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Abstract

This paper generalizes some previous results for approximating the product integrand by two matrices with

variable coefficients. In this case the coefficient functions of both matrices are allowed to vary throughout the

interval of integration. This reduces the error in the approximation.
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l. . Introduction

This paper is motivated by a recent paper [2] concerning nonuniform multiconductor fransmission lines

{NMTLs). In that paper a technique was developed for approximating the integrand of a product integral
representing the NMTL over the £th section of the line, say for z, < z < zy,. This technique assured continuity

of the integrand from one section of the line to the next, with at most a slope discontinuity (discontinuity in d/dz),

thereby significantly reducing the high-frequéncy reflections at the section ends.

The present paper is concerned with a generalization of the technique to achieve lower error by more
closely approximating the integrand with the interpolated form. This still allows the same general form of the

splitting of the interpolated integrand into two constant mairices times scalar functions of z.
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2. General Problem

_ The solutlon for NMTLs is via a general matrizant dlfferentlal equation of the forrn mvolvmg N X N.

matrlces as

'“’( o (2:20) = (o (2)) - ( Unm(0))

dz
(Un,m (ZO’ZO)) = (ln,m) boundary condition
(hn,m' (z)) = known_(speciﬁedj coefficient matrix -  _‘ I B a : '_-(2_1) '

Upm (2,2 )) = matrizant

The general solution for the matrizant takes the form of a product i.ntegra'l'

. (Un,m(z,z{)))_z He(hn,m(zf))dZ' . -. _. ) (22)

There is much known about product integrals [4, 5], which will be used liberally here.

In [2] the i_nfegrand was, approximated on the ¢th sect'ibn_ as

o) - () (h00)
(A = Hum e+ (nm )]
- ‘= constant matrlx
(4h0) = 70 cnn)
= constant matrix times scalar function of z .- N o o . : ' (2‘3)..'

(Com) = 5[ (zes) = (b (e2)]
O = -1 Do) =1

f(e) (z) = monotone nondecreasing function in z, < z <z

with an example case as




FO(z) = B fn _' e '(2_.4)'

Zpyy —Eg

Note that the above répr'odu'ce's"('h,,,m'('z'g)) and (hn,m'(.zgl)) émctly,’ and as long as.. 'd(hﬁ,m(z))/ dz .and

df (f)(z)/ dz are bounded gives no step discontinuities, including- at the end.points.of the 'ix_iter'val.- The_ _

approximation apﬁears by approximating (h,g_}n (2)) byascalar function times a constant matrix. Ideally this term'is

small so as to introduce only a smail error. This implies that the interval of length zp,y —zp be small enough that -

(%, m(2)) does not vary much over the interval.

. Appiying the sum rule for the product integral gives
Unm(erze)) = (U800 o20)) - (080 eum0))

[

I}

| [U,(ﬁl (2.2 )J

()= TT

‘Note how the approximation enters via the second term (super'scr.ipt' 1.). The first term has a simple analytic form

which can be computed using the eigenvectors of (h,(fn),,) which do not vary in the interval.

~ Assuming that (Cy,m ) is sufficiently small (by some appropriate norm); then we %an use the matrizant

series to write

(o (;zf)) = (o) + J' 7O o (zg,z'))  (Com) - (v© (z';z,z))dz'

+ O[(;gmax IZ—ZgI)z) as z—zé =0

Zrznax = maximum eigenvalue of (Cn,m )Jr . (Cn m) : : S (2;6)
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po where the norm is here taken in the associated 2-norm sense. (Note that eigenvalues are unchanged by a similarity

\ . '%_ - transformation.) So if (h,(Bn') is sufficiently small this should give a good approximate solution.

' If, however, (A, ;(zg41)) 18 significantly different from (M m(2¢)), the above apprdach in general breaks
" down. Of course, one may redefine z, and/or zy,; such that z,, -z, is smaller, so that the two matrices are more

closely approximating each other.

~ Another approach comes from the recognition that if (A, 1 (2)) has a special form as

0

(i (2)) = h(z)[h,(,,%) - LT e
then the product integral alsd has a simple solution as

EI § o

.

So even with h(z,y) quite different from A(z;) we still have a solution in terms of the usual sum integral. This

clue leads us to a more general solution procedure.




