the output, must satisfy
the integral equn.

T

.Ufo(t)=j fo@L(t—1dr - (1) where L(t) o |H(w)|?
-T

and pu isthe maximum eigen value

H(w) =

1 1
~ |H =— d |H 2
—a(t)

2a

L(t) istheinverse transform of |H(w)|? = from (1)

T t T
s 2alfy(t) = f fo (el~*tDl gr = f fo (De D qr + f fo (et D dr for |t
-7 T t
<T

we now try a soln. f(t) = acoswt for |t| <T

t T

2al coswt = j a coswt e~ %D g +f acoswt et dr for |t|<T
-T t

2a coswt  wsinwl — acoswT _ . . —at
or 2aicoswt = — —+ > > e" M (e* + ™)
a‘+w a‘+w

For this to be true for every |t| < T we have

2acoswt 1
2adcoswt = ——— or Ay=———
a‘+w

a? + w?
= max eigen value that maximizes output energy

and wsinwT — acoswT =0 ortanwT = a/w
w is the smallest root w, of this equation.
~solnis fy(t) = acoswt for|t| <T

'a’ can be found from the energy.

16



Problem (15)

Show that a System with the following Properties is causal a) it is linear b) if the input f(t)
is specified for t < t,, then the output g(t) is uniquely determined for t < t,.

Solution: suppose that f(t) = 0 for t < t,. From the Linearity property of the system, it
follows that the response to 2f (t) is 2g(t). For t < t, we have f(t) = 0 = 2f(t) and from
the property (6) we conclude thatfort <t, g(t) = 2g(t) which is possible only if g(t) =
0. This means the system is causal.

Problem (16)

Show that if f(t) is causal and the real part R(w) of its Fourier transform decreases
monotonically to zero

dR
R(w)=0 —<0, R(w)=0,
dw

then

2R(0)

it

IfO] <

Solution: we know, if f(t) is causal and possesses a Transform F(w) = R(w) + jX(w), then

(o] (o9)

2 2
f(w) = gj; R (w) coswt dw = —EL x (w) sinwt dw - (1)

further, if £ (t) is causal, then tf(t) which is also causal will have its transform = j dl;f:/)

f@®) - F(w)
dF
tf() o jo-=-X'(0)+jR ()

Now, from (1),

tf(t) = —%f R’ (w) sinwt dw

tf(t) < —%fomR’ (w)dw - =+ R'(w) Z—i <0 (given)
tf(t) < —%[R(oo) —R(0)] and R() =0

2R(0) 2R(0)
tf(t) < - ~f@) < —

17



Problem (17)

Prove that if a real linear System is causal and the imaginary part X (w) of its system
function H(w) = R(w) + jX(w) is negative, then its step response a[t] satisfies the
following inequality.

a(0) < a(t) < 2R(0) —a(0)

Solution: the response to a unit step U(t) is denoted by a(t) < A(w).
Alw) =U(w) X H(w)
1
= [m8(@) + =] (R @) + (@)

Aise
~frson + 1) (20
Alw) =R'(w)+jX'(w)

a(t) is causal and for a causal fn.

~a(t) = %jw ImS(w)R(O) + Xi)w)l coswt dw
0
= %U_O:on 6(w)R(0)coswt dw LZ coswt dwl
= joo(S (w)R(0)coswt dw + Efoox @ coswt dw
—o T Jo
= R(0) + %f coswt dw
0
-2 (*X(w) ) .
la(t) — R(0)| < — wa since X(w) isgiven to be -ve
0
< [a(®IF
< a(x) —a(0)
< R(0) — a(0)

We have

la(t) — R(0)| < R(0) — a(0)
or |a(t)] <2R(0)—a(0)
or a(0) <|a(t)|

putting the above inequalities into one, we have

a(0) < la(t)|] < 2R(0) — a(0)



Problem (18)
The input to an ideal tow pass filter

Age 1@t |w| < w,
0 lw| > w,

H(w) = {

isatrain of pulses f*(t) = Tf(t) Yme—0o & (t — nT)

whose envelope f(t) has a band limited spectrum

|F(w)| = 0 for |w| > w,. prove thatif T < wl, then the response g(t) of the filter is given by

gt) = Aof(t — to)

Solution: The Fourier Transform of the output is given by
G(w) = F*(w)H(w) where f*(t) & F*(w)

Input to the filter.
= O =Tf® ) 6 —nT)

~ F*(w) = TZf (nT)e /T - (2)

