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Second Order Linear Ordinary Differential Equations

Carl E. Baum _
Air Force Research Laboratory
Directed Energy Directorate

Abstract

From the study of analytic solutions for special cases of the telegrapher equations for nonaniform single-
conductor (plus reference) transmission lines, we construct some 2 X 2 product integrals. This is extended to various
forms of the solutions of second order linear ordinary differential equations. This is a general procedure which can
be used to construct a table of produict integrals which can be extended to the N x N case for N> 2.
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1. Introduction

In the study of nonuniform muiticonductor transmission lines (NMTL) one is presented with equations of

the general form

| %.(fn () = (an,m (z)) . (/n (2)) + (f(ns) (z))
(f,ss) (Z)) = distributed sources
(fn (2)) = upknowns (voltages, cmmtS) | @

(an o (z)) = N X N matrix (involving line parameters)

This is solved via the matrizant equation

L0 (250)) = (e (7)) (Onm(a20)

(®pm (20-70)) = (1n ) {boundary condition) | SR ¢ &)

In terms of this N x N matrix, (1.1) is solved as

() = (Bane0) - (o) + [ (@rme2) - (300 a3

]

The matrizant can in fum be ‘calculated via the product integral [4, 11}

(®m (z:20)) = He(an,m(z'))dz'
zg
= lim e(an,m(zL))Azme(an,m(zz))m . e(an,m(zl))Az

(i’z—!—:g) ' _ {14

. Ip =2t pAz

L .

= lim oe(a"’M(zL))Az
L—-}mpﬁl '

(‘bn,m (z 220 ))




with continued dot mu]ﬁpﬁcation taken to the let. This form as a 'product of matrices gives a way to make a

numerical calculation (if L is sufficiently large) This also shows why it is called a product mtegral by comparison

with the usual sum (or Riemann) integral,

Our concern here is with the analytic properties of the product mtegral. _Summaﬁzing some general

pmperties
(D(ZZ,Z())) H a,,m(z') H (a,,m )dz’ He By z’)
z
= (¢(22,21)) . (‘1’(21,20))
(@nm (220)) " = (Onm (20:2))
| | § r{{anm(2)) 2 - -
det (@ m (2,20 ) = e | | | (1.5)
tr((anm (2))) = Zan,,, ()
n;l
= Z’lﬂ ((‘.’nﬂ (_z))).
B=1 _
Ag = eigenvalue of "(a,, - (z))
There is also what one can call the matrizant series
(CD,, m (220 )) = Z((Dn m (2.2 ))z
£=0 .
(®nm(220))y = (tnm) - RV (1.6)

_ (CD,, m (22 )) 1 = I(an m (z')) . ((Dn,m (=, %0 ))E dz

Special cases have analytic solutions. (By analytic we mean here that the solutions are expressible by finite
combinations of known special fimctions.) ‘There is the simple case of




(o () = 5) () » (anpe) = constant matsix

(a,,,m)?b(z')dz' - R : )

(CDH m (2 zo)) = e @

The exponential of a matrix, of course, is given by the usual serics. Depending on the eiact form of (), terms

can be collected into simple trigonometric or hyperbolic functions [2]. The above is extended as [} (Appendix C)]

(enm () = Zbg &)%)

(a&?,,] [a,(,ﬂ',),J = (a&f;,),) . (a,(,'f,)n} (pairwise .comtm;@ion for all f,f’). | (1.8).

%(dem]ibe(z')dz' M [“" )Ibe(z’)dz'

((I)n,m (2, 20 )) = €£=1 n, = Og 0
£=1 :

More general transformations can also be used including the sum and similarity rules [11], and special
matrices involving the direct sum and direct product decomposition [4]. A special simplification rule observes

(e (2)) = 2 {(anm () om) + o (2)
b (2) = A (2) — (e m ()

by (z) = apm(z) for nzm - (1.9 _'

tr(bn,m (z)) =0

? ot ((an,m(z’ )))dz’ ? (bn,m(z'))dz'
( - (z, 25 )) = % N £%0

The first factor is a scalar involving only the sum integral. The second factor has the property
det| €0 -1 (1.10)

For 2 X 2 matrizants this can reduce the number of “independent” matrix elements from four to three.
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Another useful transformation scales the independent variable as

pr=¢ , B =Co » Pl =dl

)

L Blanm(?))d S e[""""(%)}d‘f o o | | (L11)
U

This can be used to scale one of the matrix elements (nonzero) to a desirable value.

