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Abstract

Lie algebraic ideas are used to find useful representations of product integrals of vari-
able matrix functions. These representations are then used to construct explicit solutions

to variable coefficient differential equations that have applications to transmission-line and
wave-launcher problems.
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1 Introduction

We will use some ideas from the theory of Lie algebras and groups to find representations of
solutions of systems of first order ordinary differential equations. The system will be written
in the form

- Ag+70, 70 =, (1)

where ¢ € [0,T] with T > 0 and A(t) is a given sufficiently-smooth n by n matrix-valued
function of ¢ € [0, T, f(¢) is a given sufficiently-smooth n-vector-valued function of ¢ € [0, 17,
%o is some given n-vector, and n 2 1. It is well-known that such problems have a smooth
solution §(t) for ¢ € [0, 7.

The most important representation theorem for such problems says that the solution ¥(t)
of (1.1) can be written in the form

t
) =G0+ [ Gtndr, ost<r, (1.2)
where G(t,7) is a smooth n by n matrix-valued solution of
FON=AOGE™, Gnn=1,, 0<retsrT, (13)

where I is the n by n identity matrix. The function G is called the Green’s function, propa-
gator, or matrizant. These results can be found in many textbooks on ordinary-differential
equations. The book by [6] by Dollard and Friedman reviews this material and additionally
is the primary reference for some material we will use later.

In the constant coefficient case, that is, when A(t) = A is independent of ¢, then

G(t,7) = eAtt-T) (1.4)

where for any matrix M
o0 n

0 .

This series converges absolutely and uniformly in the entries of M, and can thus be differ-
entiated term by term. So setting M = At gives

d
A0 —_ At =A At 1.6

which implies that (1.4) is in fact the Green’s function. If the matrix function A(t) is not
constant then Green’s function G can still be represented in an exponential form using the
product integral as described in Dollard and Friedman:

¢
G(t,7) = [[ e 4@, (1.7
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where the product integral can be defined as

¢ N-1
dsA(s) __ 1 h A(r+ih)
];Ie = lim H e , (1.8)

1=0
where h = (t — 7)/N, A(t) is a continuous function of i, and the product in 1.8 means left
dot multiplication by successive term (increasing 7).

The main point we want to take from this introductory section is that the solution of
systems of ordinary differential equations can be written in terms of exponentials of matrices,
even in the variable coefficient case, where product integrals must be used. The theory and
formulas presented here are quite useful, but our goals is to produce much more useful
formulas using the notions of Lie algebras and groups.

This project resulted from the authors realizing that there was a close connection between
some of the second authors work on transmission lines and wave launchers (2, 3, 4] and the
first authors research on the applications of Lie methods to differential equations [9, 10, 11,
12, 13).
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2 Lie Algebras and Lie Groups

The text [14] has a useful introduction to Lie algebra and groups, and Chapters 2 and 8 of
the book [1] edited by Baum and Kritikos have nice overviews of Lie algebras and groups and
their connection to Electromagnetics. However, we will include here a complete discussion
of all of the facts that we need. We will restrict our attention to Lie algebras and groups of
n by n matrices with entries from either the complex field or the real field. A Lie algebra of
matrices is a non-empty set of matrices that is closed under addition, scalar multiplication
and commutation. The commutator of two matrices is defined by

[A,B]=AB-BA. (2.9)

A Lie group of matrices is is a non-empty set of matrices that is closed in multiplication and
matrix inversion along with an additional property that will be described later.

The set of all n by n matrices is a Lie algebra called gl(n) which stands for the general
linear algebra. The general linear algebra gi(n) is a linear space with addition being the
standard addition of entries in the matrix and scalar multiplication being multiplication of
all entries by an element of the field. The matrices with non-zero determinant form a Lie
group called the general linear group. These examples will be our main algebras and groups
with all other examples being subsets of these. ‘

In applications to differential equations, the matrices A(t) in (1.1) will be taken from a
Lie algebra, while the Green’s function, propagator, or matrizant used in (1.3) will be in a
Lie group. ’ :

If A(t) = A is constant, then the solutions of the system of ordinary differential equations
(1.1) can be written in terms of the Green’s function G(t,7) = G(t — 7) where

G(t) = et. (2.10)

The Lie group associated with a given Lie algebra is supposed to represent the set of all
possible Green’s functions generated by elements of the Lie algebra. More precisely, the Lie
group associated with a Lie algebra is the set of all possible finite products of exponentials
of elements from the Lie algebra.

To understand Lie algebras and groups better, we need a few facts about exponential of
matrices. Recall that the exponential is defined by

[o o] Aﬂtn
At _
¢ _Z n!

n=0

, '(2.11)

which is a uniformly and absolutely convergent series for all i, and consequently the entries
in the exp(At) are all infinitely differentiable. It is an easy to check that

eAO - I,
eAte—At = T
(e,q)f = Al (2.12)




eA (t1+t2) = eAtl eAtz = eAtz eAt1 ,
ieAt = AeAt=eAtA
dt ’

where A is the complex conjugate transpose of the matrix A. In particular, the second
identity implies that the matrix exp(At) is invertible with inverse exp(—At).

An important tool for evaluating exponentials is the formula for how the exponential
changes under a similarity transformation:

5 ASt = gTleAtg  det(S) #£0, (2.13)

which is easy to check from the series definition of the exponential.

It is easy to evaluate exponentials if the matrix can be put into a simple block form. For
example, if A is block matrix of the form

A= ( o /(1)2 ) (2.14)
then
At 0
A" = ( o e ) (2.15)
and then the series definition of the exponential gives
eftt 0
ett = ( 0 edst ) : (2.16)

In particular, if 4 is a diagonal matrix, A = diag (\;, Ag, - - -, An), then
e4t = diag (e"“, et ... et ‘) : (2.17)

For any matrix there is a similarity transformation that reduces the matrix to Jordan form,
that is, the matrix is block diagonal with Jordan blocks on the diagonal. So to compute the
exponential of any matrix, we only need to know how to compute the exponentials of the
Jordan blocks. Unfortunately, in general, it is difficult to find the Jordan form if a matrix
contains symbolic parameters or floating-point numbers. Still, this is a useful tool for small
matrices. The simplest Jordan block is 2 by 2:

1 .
J= ( 0 A\ ) (2.18)
and, using the power series definition, its exponential is easily computed to be
Je__ a1 2
et=¢ ( 01 )" (2.19)




Another way to find this result is to convert the computation of the exponential to a
system of differential equations. So assume that

et = ( z 2) (2.20)

where a = a(t), b= b(t), c = c(t), d= d(t). Differentiating gives

Y,
(22)-(53)(c3)- @21
So a, b, ¢, and d satisfy the differential equations
a'=Xa+c, ¥=2Ab+d, d=2xc, d=Md, (2.22)
and the fact that the exponential is the identity at ¢ = 0 givens the initial conditions
a(0) =1, b(0)=0, c(0)=0, d0)=1. (2.23)
The solutions are easily seen to be
a(t) =€, b(t)=te, ct)=0, d(t) = e*t, (2.24)

which agrees with the power-series computation.