A Special form of Poisson’s sum formula (see prob 13) may be stated as follows

e

T

n=—oo n=-—oco

Z f (nT)e~JonT = %Z F (co +2?nn) - (3)

n=-—oo — 00

1\ 2
FOT) =5 Y Frag) o=

Substituting equn(3) in equn(2), we get the following

19



o)

Fw= ) F(

n=oo

W+ —

Znn)
T

5 G(w) = F(w)H(w)

[ee)

n=-—oo

0

X o) v

. i
F(w)Aje /@ for T <—

a)C
for other values

or

. /s
G(w) = AgF(w)e 7@t for T < —

C

Taking the inverse transform

g(t) = Aof (t = to)

Problem (19)

Band Limited Interpolation: Given an arbitrary fn. f(t) and a constant T, find a function
g(t) with a band Itd. spectrum [G (w) = 0 for |w,| > % = wc] such that g(nT) =

f(nT) for all integer n.

Solution: we know

sinw_t
- © P, (@)
w.(t —nT) .
: —jwnT
sin o p— © Py, (w)e

Multiply both sides by a constant Tf (nT)



sin(w,t — w.nT)
w(t —nT)
sin(w .t — nm)
Tf(nT
or Tf(nT) w t(t —nT)
sin(w .t — nm)
(w .t — nm)

[oe)

z £ (T sin(w,t — nm) Z T F(T)po, (w)e™mT

L d
(w .t —nm)
n

© Tf(nT)py, (w)e /™"

~ Tf(nT)

o Tf(nT)p,,, (w)e 1T

o Tf(nT)p,,, (w)e 1T

or f(nT)

n=—o =—00

n(w.t —nm)
_)
(w .t —nm)

s =Y fenT )

n=-—oo

satisfies the requirements that, 1)g(nT) = f(nT)
and 2)G(w) = 0 for |w| > w,

A sampler S is a linear (but not a time-invariant) device such that its output to a given input
f(t)isgivenby f*(t) =T Yo-_o f (nT)5(t — nT). Show that the above fn. g(t) can be
obtained by cascading a sampler with an ideal low-pass filter.

;f % ' =

/g\/ ,\J/-/ samplev. - '_4,{4“.&{ e 1deal. Low —'PA"'T"“"“ /
i - o

2

2

[}
: We
—
w

#(0) ING)

Strictly speaking, we need to take an infinite no of samples to reconstruct the signal.
However with a large no of samples g(t) will very nearly follow f(t). When f(t) is fed into
the sampler, we get f*(t) aS the output

fr@=T) fO) 8- nT)

n—-oo

We know that the response of an ideal low-pass filter

21



sin[w,(t —nT)]

to 6(t—nt)= e p—

~ response to f*(T)

(w.t — wenT)

= TZf (nT)sin —wCT(t s

_io

_ i £ () sin(w.t — nm)

(wst —nm)

n=-—oo

=g(t) from (1)
This proves that g(t) can be obtained by cascading a Sampler with an ideal low pass filter.

Problem (20)

Frequency Shifting:

The input to the system of the previous problem is an exponential f(t) = e/®1 where
2m—-1w, < w; < (2m+ 1)w, and m is an integer. Show that the output is given by

g(t) = e/t where w, = w; — 2mw, Thus a band limited interpolation of an exponential is
an exponential of a lower frequency.

| . B U

Solution:
| |
A dwit] I :
(6) = ¢ | Ky
ce |5
‘SP‘MPLF’ P

|
|

Input to the Sampler: f(t) = e/®1t
Transform of the input: F(w) = n8(w — w;) = (1)
The output of the sampler = f*(t) and
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=T 2 F(T)8(t —nT) Let f*(t) & F*(w)

n=—o

we have shown in Problem 18,

o)

i 2nmn
Fw =) Flo+=r)
n=—oo
2mn

= Z o ((;) — w1 + T) using(l).
n=-—oo

= Z né6(w — w; + 2nw,) = (2).
n=—oo

we are given (2mw, — w,) < w; < Cmw, + )

~when f*(t) [ F*(w)]is passed through an ideal lowpass filter, the only frequency
comp. of the input that lies in the passband of the filter is 78 (w — w; + 2mw,).

Therefore G(w) is the Transform of the output of the ideal lowpass filter is = 76 (w — w; +
2mw,)

or G(w)=mn8(w—w, —2mw,)
Taking inverse Transform

g(t) = exp[j(w1 - mec)]
g(t) = e/®t where w, = w; — 2muw,.

This result establishes the fact that the Band Limited interpolation of an exponential
function is again an exponential of a lower frequency.