~ Another general approach (generalizable to N x N constant matrices times scalar ﬁlncﬁoﬁs) uses the

following theorem

Holtnn) +ealonm) - (s, ) 4 0 () ~ (um)  aw
provided

(bn ,m)e = (b,, ,,,) . (cn,m)f = (c,, ’m) , 4= pOsiﬁye iméger

\ (1.13)
(bum) + (enm) = (©Onm) = (enm) = (5um)

This can be verified from the series expansion for the exponential. Such is the case if
(@nm) = Bolbum) + olen 7,,,) . . . - (1.14)

where by and ¢ are eigenvalues of (a,,,) and (bp,m) and (¢ 5m) are the corresponding cigendyads (singnlar -

idempotent matrices).




2. General Approach

Cur approach to finding closed-form 2 x 2 produét integrals begins with the ﬁrst-orde'r-homogeneous form
of (1.1) as

Lh@) = (@n@) - GG - - ev

By choosing (fy(2)) in special ways this specifies (ay (7)) . If we have two independent forms of (f,(2))

corresponding to 'ihe two independent solutions of a second order differential linear ordinary differential equation,

 we can use them as the two columns for constructing (@, ,,) . Imposing boundary conditions completes the

construction.

Consider the telegrapher equations for a single conductor plus reference

df}g,s) _ _sLl(z)j(z,fg), L'= ufg (2)
: 2.2)
T6d - e, o =5

This can also be transformed to more general forms if the permeability, 4, and permittivity, &, are allowed to vary as
a function of the spatial coordinate, z. - The above system is equivalent to a second order linear differential equation.

This takes the forms for voltage and current as

25 (2.5 .
a7V (zs) [d ,g,,(fg (Z))]iy% - Y (z5) = 0

dz? &
d*(z, d v (z, - - |
_;E-;fl + [Ezn( A (z))]—% -y i{z,5) = 0 ” 2.3)
_s 1l T2
y== . V=[x ].

The complex frequency s = Q2 + j@ can be changed to the regular radian frequency by

s=jo, y=jk, i @2.4)

thereby giving another form to (2.3).
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The reader can note that while these equations are cast in terms of voltages and currents which are functions of s,
this identification can be ignored and given arbitrary form of variables in the differential equations.

The general form of the differential equations in (2.3) is

d* f(z)

WD g LD im0 e

This is cast in the form of (2.1) as

(f(z)
(fn(z)) =1d ]

AU
(0 1 26)
(a3m (@) = | B2(z) _H(2)
\ bO(z) bO (2)
where f(z) can be interpreted as V’(z,.s) or J(z,s) in(2.3). This gives .
a4 dﬁ'(z,s) 3 i (0 ) 1 | ' . dﬁ(z,s)'
| =7 (z9) LyZ Ez._é’n(fg () P (z9) o

d I{z,s) ) ) 0 1 i(z,5)
dz %f(z,s) - kyz —%En(fg(z)) gz—f(z,s)

with the additional forms from the substitution in (2.4)

Let us next assume that we have two independent solutions for such equations. Call them f{l) (z) and

f(z) {z). Then construct

Mo e . |
(4 (D) = | 4O D 2.8)
P P

Of course atbitrary constants can multiply f ® and j{z) . So now construct




((D(Z:ZO)) = (An,m (Z)) ’ (An,m (ZO))_l o _ _ ‘
' z - ' s (2.9)

Ry
Z
and verify that the matrizant equation and boundary condition in (1.2) are satisfied. Other product integrals can also

be constructed by a similarity transformation with a constant non-singular matrix as

(ban @) = (Gnm) + @amteo) = Gon)”
;i( o 6:0) = o) * @) = Con) " - (b0

Anm (z.20)) = ﬁe (Crn) - a"””(z')) ) (C"””)_ldzl , (2.10)
oL |
(A (520)) = (Cum) * (A (@) * (s GO} = (Gam)

[(Cam) + G ) + ()} [(Gam) + Clm ) - (o'

Having two independemt .solutions of (2.3) we also have via (2.2) relations between V and I for each of
these solutions, leading to yet additional forms of (4, ) . From the telegrapher equations we have,

#ren)” [fol © HSF?(Z)] e
_"[z;(z) ZcffZ)] ' [I;(())J

1/2 o
Z(2) = Zyfe(2) = [f—] [z (2} = local characteristic impedance of transmission line

@.11)

From (2.2) we can convert two independent solutions of (2.3) for V to [ and conversely to construct (Apm (2D

and proceed as previcusly.