Let us now return to the problem of identifying the Lie group generated by exponentials
of elements from the general linear algebra gl(n). It is well known [7] that the trace tr(A)
of a matrix A and the determinant det(A) are related by:

Lemma:

det(e”) = tT(4) (2.25)

Proof: Even though well-known, this is so important for us that we give a proof. It is also
well known (7] that the determinant and trace of a matrix are invariant under similarity
transforms, so if det(S) # 0, then

det(S™' AS) =det(4), tr(S~'AS)= tr(A). (2.26)
For matrices in Jordan form (diagonal form, or even triangular form) it is simple to see that
det(e’) = T | ) (2.27)

Any matrix can be put into Jordan form, so for any A there is an S so that J = S1AS
and then

det (eA) = det (S'l et S) = det (es-l"s) = det (e") = ) = (tr(s7s71) _ tra) . |
(2.28
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When the matrix has complex entries, the trace is an exponential of a complex number which
cannot be zero, so the matrix is invertible. In fact, we already know (exp(At) = exp(—A t)
(see (2.12)). When the entries of a matrix are real, then the trace is real, and because the

determinant.

We digress for a moment to consider the more difficult question: can every matrix M with
positive determinant be written as an exponential? Clearly we should take the logarithm of
M. If |z| < 1, then the base e logarithm of 1 + z can be expressed as a power series:

In(1+z)= i(-—l)"-l%" : (2.29)

n=1

The size of a matrix can be specified by giving a norm on all matrices. We will use the norm
that is the square root of the sum of the squares of the entries of the matrix, called the root
span which can be conveniently written as

llAll = rsp(4) = \/tr (4 A1), (2.30)

where A' is the complex conjugate transpose of the matrix A. So if ||M|| < 1, then we define

(I + M) = f(—l)n-l(i"’n)_" . (2.31)

n=1

An elementary power series calculation shows that for z sufficiently small z
) =142, In(e®) =1z, (2.32)
so that for M sufficiently small
M =14+ M, In(eM) =M, (2.33)

Because any matrix near the identity matrix can be written as I + M where M is small, we
conclude that all matrices with non-zero determinant that are sufficiently near the identity
can be written as the exponential of another matrix, in general with complex entries. This
is definitely not true for all matrices with non-zero determinant. Because the logarithm has
a limited radius of convergence and is generally hard to work with, the use of the logarithm
to define the Lie algebra given a Lie group is not such a good idea.

To study a the Lie algebra associated with a Lie group, it is better to use differentiation,
in particular, the logarithmic derivative. Let G(t) be a function from some interval to the
group and then define the elements of the Lie algebra to be the product derivative

A= D,G(t)],_, = { d;‘ia(t)} G“(t),tza . (2.34)
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for all a in the interval and all possible functions G(t). Actually one can restrict the interval
to contain zero, the functions to have G (0) = I and then

d

t=0
are sufficient to give all elements in the algebra. Now this is nice as we see that if 4 is in a
Lie algebra, then G(t) = exp(At) is in the Lie group and then

d _d 4,
dtG(t) = —e

= Aedt| =4, (2.36)
t=0 t=0 t=0

or the logarithmic derivative gives

d
at’
so things are nicely consistent. The additional assumption in the definition of a Lie group
mentioned earlier can be stated as: if G belongs to the Lie group, then there is a function
G(t) with G(%) in the group and G(0) = I and G(1) = G. This actually defines a connected
Lie Group, for example, for matrices with real entries, the natural Lie group consists of the
matrices with positive determinant (not just non-zero determinant).

So given a lie group the Lie algebra can be found by computing derivatives at the origin.
Given a Lie algebra, the Lie group can be found by computing exponentials of the elements
of the Lie algebra.

Now all of this will give us some more examples of Lie algebras and groups which we
have summarized in Table 2.1. The general linear algebras and groups have already been
discussed. Because the trace is a linear operation it is clear that the traceless matrices are
preserved under scalar multiplication and addition. If A = (ai;) and B = (b; ;) then

%G(t) Gl (t) = —efte 4t = feAte=At — 4 , (2.37)

n

tl‘(A B) = (%] bj,i = tl’(B A) ’ (2.38)
i,j=1

=

so for all matrices
tr([4, B]) = tr(AB — B A) = tr(AB) - tr(B A)=0. (2.39)

In particular, the set of traceless matrices is closed under both linear operations and com-
mutation, and so they form a lie algebra. Because the exponential of a traceless matrix must
have determinant one due to formula (2.25), the Lie group associated with the traceless
matrices are the matrices of determinant one.

Next we will show that the group of unitary matrices, that is, matrices that satisfy

MM=1 (2.40)




algebra group
gl(n) [allA GL(n) | det(M) #0
sli(n) [trtA=0 [SL(n) [det(M) =1
u(n) Al=—-ATUMn) [ MM=1

Table 2.1: Lie Algebras and Group

have the associated Lie algebra of skew symmetric matrices, that is, matrices that satisfy

Al=-A. (2.41)

To show that the group associated with the algebra is correct, assume that M = exp(At)
with At = —A. Then (2.12) gives

MM = eAlteAt = g-AteAt _ (2.42)

so the exponential of a skew adjoint matrix is unitary. To show that the algebra associated
with the group is correct, suppose that M (t) is a matrix function satisfying

M@t)YM(t) =1, (2.43)
80
M) = M~(1), (2.44)
and then also
M@E) M) =1, (2.45)
Now set
A= M) M™(t) = M'(t) Mt(t) (2.46)
and then differentiate (2.43) to get
MY(t) M(t) + MY (t) M'(t) =0, (2.47)
Multiplying on the left by M and on the right by M gives
M(t) MY(t) + M'(t) M'(t) =0, (2.48)
or ‘
At+A=0. (2.49)

So, A is skew adjoint, and the Lie algebra associated with the unitary matrices consists of
the skew symmetric matrices and vice versa. Similar arguments can be used to find the
connection between various Lie groups and Lie algebras. These results are summarized in
Table 2.1. For more examples, see [14] or any text on Lie algebras and groups.
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3 Lie Theory and Ordinary Differential Equations

In this section, we show how to use Lie theory to solve systems of ordinary differential

equations. We begin with the derivation of two important formulas and then describe the
“solution” algorithm.