3. . Interpolation of the Integrand

 To generalize the technique let us try

() - go(z)(;,m(zf)hgl(z)(nm(zm)) (o))

(1 for z =2z,

go(z) = {monotone non-increasing for zy <z <zp
|1 for z=z,4

[0 for z=zp

g1 {z) = {monotone non-decreasing for zp <z<zpy

1 fqr- z=zp4)
We could COnsfraiQ
() + ae) =1
with 2 possible choice of linear interpolation as

z€+1 -

gokz) = e
( ) 2 Ze+1 24

but this 'i'sjust' one special choice.

' The fundamental choice in (3.1) assures -

[hr{ean)'r (Zf)] _ '(;,mm (z¢)) » (h ¥ (q%)) (M (Zgﬂ))- B

VER)

(3.2)

| (3.3)

(3.4)

if we constrain gg(z) and g1 (z) to have bounded derivatives on the interval, and in partrcular as z ZE 2 Zeels

then there are at most ramp dlSGOﬂthItleS including as one goes from one interval to the next.

Next, manipulate (3.1) ino the form

(#K@) = o @llh) + AGY k)

(3.5)




where we want fj (z)(a,&?,},] large in the interval and f; (z)(agl) ) small in the interval. Clearly [an?m) and

[a,(:}n) are lincar combinations of (4, , (zO))._ and (%, (z))
iﬂ:for ekampie, we can find /g, A such that (implying .t.h'at one métﬁxis the scalar multiple of the other). -

hﬂ(hnsm(zli)) + hi(hn’m(zf+1)) = (00n) - YT . L G

' then we can choose
(_h,(gn)l_'(é)j N g'z (z)-(,'%m (zf)) | - | | B
ﬁ (hg?,),(z'))dz’ (hﬁ,m(zf))fg2(z')dzr o _ | _. : ' - : (;.7)

ZE'

=g :I-,

for an analytic solu;t'ion'using the approximate i_n"cerpblating matrix. Here g2(z) needs to be chosen such that -

(o () = (#502)

(for some appropriate norm) : IR ¥ 3|

is minimized over z and the matrix elements. If [h,(fn), (z)) is exact forall z; < z < zp,q, then (3.7) is exact (as

in(2.8).

How small can f](.é)[anl

2

')”j be on the interval? If desired we can normalize the problem by setting

swp Az =1 ey

Zp5258

So form an “error” matrix

(010} = (@) - (H20) = (nne) - () - 5G(l) 0




~ Impose boundary conditions

- (h”?'g’ (zf)) : (0m) = (”nm (Ze)) ) (Zc)(a,(z?f.}zj—— Ji(Ze)(a;(zlr)n] '_ -

. (ht(z?m (Zﬂ-l-l)J: (On,m) = (hn,m (ZEH)) “fO (Zf'+l)(;’(?rlj _.ﬁ(zf-i-l)(ai(zz.}n)
Solving f;)r [a,(f%) and (a,(zl)n] give;q
(W) = 07 ) e e ) )]
(an])n) = .p! [fo (ze WP m (zes1)-fo (?f+1))(_hn,m (Zf:))] N
D= folzen) Ailze) = fo(ze) filzen)

‘Consider first the minimization of A (z)(a,(rl,)m) In (3.12) we have the boundary values at z, and .ng_ll.

Consistent with the normalization in (3.9), let us take

filze) = -1, ﬁ(Ze+1)=1 | o - o G13)

appropriate to real matrices. Since we expect (& ,,(z¢)) and (&, ,,(z,,1)) to be approximately the same, and

hence f(zs4q) and fy(zg) as well, this makes D large and we have

() = L) + a5 o)t ) = o Gt) i z2)]

[es sl + [ Oume <>

L Solze) - folz)
2 folz) + folze)

With f) normalized we can take a norm of (a,(,,l’m] as

(0] - T tmeea) + =L umeo)
(b z20)) + (m ()] + 3 G21)) = (im0

oD (a). =

(3.1%)

(312)




I3 This can be used to choose ¢ so that

R mfa (O«') W a) e

Note that for (P m{ze41)) near (h, m(’g)) we have o near Zero, a((]) near zero, , and (an m(ag)) near (P