Yet other forms can be obtained by transforming the telegrapher equations. It has been convenient on
occasion to multiply 7 by some normalizing impedance [2, 3] to give

j"/ 3




/ﬂ ) h

L ;
S

Ca I;(ZS) _ 0 _72_1(2)2c(z) . V(z,s). . | .. |
dz[Z(z)f(z,s)J 2 (2)Z;1(z) % n(2(2)) (Z(z) f(z,s)J o (2.12)

Z(z) = normalizing impedance.

If Z is chosen as a constant, this reduces to the same form as-in (2.11). I it is chosen as the characteristic
impedance, then the coefficient matrix reduces to '

5 . i _ _ . T
(@ (2)) = d ’ : C(213)
)= La(me)] | o

for yet another form.

Another form {5] uses a symmetric renormalization with combined voltages as

( d
¥ -—in(fz(2) :
%(\"rv(z,s)) = d “ (g ) « (w(z5)
\— Eﬂh‘(fg (Z)) e | | | | (2.149)
o) - [FO G + 2 (z)f(z,s)]
VT 2 @ (as) - 2V (D) ()




. Exponential Variation of fg'

Now let us choose [2 (Appendix B), 7]

fg(2) = fo & =

207+ n(fy).

By appropriate choice of f the characteristic impedance can be fixed at any z of interest

form

2 a2 .
o — [a +¥ ] z {(+z propagation)

+ [02 +y2]1/2]z (-z propagation)

The corresponding current takes the form

f(z,s) - __dV(z,s)
S/”fg dZ_ ‘ _
( 3 1/2
o [az . 2]1/2 [—a - [a2 +}'2] }z
= YZwho : [—a N +}’2 1/2]2
@+ l:a2+72]112e [ ]
Now (2.3) takes the form
d*7 (z, v (z, .
5 e TED 270 -
i (z, di{z, .
df; s) 42 S:s) y2 I(z,5) =0

This gives, for the voltage equation, the pair,

10

G.1

. The voltage takes the

(3.2)

(3.3)

G4




o) - .
(4nm (2)) = | o ()

[ T"F Jeer
afes]"] [A= T} [afeter]”] LT

The constants (V3 andV ) factor out when combined with (4, ,,(2)) to give the product integral as in (2.9). While
we have approached this via transmission-line theory the constants («, y, etc.) can be reinterpreted at the reader’s

choice.

Note that

et ({Aum (2))) = [a;[a_z ;yz]‘”]’ 2z

_ {a _—[az e ]11’2} 292
- z‘[a2_+y2]”2 Q2 - o (3.6)
det ((A,, ™ (z))) det™! ((A,, m (20 ))) '

= eZa[z-—zo]

_ etr((a,,,m ))[zfzo]

It

dot{(p (;, o )

consistent with (1.9). This also gives a Wronskian relationship of the two independent solutions. Of course, since
(apm) is actually independent of z we have

(@ (20)) = (A () * (A (z0)) = el | )
as an alternate representation: Then (3.5) gives an explicit representation of this exponential of a matrix.

Another form comes from (2.11)

11 @




_ | (@nm(2)) = - y[Z;}f(;(: e wa()oezaz]
(An,m (z)) = -
_e[a.[aﬁﬂz]”z} e[a{aa,ﬂ]”’}z | |
. I PEINE Y i | e 2T ||
e L 0 WL
({2} = i ;a+[a2+y2]1/ 1 |
+yz,i,ﬁ, ha_[a2+72]1/2}
- rZiﬁ) :az ”’21”2

d%t((d),, (@) = det((4, (2))) * det™ (4 (20))_)

~ noting that (a,,,(z)) has a zero trace. Also the combination Z,, fy is just an arbitrary constant.