3.1 Important Lie Formulas

To apply Lie theory to differential equations, we need a few special formulas. The first is
Lemma:

%emm = fi(t) Aef®4  (3.50)

where f(t) is any smooth function and A is any constant square matrix.

This is easily checked using the power series definition (2.11) of the exponential.

The second formula is for the adjoint action of the Lie group on the Lie algebra, which
appears repeatedly when formulas are simplified or rearranged. First, for any two square
matrices A and B of the same size, define

[A,9°B=B, [A,0]"=[4,[4,0 St (3.51)
so that
[A’O]IB = [A,B],

[4,0 B = [4,[4,B]],
[A! °]3 B = [A: [A7 [A7 B]]] y

and so forth. Now the adjoint action of 4 on B is given by

[ o] n B
e4lB=%" [f’—z%—-. (3.52)
n=0 °
Lemma:
e“Be 4 = el4° B, (3.53)

Proof: This is really a formula for rearranging power series, and can be seen to be true by
comparing the power series of both sides of the equation. However, an ordinary differential
equation proof is more illuminating and points out the power of this “trick”. Let

F(t) =ettBe4t _ gtiAdl g (3.54)
Then

F'(t) = AeAr'Be At _ eAtge-At 4 _ [4, 0] etl4l B
[A, eAtB e—At] _ [A, et[A,o] B] :
= [AF@. (3.55)

11




So
F(t) = [A,F(t)], F(0)=0, (3.56)
which implies that F(t) = 0.
Note that if A and B commute [A, B] = 0, then

e*Be At =¢tl4lp — B (3.57)

3.2 Solution Algorithm

Recall that the system of ordinary differential equations ( 1.1) is determined by the matrix
function A(t). Because the A(t) are n by n matrices, they certainly belong to the Lie algebra

GL(n). The first step in the solution process is to find the smallest Lie algebra A of matrices
into which all of the matrices A(t) fall.

The second step is to choose a basis for the Lie algebra A, say
A=span(A1,A2,~~-,Ak), 1<k < n2, (358)

where here span means all real or complex linear combinations of the matrix bases elements
i, that is
)

k
A=Y ai(t) A, (3.59)
i=1
where a;(t) are either real or complex valued functions of £.
Now the previous discussion implies that for any real numbers a;, 1 < § < k, the matrices

M(ala Ag,y°*-, ak) =e™ Artaz Aztotap Ay . (360)

are in the Lie group and all of the matrices near the identity in the Lie group can be written
this way. The numbers a; are called the coordinates on the group near the identity. This
is the typical mathematical approach to generating Lie groups from Lie algebras. However
there are better ways to represent a Lie group if we are interested in finding simple formulas
for the representation, which is:

M(ay,ag, -+, a;) = e¥ 419242 ., o0k Ak (3.61)

So we have exchanged an exponential of a sum for a product of exponentials. Again it is clear
that G is in the Lie group, but is also true that all elements of the group near the identity
can be represented in this way. There are many possible variant of this representation.
Also note that Lie algebras have many bases and the basis impacts the simplicity of the
resulting formulas. One good idea is to choose as many elements of the basis as possible
that commute with each other, that is, choose part of the basis as a basis for the largest
commuting sub-algebra.
For any computation, a table of commutators

[4i,45], 1<4,j<k (3.62)

12
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will be needed, so the third step is to compute this table.
Recall that the solution of the differential equations is given in terms of G which is the

Green’s function, propagator, or matrizant, which is the solution of the system of differential
equations (1.3):

%mtﬂ=Ameﬂ,(ﬂﬂﬂ=I” 0<r<t<T. (3.63)
So Lie theory tells us that the Green’s function can be written in the form
G(t,7) = et A1 g2t Az | | au(tir) As . (3.64)

We call this the fundamental representation. Note that it depends strongly on the basis and
on the ordering of the basis.

First note that because we must have G (7,7) = I, we need
%(r,7)=0, 1<i<k. (3.65)

Next we want to plug the representation (3.64) into the differential equation in (1.3), so we
need to differentiate the representation. Applying the product rule and the derivative of
exponentials formula (3.50) gives
%G(t, T) = 91(t,7) A, en(BT) AL go2(ti7) Az os(t;7) Ar
) +egl (t,‘l’) A g; (t’ 7-) A2 eyz(t,") Az eﬂ&(‘y"') Ay e
+e91(6T) A1 g2(ti7) A2 g4 (t,7) Agess®m A1
IR (3.66)

Now we can plug in the derivative of G into the differential equation and then multiply
the resulting equation on the right by the inverse of G to get the logarithmic, product, or
multiplicative derivatives (see Dollard and Friedman (6], Section 1.3) on the left-hand side
of the equation. The inverse of G can be written in the form

G_l(t, T) = e (T Ax | | o~ga(tiT) Az e~9(tr) A (3.67)
We note that the left-hand side of the resulting equation is a logarithmic derivative:
%G@ﬂG*mﬂ;Am, ) (3.68)

while the right-hand side has many exponentials that cancel giving the determining equation

Alt) = gi(t, 1) A
+g5(t,7) €91t A1 4, gmi(tir) A
+ g:; (t, T) e91(67) A1 L0a(t,7) Ag A e~ 93(t7) Az e~ () A

o (3.69)

13




This equation along with the initial conditions (3.65) determine the g; functions.
It is always illuminating to look at any formula when all of the basis elements commute,
[4i, Aj] = 0,1 < 4,j < k. In this case the determining equations are

A(t) =a (t) A+ az(t) A+ 4 a,,(t) Ay = giAl -+ g;Ag + 4 g;,Ak . (370)
So
git,T) =a(t), @(r,7)=0, 1<i<k, (3.71)
or
t
9i(t,7) =/ a(s)ds, 1<i<k. (3.72)
In particular, if the a; are constant, a;(t) = a;, then
9%t,T)=a;(t-7), 1<i<k. (3.73)

Finally, the matrizant has the form (3.64) where the order of the factors doesn’t matter.
Baum has already made significant use of this special representation, see [4], Appendix C.