For the case that { m{z¢)) and (&, ;,(zz:1)) are scalar multiples of each other as in (3.6) we have

o ) B ]

i ]—[ézo s %}’l + [ag - % “|(h,,,m_(ze))]|_

0}
)

@I

S (3.18)

Now we are in a position o evaluate [a,go,l) From (3 11) we now have (addmg the two equatlons)

. (3.19) |

- [%&%J = l:f(} (zf) + ..ﬁ](é{’+.1)]_1 I:( nm(zf)) ( nmtz€+l)):|
Choosing an obvious nomlalizatio.n we have
folze) + folzem) =2 | [a,(,o) ] [(hnm (Zf)) (P (zg+1))] o | : o (3.20) '

From (314) for & = ¢z we now have




e = folze) - folzen) . | o
_- folze) = 1+2a R S | o (32D
folzen) = 1-2a9 ' ' o

' Combining the results we have

(af,{;,_(ao)) - :[ao«»;](hn,m ) 04 G)
(aﬂ]=%[(hn,m(z'e+1))+(hm(ze))} o R _<'3-22>

_ Solze) =1+ 20 . fo(zen) = 1.- 2ag
S -.ﬁ(zf).: 1 . fl.(zgﬂ) =-1

with ay the solution of the minimum norm in (3.'15).'

Having satisfied the boundary conditions with a small (a,(gn {ag )) , we now need to consider fp (z) and.

A (z) in the 'iute‘_:rval to minimize the error norm throughout the interval. From (3.8) and (3.10) we need to
minimize

o Jm @) - 20 dh) - 2@ ebSh o)

(3.23)

- subject to the previous constraints. Here the norm is not only over the N'x N matrix, but over z on the interval as.

well. - We might use the same norm as in the previous equations for the matrix at each z and the norm (2—norm; or
whatever) over z, or one might norm cach of the matrix elements over z and then performs a norm of the resulting

. mafrix.

Following the first approach, let us define

5(2) = [l 6)) = 1Yol ) - G o]

as a matrix norm only. Then for each z on the interval we can solve for fj(z) and f;(z) to minimize this as |

z) = inf
b () fl'o,fl

10

(324

(hum (@) = 5k ) - A(al5n | 029




_I(.)., This defines Jo(2) and f1(z). Note that by our previous construction
| o bo(z) =bolzgm) =0T D
with the boundary values of Jo “and fI already determined. Then we.cah'form" '

B 1O I e
As ap norm this is

: : Up
Zg4l

ZL!_

" as a typical norm one might use.

11




4. - Applicaﬁbn of Norms

: ln the previous section the parameters of concern are solved via norms of the various matnces The general -

' 'propertles are dlscussed m {1, 3]. The p-norm of a vector (N components) 1s

N 1/ p

| i}(,ifu)llp? Z'x"|P - ”(xn)||w=¢fx|zn| L o ' o an

n=1

" For a function of z (for zp <z <zy,;) which can be thought of as vector of an infinite aumber of components, this

becomes
._ : 1p
. 231 _ o Co . _
e, =| [reres . peL- = oper e
Ze ﬁzszﬁ_l . . )
Zp

‘Generalizing to matricé’(N X N) the associated matrix norm is defined from the vector norm by _

Nl M) - G | o
Camll = o ST W

- For example, the 2-norm of a matrix is known to be

1/2

H(X ”’m)llz ES [max eigenvalue of _(X n,m) . (X n ’m):| -(4 5
. + = adjoint = T" = transpose conjugate:
This is different from the Euclidean norm of a matrix
1/2

L=

12
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‘where the summation is over all values of » and m. While this is a simple norm to calculate it does not in general

have the property in (4.3). One way to view the Euclidean norm is as the 2-norm of a vector with N2 components.