For the special form in (2.13) we have

| | (f’n,m (Z)) = [_0}, ;;J
(Amm (z)) =
[a ‘[azf?’z]yzjlz

4

. [T
_%[a_[azﬂz]l/z] e[“’[a%rl]uz]z _%[a+[a2+72

]1,2] e[a+[az+yz]1f2]z

dct((Aym () = -+ o oo +y2]1/2] 20z

Yi
T 1/2
i a—[az-l—'yz] } 202

-2,

1/2
2] e2az

det((ED,, iz, zo))) = esz[z"zo]

12
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From (2.14) we also have

(oun@) = (2, 2]
(An,m (z)) =
a1

-1/2 ~~1/2

Zw fo 2 g2
T
e

1
1-=—-

e

[
[1_1

7

A7) E T el
[e[]"] L] Tetlesf )]

det ({4, (z)))

det ((CDn m{z2 )))

N

12
s [l+%[a2+y2] +1

1/2
-1+ —2—[a2+y2} —1]

(3.10)
¥

4 [az . J,2]11’2

YZwlo

1

Note that the constant Z,_,,“ 2 Jo V2 can be neglected in the above for a simpler form due to its cancellation by

0D
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‘General Form of the Product Integral of a Constant 2 x 2 Matrix Times a Scalar Function

Consider the problem
(anm) | A2 |
z . ap m z . _
(@ (z.20)) = l | ¢ (z')("”_"")dz' =e ® @1
. Zf .
Transform this as
Z \
plz)dz = di , ¢ = Iﬁ(Z')dZ' 42
ZO . .
By this scaling, the product integral is reduced to a product integral of (a, om)- 5o without loss of generality
consider
. ; Ny . |
((I)n’m (z, ZG)) = I I e(an,m) = e(an,M)[Z"ZO]_ . “.3 { \
) 75 ' '
Also from (4.2) one of the ay, ,,, can be scaled to unity.
One approach would scale aj 5 t unity so that we would evaluate
aLéz 1|3 1
: o WA '
exp d| a2 _
al:[o O ULt |
. NCHC S
? ay ap | @.4)
auz 0 1
= eal,l[z—zﬂ] I l exp a_zzl a2,2 _f_l-,l— d[al’zzl]
ay 22 ) a2 a],2 a2

where we have pulled out a;1(l; ) and closed-form product integrated this. We now have a form as in (2.5)

which is one form of our solution.
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A general approach begins from (1.9) as

(bn.m) ;
7_ b=
det(e(bn,m)[f-éo]) _

Then we diagonalize (b, ,,) as

{tam)

b-41 ap
det
) a1 —b-4

2
A1

2
(Bam) + (),

()L

2

(£n)L
2
(”n)gl « {4y )32

Cy Dy

2 2

Note that the eigendyads only use the CD product. This of course assumes that

(an,m )[?"Zﬂ]

a taxs
e 2 [édzo] = e(bn,m)[z_z()]
b ap
(az,l._ -bJ . t(bam) = 0
q1-a2
2
1
2 _ |
= D el (en),
=1
=0

It

+ [b2 + a1,2a2’]]

{ )

=Ci| 4 -b

\ 2

(.11 +b

= I I3

\ 91,2

= Igl,gz {(bicrthonormat)

-1
2

i5

)y o (g (Bum) = 22 (tn),

4.5

(4.6)




A # Ay ., b +j[apa; ]”2 >.det((bnm)). £0 - | (4.7)
In such a case

(bé;n)z = (Onpm) - - B | 4.8)
and .the éxponenﬁal series fruncates after two terms, gmng ayet simp}er re;ult.

Then applying (1.12) we have

a1 +a 2 Ai|z—-
1,1 . 2’2[2-20] I[ ZO]

e(an,m )[Z-'Zo] e 2 (% )E (¢n )E ( n,m) | 4.9)

£=]

as the general form for the product integral of a constant 2 X 2 matrix. A similar diagomnalization procedure can
extend this to larger N. See an altemate approach in [6].