The right-hand side of the determining equation can be evaluated using the adjoint-action
formula (3.53), but to do this we need a table of the adjoint actions:

Fj(t) =e** Aje ™t 1<ij<k, (3.74)

These adjoint actions can be evaluated using either the series in (3.53) or by solving the
initial-value problems

ditﬂ*,-(t) =[Ai, Fi5(t)], F;(0) = 4;. (3.75)

We now have enough theory to construct the functions gi in the fundamental represen-
tation (3.64) of the Green’s function. To finish, we need a table of the exponentials of the
basis elements :

Gi(t) = efit. (3.76)

Again these can be evaluated by either using the series definition of the exponential or the
fact that the G; satisfy the initial-value problems '

%mm=A£ﬂL<mm=L (3.77)

The resulting form of the determining equation is the equality of two expression which are
linear combinations of the basis elements which says that the coefficient of the basis elements
must be equal, which yields k£ (the number of basis elements) equations in k¥ unknowns g;.
These equations can be solved for g; which yields k& nonlinear differential equations. Now this
seems like a bad deal. We started with n? linear variable-coefficient differential equations and
end up with k < n? non-linear constant coefficient differential equations (which are difficult
to solve even in the simplest cases). However, we have done this in such a way that if we
choose the g; as arbitrary functions, then we produce an A(t) which gives a system that is
exactly solvable with the solution of the homogeneous equations given by a known Green’s
function G(t,0). As we will see, this can be used to great advantage in studying physical
systems.

14




4 Examples
In this section we will look at some one, two and three dimensional examples. Note that many
of the computations were done using a computer algebra system. None of the computations

are difficult, just that there are quite a few elementary computations. The computer algebra
programs are available from S. Steinberg. '

4.1 One-Dimensional Example

 One dimensional examples are scalar equations whose Green’s function satisfies
ditG(t, T) = A@)G(t,7), G(r, T)=1. (4.78)
The solution of this initial value problem is
G(t, 1) = elral9)ds | (4.79)
One view of our job is to find formulas like this for higher-dimensional examples.

4.2 Two-Dimensional Examples

We now do a complete analysis of systems of two ordinary differential equations, that is, we

assume that © o)
A(t) = ( c(t) d(2) ) ) (4.80)

and that A(¢) is a real matrix, but similar results are true for complex matrices.

4.2.1 The Obvious Basis

The first step is to choose a basis for the 2 by 2 matrices. An obvious simple basis is

10 00 _{01 _{00
Al:(o o)’ A2=(o 1)’ A3‘(0 o)’ A“‘(l o)' (4.81)
The matrix A is represented in this basis as
A(t) = a(t) A+ d(t) Ay + b(t) Az + C(t)'A4 . (482)

The formula for the Green’s function involves the exponential of the basis elements, so we
will need these:

t ‘ L 10
(5] (18] () (1)

15




These formulas can be easily evaluated in two different ways: one is to compute a few terms
of the power series definition and then identify the resulting series; the other is to convert
the evaluation to an initial-value problem. For example, the power-series method gives

tar [ 1+t +8/24+83/64+14/24+5/120+ ... 0 t 0
eA—( 0 1)=(f)1), (4.84)
while if we set
xo=en= (18 18). »
then
X'®)=41X@), X(0)=I. (4.86)
or

r'(t) S'(t) ) _ [ r(t) s(®) r(0) s _[(10 (4.87
W@ v@) )T 0 0 ) {wo) vo) )=lo1) 87)
So r(t) = ¢, s(t) =0, u(t) = 0 and v(t) = 1, as was found from the power series method.
The commutator table for the basis, with entries [4;, Aj], is given by

4 A A A3 Ay
A, 0 0 Aj —Ay
A, 0 0  —Aj Aq (4.88)
Ay | —-4s A, 0 A - A
A'4 A4 —A4 —Al + Ag 0

which is fairly simple. Next we need a table of the adjoint actions e4i* A;e~4¢* of the Lie
group on the Lie algebra:

4 Y A, Ay As A,
A A, A, e* Az et A,
A2 Al A2 et A3 e A4
Az Al-—tA;; A+t Az Aj tAl-tAz—t2A3+A4
Ay A1+tA4 Ag—tA.; —tA1+tA2+A3—t2A4 Ay

(4.89)

This was computed using the series definition of the adjoint action and then identifying

the series in the resulting formulas but can also be done by converting the evaluation to a
initial-value problem for a system of ordinary differential equations.

Now we represent the Green’s function of the the differential equation in the form (3.64):

G(t,7) = e91(67) A1 502(t,7) Az L93(t,7) As Gga(tiT) A , (4.90)

where the g; satisfy the initial conditions (3.65). Then the formulas for the exponentials of
the basis elements (4.83) give the Green’s function as a product of four matrices:

ww-(T)EENEY
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The determining equation (3.69), which are computed by taking the logarithmic deriva-
tive of the Green’s function and then using the table of adjoint actions, is

A(t) = (91 + 93 g)) A, + (92 — 93 94) Ay + (9192 93 — €979 g2 gh) Ay + e~ 9149 93 Ay. (4.92)

Next we solve equations (4.92) with A(t) given by (4.80) for 9; to obtain the following
nonlinear system of differential equations for the g;:

g = a—cenmy,,

g; = d+cef™9 93,

g;', = be 9192 L pe91-92 gg ,

9y = ces 9, (4.93)

Even when A(%) is constant, that is, a, b, c, and d are constants, the previous ordinary
differential equations are seriously nonlinear and difficult to solve. However, we can create
many solvable examples by choosing g; as some function of ¢ and 7. If we only consider the
initial value problem without source terms and choose

9(t) =at, o(t)=8t, gt)=7t, w@)=ost, (4.94)
then the determining equations (4.92) become

a+dyt el Aty _ gela-pt 242
A = secarnr Bt -

If we assume the ordinary differential equation doesn’t have a forcing term, then we only
need G(t) = G(t,0) which is given by (4.91):

G(t)_(eat 0) (1 0 ) (1 7t) ( 1 0)=(e"“(1+6'yt2) e"‘"yt)
V0 1 0 eft 0 1 6t 1 deftt eft |
(4.96)
In the applications that interest us, it is common for A(t) to have trace zero or be skew
symmetric (which implies trace zero). As none of our basis elements are skew symmetric

and only two elements, not three, have trace zero, these situations are hard to analyze. The
next basis we choose will correct this.