Problem (21a)

Rectification:

A full wave rectifier is a device such that its response g(t) to an input f(t) is given ty
g(@) = |f(®)|. Show that if f(t) is amplitude modulated f (t) = ¢ (t)siniwyt, with positive
envelope ¢(t) = 0, then the Transform G (w) of the output is given by

2 © P (w — 2nwg)
G(a))——; Z 4n? — 1

n=-—oo

Solution: Input to the Rectifier: f(t) = ¢(t) siniw,t
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output of the rectifier: g(t) = |f(t)| = |¢(t) sinw,t|

org(t) = ¢p(t)[sinwet| = ¢(t) 20— (1)

we now expand [sinw,t| into a Fourier series and then take the inverse transform to obtain

G(w).

Let |sinwyt| = [sinf| = Yon=—c Cin eJmtwg

Period of |sinf| = &

T T
1 . 1 .
o Cp = —f sin Qe JM@ot dg = —f sin 8e 7m0 dp
T Jo 0

T

e imIsing)” 1 (T .
— bV +— | e MY cosh dO
0

—jm JmJg

jm{ —jm jmjm J

T

Q1= Jl- JAlr

1 ( 1)]+ 1 1f
2 cosmm i),

Cn = —

C
> (cosmm + 1) + —Trzl
mm m

1 -1
s Chp (1 — W) = (cosmm + 1)
-1

or Cp =—ﬂ(m2 D

(cosmm + 1)

~whenmisodd C(,, =0

. -2
whenmiseven =2n, C, = (4n? — 1)
|sinwgt| = Z Crp @7/ 00t
m=—oo
® 2 e—J2nwet
- z Cn(4nz—1)
n=—oo
gt) = ¢(t)|sinwyt]
® 2 e—Jj2nwet
= t YRR
d)( ) Z T (4712 — 1)
n=—oo

Taking the Transform & using the Linearity property,

1 (e~ Jmo 11
+—{ cos@} ——— | e J™msing del
0

e~ /M8 sing d@l
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2 i P (w — 2nwg)

G(w) = - = 1) — (2) where ¢(t) & @ (w)

n=—oo

Problem (21b)

Detection: The output g(t) of the above rectifier is inserted into an ideal lowpass filter of
cut off freq w,. Show that if ®(w) = 0 for |w| > w,, then the output g, (t) of the filer is of
the same form an ¢ (t),

2A
9:1(6) === (¢ — 1)

Solution: Input to the filter: g(t) < G(w) given by (2)

System fn.: H(w) = Age /*% p,, (w)
output of the filter: g, (t) & G;(w)
we know G, (w) = G(w) H(w).

—2 O - 2nwy)|,, _..
Glw) = {7 2. H} {Aoe 0 topy, (@)

we are given @ (w) = 0 for |w| > w,
The product is nonzero only forn = 0

2 .
~G(w) = —gcb(a)) Age @b
= ——d(w)e @
=~ Taking the inverse Transform,

2A
9:1(6) = ===t — 1)

Problem (22a)

The input to an ideal low pass filter H(w) = Aje™/ “top, (W) is a step modulated signal
f(t) = Ecosw,tU(t). Show that its response is given by



EA
g(t) = z_ﬂo [T+ Si(we — wo)(t — to) + Si(we + wo)(t — tg)]coswy (t — to)
EA,

+E [Ci(we — wo)(t — tg) — Ci(w, + wo) (t — to)]sinwy(t — to)
*sin ® cos

where S;(x) = f —ydy and C;(x) = —f —ydy
0 y X y

Solution: The fitter is characterized by H(w)
H(w) = Age7¢%p,, (w) > (1)

Taking the inverse transform

1 r* )
h() = Aoﬂf e /top, (el dw

= ‘ ejw(t_to) d
2m J_ @

Wc
4, ejw(t—to)l“*’c
ZT[ _](t - to) —w¢
AO ejwc(t_to) — e_jwc(t_to)
ot —tp) [ 2j
sinw,(t — ty)
(t — ty)

We further know that the indent response g(t) of the system to any arbitrary input f(t)
can be expressed in terms of the impulse response only as follows:

0

90 = | f@he-)dr
= joof (t —1)h(7) dT.

For the step-modulated input [= EcoswytU(t)]
We have the response given by

sinw,T
dt

gt) = fooEcost(t — 1)Ut —1).4,

not considering the small time delay t, in h(t), which is a constant and can be plugged in
later.