App]j(ing the Euclidean norm to (a,(f,),ﬁ) in (3.15) we have

£l

= T Gen) + hum )] + Hhnmlen) = im0

nJn

2
9 -l

)

" For real matrix elements and real & this reduces to.

i

2
a(l) = p1a2 + pa + 3

p= D Do) # ()]

Z[hf%,m(?ﬂl).‘h:%,m(ze)]'. o o ._ - ‘. | (4‘7). |

. Pz =
p3 = %Z[hn,m (zf-i-l) = (zg)] e

nm

This allows us to find o by setting

“d w2l - : '
= [a(n] =2y tpy= 0
a =0 : . ) .
& =_E : : - ' (4.8)
' 2 2 ' 2.
2 .
a{gl)' SN RS - S

in  2p 7 4p

This is a convenient explicit solution. For complex matrix elements (4.6) in general involves & and o . However,

if the matrix elements involve a common complex factor (such as j'cb) then this comes through the equation asa
magnitude squared, leaving real elements in the equation for «, yielding a real ap. From (3.22) we now have

explicit expressions for the interpolating matrices and their coefficient functions at the section boundaries.

13




Continui'ng, let us consider the minimization of the error norm in the interval via the 2-norm. From (3.23) L

we have .

] ) nl) AL L e

with the e-norm over the matrices, followed by the 2-norm over z. Let us first minimize the e-norm for each z.

hz(z_):Z‘hn,m(.z)—fo(z)a,(,?,li";ﬁ(z)a,(,fklz | ' | - ' (4.10)._'

For real matrix elements we have

K (z) = nfE(2) + p2(2) fo(2)+ p3fE(2) + e () A(2)+ p5fo (2) fi (z) + pg (2)

I SRACEE) Y e )

A

nm m,m o
Z 0 ' '
ps= 2 ar(z’%a(l)n’m . Pé (z) =Zh§,m (Z) .
nm mm

Again this also applies if there is a common complex factor. Minimize for each z by taking partial derivatives with -

respect to f; and f, giving_.

205 A
ﬂ%‘(‘f‘“}l = 2p1fo(z) + p2(2) + psfi{z) - 0

2 z -
f(th()) = 2p;3fi(z) + pa(2) + psfo(z) = 0 | | _ |
2 AEN _ (p2(2) I o
moEen

(1) - Lomm-rT (22 2] (26)

- om0 i)

14
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H
t ;
e’

This solves for f3(z) and fi(z) in terms of two functions of z and three constant terms.
‘Then we have the remaining error .

- 172

JACH R e (2) &z

For an rms error on the interval we can also form

S 12
Zi4}

) B _'Zt’]-l = fze41-2¢] : .[hz (z)dz

z

One can then decide if the error is small énough,.or if the interval should be made smaller: _

15
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(4.14)




- 5. Application of Sum Rule

Having (a,(,?%] and (a,(i,)n) as well as folz) and fl(z) then we form the product mtegral of |k ( (a) (z))
in (3.5) as ' ' - '

[Ur(z,a-'?): (z,ze)J ) He[ﬁ)m[ Je=
- ok (“f))( ‘)(z,ze))_”

fon et aflh

|
,--.
—
0
“’3
\_.J

[U’(?a”:)) (_Z;Z»f)j =

a
()] e
: @Oz - (o) U( >(4,z))
U,(,?,;?)(z,zg) _T1. Az )[U ( E)) (n,mj ( ¢
()T AT €

Iy m

Diagonalizing [ (0) ] gives a set of eigenvectors which are invariant to z for ready calculation of the first term.

With sufficiently small (a,(, LJ we have

[Uﬁ,",,}) (z,'zf)); (lnm) J}l () vhes (ze,z)) [a,(;?,,]. (u,ﬁj‘,;,” (z',zg'));zg'
+0([Zmaxlz—zd] ) asz.'-zf-—)(_)... . | | | 62

- ONPCRI
Ymax = | maximum eigenvalue magnetidue of (an,m] . (an m,J

So one can also check to see if this expansion can be truncated as indicated.
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6. _ Concludin.g Remarks
This interpo'latio'n technique is more general than thatin [2]. In this case the first.matrix (the large oné)'in'
the approx1matton of the integrand is altowed to bave a variable coefﬁment functlon This extra degree of ﬁ'eedom

allows the integrand to be more closely approxxmated in general

There ié,.ho‘wever, an additional degree of cofnplexity introduced in the computatioh' associated w'itﬁ the

calculation of the optimal choice of the various parameters (Sections 3 and 4).
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