(4.95)

4.2.2 Second Basis

We now choose a basis with three trace zero matrices and one skew-symmetric matrix:

10 1 0 (01 {01
A1=(0 1)’ A2=(0 _1)7 A3—(l 0)7 A4"‘(__1 0)' (4'97)

The matrix A given in (4.80) is represented in this basis as

) = a(t)-2i-d(t) At a(t);d(t) A+ b(t);c(t) Ao+ &);_cg) A, (4.98)

17




The exponentials of the basis elements are

t t
tA, _ (4 0 tAs _ (4 0
w=(5d) e=(5 ).

et4s — ( cosh(t) sinh(t) etAs — [ cos(t) sin(t)
~ \ sinh(¢) cosh(z) /° ~ \ —sin(t) cos(t) |
These forms seem more relevant to the study of physical problems than those given by the
simple basis used in the previous section.
The commutator table with entries [4;, Aj] is given by

(4.99)

A VA A 4 4,
A 0 0 0 0

A| 0 0 24, 2A4; (4.100)
Azl 0 —2A4, 0 -24,
Ayl 0 =24, 2 A, 0

which is even simpler. Next we need a table of the adjoint actions e4i* 4; e~4it of the Lie
group on the Lie algebra:

4 A A Ay Ay
A A, " A As Ay
Ay | A Ay cosh(2¢) A; +sinh(2t) A; cosh(2t) A + sinh(2¢) 4,
As | A1 cosh(2t) Ay —sinh(2¢) A, A cosh(2t) A4 — sinh(2t) A,
Ay | A1 cos(2t) A; —sin(2t) A, cos(2t) Az +sin(2t) A, Ay
(4.101)

As before this was computed using the series definition of the adjoint action and then iden-
tifying the series in the resulting formulas.

We now illustrate how to use an ordinary differential equation trick to evaluate one of
the previous adjoint actions. If

X(t) = et Age42t = eldadly, (4.102)
then
X'(t) = [A2, X (1)], X (0) = 4;,. .~ (4.103)
If we set
X@:(ﬁgz%) (4.104)

then we need
(28.98)-13 (5 8- (udo 70). oo
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and

7(0) s(0) _{({01
(u(O) o0 ) = ( L ) . (4.106)
This gives
2t —
X(t) = (e_ozt < ) =t s + e A o (31) Ay + sinh(21) A, (4.107)

Of course, this checks with the power-series solution.
The Green’s function of the the differential equation is represented in the form (3.64):

G(t, T) = e (67) Ay eyz(t,f ) Az o93(t,T) As e94(t7) Ag , (4.108)

where the g; satisfy the initial conditions (3.65). Then the formulas for the exponentials of
the basis elements (4.99) give the Green’s function as a product of four matrices:

[ 0 92 h(gs) sinh(gs) (94) sin(gy)
o= (T ) (T %) (i) e ) () w0 )

The determining equations (3.69) with A(t) given by (4.80) have the form

= g1 +9; —sinh(2gs) g},

cosh(2 g2) g5 + sinh(2 g5) g} + cosh(2 g5) cosh(2 gs) g, + cosh (29s) sinh(2 g5) g} ,
cosh(2 g,) g5 — sinh(2 92) 95 — cosh(2 g,) cosh(2 g3) g3 + cosh(2 gs) sinh(2 g;) g} ,

= g, — g;+sinh(2* g3) * gi . (4.110)

R o oo
I

We solve equations (4.110) for g! to obtain the following nonlinear system of differential
equations for the g;:

y _ a+d
gl - 2 )
- - b
g = 2 5 d + (b 5 < cosh(2 g) — %c sinh(Zgz)) tanh(2 gs)

g3 = b—;—-—c COSh(2 92) - b_;f Sinh(2 92)7

g = (b;ccosh(2gg)—b-;—csinh(2yz)) sech(2gs). (4.111)

As before, even when A(t) is constant these equations are seriously nonlinear and difficult
to solve. But again, we can create many solvable examples by choosing the g; functions
appropriately. Again, for an example, we choose

a(t) =at, g(t)=pFt, g@)=7t, g)=-"t, (4.112)
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and then the determining equations become

a) = a+ -4 sinh(241),

b(t) 7 cosh(2 Bt) + 6 cosh(2 3¢) cosh(2yt) + sinh(2 Bt) + & cosh(2yt) sinh(2 5t),
c(t) = < cosh(28t) -4 cosh(2 3t) cosh(2yt) — v sinh(28t) + 6 cosh(2v1t) sinh(2 8t),
d(f) = a—f+4sinh(2+%). (4.113)

If we assume the ordinary differential equation doesn’t have a forcing term, then we only
need G(t) = G(t,0) which is given by (4.109):

c0=(7 @) (7 50) (comey sohiry ) (o w60,

(4.114)

or

g1 = e***P*(cos(6t) cosh(yt) — sin(6 t) sinh(yt)),
912 e*"*#* (cosh(v1) sin(6t) + cos(d t) sinh(yt)),
92,1 —e**~F* (cosh(yt) sin(d t) — cos(dt) sinh(y1)),
922 = €**P*(cos(dt) cosh(y t) +sin(dt) sinh(yt)). (4.115)
In the applications that interest us, it is common for A(t) to have trace zero, that is,
d = —a, so that g} = 0 and then 91(¢,7) = 0. Another way of saying the same thing is that

Az, A; and A4 form a basis for the traceless matrices. In any case, this doesn’t make much
of a simplification.