EA, (¢t sinw,.T
gt) = TO cos wy(t — 1) <

—00

dt
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g (t) t _ _ sinw,T
= (coswyt coswyT + sinwyt sinw,yT) dt
EA, o
t coswyTsinw,t _ t sinwyTsinw,t
= coswyt ——————  dt + sinwgyt —dr

2mg(t) jt sin(w, — wy)T + sin(w, + wy)T
= COSwq dr
EA, —o T
cos(w, — wo)T — cos(w, + wy)T p
T

t
+sina)0tf
— T

0 t i
sin(w, — wy)t sin(w, — wy)T
=cosa)0tU (o o) dr+f G o) dt
o T 0 T

sin(w, + wy)T sin(w, + wy)T
+f ( c 0) dT +f ( c O) dTl
—o T 0 T

cos(w, — wy)T — cos(w, + wy)T p
T

t
+sina)0tf
— T

Use is made of a change of variable

1. (w, —wy)T=u

P du
ndr = ——
((‘)c - (‘)0)
2. (w, + wy)t =V
p av
ndr = ———
(w; + wg)

0 sin(u (we=wot gjn (y 0 sin(V (wctwolt gin (1
s [ [T [0 0
—00 0 —00 0

u V V
(@e=wo)t cosy (@ctwolt cos)
+sina)0tf du —f av
. u . V
T
2mg(t) 2 + Si(we — wo)t
A= coswoty “

0 +E+Si(wc+w0)t
+sinwot{C;(w, — wy)t — C;(w, + wy)t}
_ EAycoswot

= T{ﬂ + Si(we — wo)t + S;(w, + wo)t}

EA,
+7coswot{6i(a)c — wo)t — Ci(w, + wy)t}
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Inserting the time delay factor, [t is (t — ty)]
EA,
gt) = Ecoswo(t — to)[m + Si(w, — wo) (¢ — to) + Si(we + wo)(t — to)]

+%Sin(l)o(t - to)[C((Uc - (Uo)(t - tO) — Ci(wc + (Uo)(t _ tO)]

Problem (22b)
Show that
. _ EA()COS(U()(t - to) (1)0 < (l)c
tll_)lgg(t) - {O Wy > W,
Solution:

fort - oo, thefn. S;ax »>n/2 (a>0)and - —-7m/2 (a<0)
&Ci() =0
o fort >0 and (wy < w.)

EA
gt) = —Ocoswo(t —ty)lm+ /2 +7m/2] = EAycosw,y(t — t,) for (wy > wc)

2m
EA,
= %coswo(t —t)r—m/2—-m/2] =0

Problem (23)

The system function of a linear filter is given by

Age 7% w>0
Agel  w<o0

H(w) ={

Determine its impulse response.

Solution:

H(w) = {Ao(coseo — jsinf,) forw >0
“) =14, (cosb, + jsinf,) forw <0

we can write
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H(w) = Ay(cosb, — jsinB,Sgnw) — (1)

2
we know  Sgnt & —
jw

~ Sgn(—w) & 2><1
R jt 2w

S -
or Sgn(w) & it
also Aycos, & Aycosh,d(t)

Taking inverse transform of (1)

-1
h(t) = AycosB,6(t) — Ayjsinb, <E)

Apsinfg
= AycosB,5(t) + ——

ELERERE A PV
a1 £
ngz Ao Kol 1 i)

| | [

| R IR e
B i L
, ‘[ i
il | |
‘ - Bo t }
2 _.;(l_..._.ﬁ (R0 =B :
; H ("J\)) VS W .,.

Problem (24)

Given an all-pass filter |H(jw)| = 1 with monotone increasing phase lag as in fig. The input
f(t) is a signal whose Fourier Spectrum decreases with increasing w ——— lF(w)l <0-(1tois
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any constant. Show that the RMS error E between the output g(t) and the delayed input

f(t—to)

E= f°° [g(t) — f(t — ty]?dt - (2) is minimum

if 8(w) increases linearly to is final value 6 ()

8(w) = {wto

Solution: The error = g(t) — f(t — ty)

lw| < w,
B(0) w > w,

- (3)

The Fourier transform of the error= F(w)[e /9(®) — ¢=J@to]

=~ to prove (2) it is sufficient to show that

fOOOIF(a))I2 |ej[9(“’)“"t0] — 1|2dw is minimum for 8(w) as in (3).

}
f ”

vl
5 .
é__

0

{ W, 9\’0 [

; }5 ‘7 1.;
f

We need to show

f |F ()2 |e/10@-wt —1]°de > f IF(y)|? |e/l6C-vtol — 1|7 gy
0 w

c

To a given y, we find the corresponding w such that wt, — 6(w) = yt, — 6(0). It is teary to
see from the given figure that for w < y, with their corresponding incremental values

dw, &dy, we have dw > dy

because [t, — 0'(w)] dw = t, dy
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and since 8'(w) =0 .~ dw > dy.

d|F (w)]

<0.
dw

we are also given that

ie. |[F(w)| > |F(y)I
The inequality to be proved is the following:

[ IR eto@end do > [ Ry el dy - @)
0 w

c

One can readily see that this is true.