16




5. Power-Law Variation of fp '
Choose now (see also [2(Appendix A)])

Tg(2) = for® 6D

Now (2.3) takes the form

dzr?(zz,s) _ _Egﬁ(z,s) - PPas) =0
2dz z _dz | (5.2)
d ;(z) A CORL
which _mmsfonns to
[”12%;_) - przfg[(%ﬂ - [ijzﬁ(z,S) _ 0 o
ON S ) - P -0 |

This starts to look like a Bessel equation. Following [8], which also calls this case a Bessel transmission line, we
have the general form of the current differential equation which transforms to a Bessel equation as

a2 f{u d
uz—u—i-g—-)- + pu% - uzf(u) =0

du
S ) = ulg(u) o
- (5.
g = .}12—‘0 . P = 1-24 .
2
sdg(u)  dglw) T2 _
u o +u— [u +q2]g(u) =0

which has solutions 7, () and I_,() for ¢ not an integer, and Iq(u) and K ,() for g an integer. These are

called modified Bessel functions and have some properties as [10]

I_p, @) = I, (u) for m an integer
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K _gw) = Ky@)

Iy@) = [/ Ty () » Kq() = %[Ff'lq'Héz) (—ju) (for imaginary u) - (5.3) L
d uqfq () _ Ig1 () | .
dulydg q(u) - K g-1 ()

W1y (), 1 @)} = Ig() g1 () = Bt (8) 1 (u) = ~2sin(gr)/[x7]
WK (), 1g(@)) = 150K g1 (v) = Ign ()Kg () = Un |

This leads to several forms of product integrals. For the modified Bessel equation we have

_ 0 1
(am @) = | b2 +g? ]
)
u

(5.6)
Ig) 144

2 1y@) S1-g(0)

(An,m (u )) =

- with the substitution of Kq () for integer g. The determinant of (4, ,,) is just the Wronskians in (5.5). For

o~

imaginary u (corresponding to propagation in frequency domain, y = jk, 5 = jo)one merely substitutes the J q N
and H, ‘(12) functions.

Going back to the current form of the equation we have

(23m () = (0 1 )

1 plu .
wllg(w) . w%l_y(u) . ' ‘ ' -7
il

ullyq(w) wl_gq(u)

with the same substitution of firnctions as before. For the voltage form of the equation replace p by —p, including the
change in g per (5.4).

Beginriing with the current form we note

dI 7
V{zs) = - = -7, fo7? (z.5) = —Z 77 fou? M

5.8
¥ dz du du 6.5
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In terms of the independent variable u we then have (per (2.11))

a,,"m /] = - PR R o
\Zwlfo PP 0 _ o
[z PSP I ) ~Zoyy P P utl g ) '
(A,, m (u)) = - ‘ . . (5.9
il 7@®) uql_q_l (@)
_ —Zw}'—Pﬂ).u]-;qu—l (u) "Zwy—;_,”l_q -é—l ()
Wil ) wli_g_1(u)
Note that the combination Z wJoy? is just a constant o be chosen at our convenience.
For the form in (2.13) we have the same result as (5.7). The form in (2.14) gives
1 £
u
Ay (0)) = :
( nm ( )) _ £ -1
U
(Aﬂ,m (")) = :
(5.10)

I @) + I@)] w1 [Iga() + 4]
I @) ~ I(w)] i1 ga(w) - Lg)]

_ . ]/,Zul!z Iq—l (u) + Iq(u) Iw-q—l (u) il (u)
=|Zusor P] (Iq_l (W) + I,(0)  I_g(4) - Ig (u)J

12 A2 —pl
ZL fOI27 3] Zuplz

Note that the constant in front can be dropped due to the dot maultiplication by (4, ,, (g ))"1 on the right, giving a .

simpler-locking result.
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6.  Concluding Remarks

What we have here is a procedure for constructiﬁg product integrals thét can be used as a begmnmg of a
table of product integrals. The emphasis here has been on the 2 X 2 case based on the solution of second order
linear differential equations. -While our starting point has been the tclegrapher equations, the results are more
general. The results presented here arc based on two general forms. of transmission lines: exponential and power
law. Various others have been studied which can give yet more 2 X 2 product integrals.

More generally the 2 X 2 case can be extended from the large literature concerning second order linear
ordinary differential equations. Such solutions are tabulated in [9]. The N X N case for N > 2 can be treated by the
usual way of converting them to a first order linear N x N differential equation. ~Solutions to such Nth order
equations are also found in [9]. By various product-integral transformations yet other forms can be found.
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