Another important case is where A(t) is skew symmetric, that is, a = d = 0 and ¢ = -b:

g = 0, A

92 = bcosh(2g,) tanh(2gs),

95 = —bsinh(2g,),

94 = bcosh(2g;)sech(2gs). (4.116)

Although this is an impressive system of equations, its solution can easily be seen to be

gl(t: T) = 0: g2(t’ T) = 07 g3(t’ T) = O’ 94(t7 T) = /:b(s) ds. (4'117)

"This result is far easier to see starting from the fact that the Hermitian 2 by 2 matrices form
a one dimensional space with A, being a basis. ’

4.2.3 The Pauli Spin Basis

We now look at 2 by 2 skew-symmetric matrices and choose the Pauli Spin matrices for a

basis: 01 0 1 0
- = —J =
Al - ( 10 ) ) A2 - ( ) 0 ) ) A3 ( 0 -1 ) . (4'118)
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Then any skew-symmetric matrix can be represent by
- = c(t) a(t) — 7b(t)
A(t) = a(t) A1 + b(t) Ay + c(t) A3 = ( at) + 1b(2) —elt) (4.119)

The exponentials of the basis elements are

1AL _ h(¢) sinh(t
et = (:io:h(t) :ozh(t;)’

tA2 __ h(t) - lh(t
= (ot ),

e 0
efhs = ( 0 e-t)' (4.120)

The commutator table with entries [A;, A;] is given by

A A a4 4
Ay | 274, 0 254, (4.121)
A3 2]A2 -2].41 0

Next we need a table of the adjoint actions e+t Aje~4it of the Lie group on the Lie algebra:

A A Ay A

O T R

A A
A2 A1 COSh(2 t) - jA3 smh(2 t) 2
As | A; cosh(2t) + 5 4, sinh(2t) A, cosh(2t) - ; 4, sinh(21)

A;

, (4.122)
As before this was computed using the series definition of the adjoint action and then iden-
tifying the series in the resulting formulas.

The Green’s function of the the differential equation is represented in the form (3.64):
G(t,7) = e9(67) A1 92(t,7) A2 Ls(t,7) As , (4.123)

where the g; satisfy the initial conditions (3.65). Then the formulas for the exponentials of
the basis elements (4.120) give the Green’s function as a product of three matrices:

G = [ cosh(g1) sinh(g,) cosh(gz) —jsinh(gy) \ [ e 0 (4.124)
7 \ sinh(g;) cosh(gy) J sinh(g;)  cosh(gp) 0 e |- .
The determining equations (3.69) with A(t) given by (4.119) have the form

a() = g;+sinh(2g.(t))g},
b(t) = cosh(2g:(t)) g3 — 7 cosh(2 gs(t)) sinh(2 g, (¢)) g1,
c(t) = jsinh(2g,(t)) g} + cosh(2gi(t)) cosh(2 go(2)) g} . (4.125)
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We solve equations (4.125) for g/ to obtain the following nonlinear system of differential
equations for the g;:

91() = acosh(2g:(t))? - jc cosh(2 g; (t)) tanh(2 go(t))
—sinh(2 g, (2)) (a sinh(2 g;(t)) + b tanh(2 g,(t)))
%2(t) = bcosh(2gi(t)) + jc sinh(2g,(2))
93(t) = sech(2ga(t)) (c cosh(2g; (t)) — 7b sinh(2 g, (2))) (4.126)

4.3 Three-Dimensional Example

The full three-dimensional case involves nine parameters and thus there isn’t much use

in tabulating all of this. However, the skew-symmetric 3 by 3 matrices are only three
dimensional. A convenient basis is

0 10 0 0 0 0 01
0 0O 0 -1 0 -1 00

Then any skew-symmetric matrix A(t) can be represented as

0 a(t) c(t)
At) =a(t) A +b(t) A2 +c(t) As= | —a(t) 0 b(t) |. (4.128)
—c(t) =bt) O
'The exponentials of the basis elements are
1 0 0
e = [ 0 cos(t) sin(®) |,
0 —sin(¢) cos(t)
[ cos(t) 0 —sin(t)
et = 0 1 0 ,
\ sin(t) 0 cos(t)
( cos(t) sin(t) 0
et = | —sin(t) cos(t) 0 |. (4.129)
\ 0 0 1
These matrices describe a rotation about each of the axes.
The commutator table with entries [A;, 4;] is given by
o Y| A A 4
Ar) 0 A5 -4, (4.130)
Az | —A; 0 A
A; A, —-A, 0
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which is well known for the rotations. The table of the adjoint actions e4it A; e~ 4t of the
Lie group on the Lie algebra are:

. A, Ay As
Al Al A2 COS(t) + A3 sm(t) A3 COS(t) - A2 sin(tT (4.131)
Az | A; cos(t) — Aj sin(t) A, A3 cos(t) + A sin(t)
As | A1 cos(t) + Az sin(t) Az cos(t) — A, sin(t) A; |
The Green’s function of the the differential equation is represented in the form (3.64):
G(t,T) = e (t:7) A1 g92(t,7) As og3(tiT) As , (4 132)

where the g; satisfy the initial conditions (3.65). Then the formulas for the exponentﬂs of
the basis elements (4.129) give the Green’s function as a product of three matrices:

1 0 0 ;
G(t,7) = (0 cos(g,(t, 7)) sin(gl(t,r))) |

0 —sin(gi(t, 7)) cos(gi(t, 7))

cos(gz) 0 —sin(gg)
( o 1% )
sin(g2) 0 cos(go)
cos(gs) sin(gs) 0 ;
—sin(gs) cos(gs) 0 | . (4.133)
0 0 1 ‘

The determining equations (3.69) can be evaluated using the adjoint action table to give

A(t) = (g1 +sin(g,) * g5) A

+ (c0s(g1) * g4 — cos(g2) * sin(g) * g3) Az |

+ (sin(g1) * g2 + cos(gy) * cos(g;) * g}) As (4.134)
With |A(t) given by (4.128), these equations can be solved for g to obtain the following
nonlinear system of differential equations for the g;: ‘
91 = a—tan(gs) (ccos(g) + b sin(g))
92 = bcos(g:) +csin(gy), |
g3 = sec(ge) (c cos(g1) — bsin(gy)) . (4}135)
The nonlinear system of equations is not easy to solve, but. as before, we can cre#te a
large family of solvable examples by choosing the g; functions. If we look only at the initial
value problem (no source terms), and if we choose the a, b, and ¢ that determine A(t) in
(4.134) as ‘
a(t) = a+vsin(8t),
b(t) = P cos(at) — v cos(Bt) sin(at), |
c(t) = -+ cos(at) cos(8t) + A sin(at), (4.136)
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then
(4.13

Sc
tions
Howe
with

the greens function G(t) = G(t,0) is given by the product of three simple matrices

3):
cos(at) sin(at) 0
Gt) = (—sin(at) cos(at) 0)
0 0 1
1 0 0
(0 cos(fBt) sin(ﬂt))
0 —sin(8t) cos(Bt)
cos(yt) 0 sin(yt)
( 0 1 0 ) (4.137)
—sin(yt) 0 cos(vt)

), in summary, we can use Lie theory to convert systems of ordinary differential equa-
with variable coefficients into systems of nonlinear equations that are difficult to solve.