« wehave |F(w)| > |F(y)|
dw > dy
|F(a))|2ej[9(“’)‘“’t0]da) > |F(y)2|ej[9(oo)—yto]dy.

= (4) is true which is the requirement to show that the r.m.s error E is minimum

wty ol < w,
B(0) w > w,

0(w) ={

Problem (25)
Show that if the frequency characteristics of a Low pass fitter are (fig 1)

(A ol < w,
Alw) = {0 lw| > w,.

O(w) =tow+aw? w>0

0(—w) = —0(w), then its impulse response is given by
A T
h(t) = \/2;_(1{[6((»“/2&/71 —-7)+ C(r)]coszr2

+[S(we/2a/m —T) + S(r)]singrz}.

t—t,
where7 = —=% and

V2ta

C(t) = jorcos (gyz) dy S() = f:sin (gyz) dy

are the Fresnel integrals.
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Solution:
H(w) = Age 1*@p,, (w)

Ay [*° . .
- h(t) — ﬁf e_]e(w) pwc(w)e]wtdw

Ay [©c
= ?Of cos [wt — O(w)] dw  substituting for 6 (w)
0

= %fwccos [w(t — ty) — aw?] dw — (1)

0
_ t=tg _ n — n
Now let T —mandleta)\/a T\/; x\/;

(1) can be written as

h(t) = @fwccos [(a)\/g — (¢~ t0)>2 — (t — t0>2] dw
0

T 2\a 2Va
Now with
wVa — 1 /2 = x\/m/2
dx
dow =1 2—}
(o =2 1
T T
w\/a—\/grz\gx
whenw =0, x=-1

2
when w = w,, x=wC\/E><\/;—T
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2a
= W, ?—T

fwcf_f

~h(t) = cos=(x? —12) dx

22ma)_; 2
= wc __T [coszx2 . coszr2 + sinzxzsinzrz] dx
 \2na - 2 2 2 2

’20_’
wC |——T

\/ﬁa coszr2 ficos (%xz) dx +]0 " cos (gxz) dx

+msmir j_rsm(zx) x+f0 SIH(EX) X

( o)
—C(t)+C a)c\/g—r cos(%)
A, T

2na B Z_a ~ o
+|-S()+ S| w, T ||sin(=1
\ T 2

where C(7), S(7) are Fresnel integrals

A
"

Problem (26)

The phase distortion of the filter of Prob-25. is small. aw? << 1. Show that its step
response is given by

_ ady [2sin?[w.(t — ty)/2] wsinw (t — ty)
A= a7 C—t)2 -t

Where a,(t) is the step response of the same fitter without phase distortion.

Solution: If 460 (w) is a small (<< 1) phase distortion,
A0(w) = 6(w) - wty << 1in the pass band

Since e /49(@) = [1 — jAA(w)] for small 46 (w)
we have.
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Hw) =A(w)e /0@
~ A(w)e /%1 —jAb(w)]
=~ Hy(w)[1 - jA0(w)]

where H,(w) is the system fn. with no distortion.

If a(t) is the step response with distortion. a,(t) is the step response without distortion,

then the Fourier Transform of a(t) — a,(t) is given by

(75 + =] tHo(@) (=) 40(0)]
jw

= 18 (w)Ho(w)(=)46(w) — Ho(w) 46(w)

H A6
= —M because 40(w) §(w) =0
H A0 .
a(t) — ao(t) - __f M elotdt
1(® . e/t A0 (w
a® - a(® = [ Ageotopye@) " o
0
2
—aw* w<O0.
Aoa wcC
sa(t) —ag(t) = —Tf w cosw(t —t,) dw.
0
Integrating by parts,

A ' t —ty))° ©C sinw(t — t
. o {_ wsinw; ( 0)} N j‘ sinw( o) da)}
s (t—ty) 0 0 (t—ty)

A I wsinw(t —t,) cosw(t —t)]”

Com t-t) (-t |
Aoa _ COSw, (t—ty) sinw,(t — ty)
r el el = GRS
A {2511’1 w.(t — to)/2 _ wcsinw,(t - to)}
I (t—to) (t — to)

= The Step Response a(t) is given by

2sinw,(t —ty)/2 w,sinw,(t — to)}

Apa
a(t) = a(0) + n{ C-tw) G-t
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