ver, the resulting formulas allow us to create a large number of solvable examples (along
the solutions).
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5 Product Integrals and Lie Theory

We now turn to finding more useful representations of product integrals, so as in Sectibn 3.2
we suppose that A(f) is given continuous matrix-valued function where the matrices belong
to a Lie algebra A that has a basis A;, 1 <i<ksothat 1

A= ij a;(t) 4;. (5.138)

Recall that the Green’s function can be written as a product integral

G(t,7) = ﬁeA(’)d’ , (5.139)

as in Equation (1.7).
The product integral is really a time ordered integral. So If a < b, then the prbduct
integral can be defined by ‘

b N-1 o
A(s)ds =1 h A(a+ih) \
]_;[e lim g e : (5.140)
where h = (b — a)/N. The order of the factors in this formula are critical:

N-1 |
. H ehAlR) — pA(a+(N-1)h)) LA(a+(N-2)h) _ . eA@)h (5L141)

i=0
The other order of factors is obtained by defining
T As)d T b a@in
s)ds __ 1. a+i
l;Ie = ’lll_I’I(l) il;](:) e , (5.142)

where now h = (a — b)/N, that is h < 0 and

N-1 |
[I 40P = gA@h ... cAla+(N-2)h) JAla+(N-1) k) (5.143)
=0 |
So we have that . ) , . :
I'I eAls)ds H eAl)ds _ H eA(s) ds H eA(a)ds» =1, (5‘144)
b a a b

no matter what the ordering of a and b are, because the factors is the definition of the
products integrals exactly cancel. In particular, this implies that the product integral is
always invertible and we have a simple formula for the inverse. More generally, we have for
all a, b, and c that 3

b b
[[ 4% = ] eA)és fI Al)ds (5.145)
a c a
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The way the upper and lower indices work precisely captures the time ordering of the product

integral.

Now the first thing to observe is that if A is a constant, then the approximations to the
product integral can be evaluated explicitly by writing the product of exponential in the

definition as an exponential of a sum to give

b
[[ @4 = eAto-a) (5.146)

Unfortunately, this is not the representation used in our version of Lie theory. So let us try

to find a;(t) such that
k

et = [ ex®4: (5.147)
i=1

However, this is just a simple variant of the problem we had in computing the determining

equations (3.69) have seen before, so we take the logarithmic derivatives to get

A = a,'l (t) A]
+a’2(t) Pl (t) Ax A2 e—ax(t) A
+a§(t) ea;(t) Ay eaa(t) Az A, e—ag(t) A2 e-—az(t) Ay

The stumbling block here is the solution of the severely nonlinear equations for the a;.

+-.. (5.148)

In the case that A(t) does depend on t, the product integral does not give us an explicit

the structure of the solutions of ordinary differential equations. First, the product integral

repres%xtation in terms of exponentials, but there are formulas that do give nice insight into
is explicitly designed so that

d £ A(s)d . Ak)d 2 A(s)ds

— 0 = At e, eV =1, 5.149
We can gain some insight into product integrals by proving this. So if

t
M(t) =] eA®4 (5.150)
0

then .

dM . M(t+ At) — M(2)
- ) = fim At '

(5.151)

Using Formula (5.145) which depends critically on the ordering of the products in the product

integral, we obtain
t+At

t+At t
H eAlo)ds — II eAls)ds HeA(‘)da, (5.152)
0 t 0
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so that

dM ‘ H:+At eAls)ds _ 1 5
— () = lim = M(t). (5.153)

But for small At :

t+At ‘
Il e#@* ~ 14 A4, (5.154)

t

so the limit evaluates to AM ‘

W(t) =A(t) M(1), (}5.155)

which is what was to be proved. ‘
Now if we introduce the logarithmic, product, or multiplicative derivative [6] as
D.M(t) = M'(t) M~\(t), (5.156)

then formula (5.149) can be written as

D, f[ eAlo)ds — (1), (5.157)
0 z

which says the logarithm derivative of the product integral is the identity, just like the
Fundamental Theorem of Calculus says that the derivative of the integral is the identity.
The analog of the other half of the Fundamental Theorem is ‘

IOtIeD.A(a)ds = A(%) A—I(O) ) (5.158)

We must assume that A(%) is nonsingular for the logarithmic derivative to make sense. The
proof|of this fact is simple: ‘

A't) = A'(2) A7H(t) A(t) = D, A'(2) A¥), (5.159)

and the solution of this differential equation is given by

At) = I:Ie""‘“) 4 A(0), (5.160)

which establishes the result.

Next, one can apply the formula in (2.25) to the definition of the product integral to
obtain

Lemma: N
det ] eA)ds _ [P trags) ds (5.161)
a

which shows that the determinant of a product integral is never zero. This complete$ the
basic properties of the product integral.
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and

then

ecause of the probable non-commutivity of the matrices, there is one more important re-
sult, called the sum rule, that gives the analog of the scalar formula expa + b = exp(a) exp(d)
as used by Baum [5]. If

t
M(t) = [J e, (5.162)
0

t t t
H elA(2)+B(s))ds __ H eAs) ds H eM'l(a) B(s) M(s)ds ) (5.163)
0 0 0

The proof of this is to differentiate both sides of the equation to see that these are the same
and noting that both sides are the identity at ¢ = 0.
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6 Computing With Exponential

One of the reasons that Lie techniques are a powerful tool for computation is that they
encourage the use of exponential identities; some of these important formulas are derived

here.

in this

The techniques introduced in this section are fundamental to the derivation ‘of all

section are based on formal calculations for general noncommuting symbols ty ically

exponential identities and are based on the development in Steinberg [10]. The deri»{tions

denoted by A4, B, C, and so forth, but the reader may consider these matrices. Thus it is
important to remember that :

AB=BA (6.164)

is not true for all A and B. However, some of the noncommuting variables may commute

under

multiplication, so any identities that are derived must reduce to standard identities

when the variables commute. It is relatively easy to check some of the identities, or to
find counter-examples to incorrect identities, by using 2 by 2 matrices. Lower case Roman

variables, a, b, c and so forth will stand for scalars and thus ab = ba.

Here is a simple but important identity:

then

(A+B)*=A’>+ AB+BA+ B, (6.165)

Another way of writing this is \
 (A+B)Y’=(A’+24B+B*+BA-AB. (6.166)

If we define the commutator .(.)f A and B by 1
[A,B] = AB - BA, (645167)
(A+B)® = (A*+24B + B%) - |4, B). (6.168)

The previous formula records an identity as a standard identity for commuting va.riablw}plus
a deviation that involves only commutators of the variables. Thus it is trivial to check that
the identity is true for commuting variables as the commutator is then zero. We will always

put identities in such a form.
The commutator satisfies an important set of identities:
Skew-Symmetry of the Commutator: |
[4,B] = —[B, 4]; . (6.169)
Linéarity of the Commutator:
[A,bB+cC)=b[4,B] +c[4,C]; (6.170)
Product Rule for the Commutator:
[A,BC]=[A,B]C+ B[A,C); (6.171)
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Jacobi Identity for the Commutator:
[4, (B, Cl] + [B, [C, 4]] + [C, [4, B = 0. (6.172)

The proofs of these identities are simple computations. These identities have an irritating
consequence: expressions involving commutators do not have a unique form. In fact, as
the number of commutators in a term increases, so do the possible representations of the
expression.

As with matrices, the exponential of a non-commuting variable is defined by the power
series

4 ] Ak

k=0
Again, we make no assumptions on the convergence of the series; consequently all computa-
tions in this section are formal. Here formal means that two series are equal if they are equal
term by term. Calculations that involve such series are tedious, so we have implemented a

computer algebra program to do some of these calculations. One important identity which
is true for noncommuting variables is

efe™ = = e 4eh. (6.174)

This identity is obvious; it only involves one noncommuting variable, so the fact that the
variable does not commute with other noncommuting variables plays no role here. Thus
the identity can be checked using the power series expansion for commuting variables. This
identity shows that the multiplicative inverse B-! of B = ¢4 is B-! = e—A4.

Is it true that
etef = ePet? (6.175)
This can be checked using the power series expansion:

A? B?
elef = (I+A+?+...)(I+B+_+...)

2
= I+(A+B)+(%A2+AB+%32)+---. (6.176)
Interchanging A and B gives
ePer =1+ (B+A)+ (%BQ +BA + -;-A2) +--- (6.177)
and then |
ete®? —ePe’ = AB—-BA+.--=[A,B]|+---. (6.178)

Thus, because A and B do not commute, the exponentials do not commute.
Another way to see the same thing and also produce a useful formula is to multiply
(6.175) by exp(—A) exp(—B), and ask whether it is true that

e 4e Belef =17 (6.179)
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This can be checked by expanding the left hand side of the equation: !

A2
C‘Ae_BeAeB = (I—A+__) \

2

B2
(I—B+-2——---)

2
(I+A+A?+ )

B2
(I+B+7+-~)

~or

I+AB—-BA+... |
= I+[A,B]+---. (6.180)
Thus, through quadratic expressions in A and B,
e~ Ae BeAeP n (4Bl (6.181)
edel ~ ePedeltB] (6.182)

Note that any time we find part of a power series for an exponential, as in I + [A, B] + -
we replace the power series by the exponential. If more terms in the series are computed
there are more correction. The higher order calculations are very lengthy.

other important question is is the exponential identity

e4tB = ¢AeB (&.183)

true? | As above, the power series of each side of the above expression do not agree, sd this
ity cannot be true for noncommuting variables. Another way to see this, and also obtain
part of an important formula, is to do a power series computation: ‘

e—Be—AeA+B ~J— [.4;23]_ +ooen (6*‘.184)

"Thus through quadratic expressions in A and B,
e—Be—AeA+B ~ e—[A,B]/2’ (61185)

or

A+B

e'tB x eheBe14B)/2 (6.186)

Again, computing the higher-order corrections to this formula is tedious. The use of pbwer
series to compute such exponential identities is rather inefficient, so we now turn to another
method. ‘
As|we have seen before, a powerful technique for deriving exponential identities involves
differentiating noncommuting exponentials. Our first result is the same as (3.50) and shows
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that i
natur

f the exponent depends in a simple way on t, then the ¢ derivative of the exponential is
al. When the exponent depends in an arbitrary way on t, then the ¢ derivative is more

complicated. Let us begin with a simple case.

Prop

osition. If a(t) is a scalar function of ¢ and a'(t) = da(t)/dt, then
%amA=dmAaW& (6.187)

fo:

Pro:ﬁ‘. We have not required the exponential series to be convergent, so this is simply a
rm

statement; the series must be equal term by term. Of course, if the series converge,

then the equality holds for the sum of the series. The proof is a computation:

4 ama _ 4 Qa4

dt dt &= k!

&, d ak(t)A*
= Za k!
k=0 ‘
’

k—1!
oo aj(t)A.'i+1

= a'(t) e

=0 .7!
= a'(t)Ae*®4 (6.188)

_ KX d(t)ak - 1(t)A*

Now let us turn to the more interesting case where the exponent A(t) is an arbitrary func-
tion of ¢. First it is important to know that the usual formula for differentiating exponentials

is not

then

correct. If J
At) = aA(t), (6.189)

%&w¢wm&® (6.190)

This can be easily be shown using 2 by 2 matrices. We now describe the correct result.
Theorem:

a At — / ' €741 A!()e~AW) gy ¢A()
0

dt
= Al / l e"A(t)A'(t)e'A“)dT. (6.191)
0
Proof. The exponential is defined by a power series:
=A™t
eAlt) — Z;o —-—nf ) , (6.192)
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and thus

Set A

d o] 1 n—1 m o
ae“‘(‘) =y = D AT A') ALY (6.193)
n=17 m=0

= A(t), interchange the order of summation, and do a little algebra to obtain |

d A = = 1 m 7l -m~—1
€ = Y Y —aragrm
dt m.=0n=m+1n'

00 00 1

— m Al Ak
= Ll iy AnAA

k! m k
mik! iA’%. (6.194)

I
M3
M3

E)
+
o nd
+
3

However,

If this

Chan,

k! ‘
W%CTFW:/OITm(I_T)de. ($195)

is inserted into the previous expression and the series is summed, then

1
‘—%e“w = / e 4'(1) emAW) gr A (6.196)
0

ing the variable of integration for 7 to 1 — 7 gives

d aw) _ _a@) [P —raw) 4 A(t)
ze =e /oe Al(t)e™ B dr, (6.197)

other important tool that is useful in its own right, and essential for deriving the

exponential identities that are needed, involves the adjoint action that we met before in the

matri
by A

We wi

context. If A is a given noncommuting variable, the adjoint action, Ad,, generated
s given by
Ads B =[A B]. (6.198)

11 use a notation similar to the notation used for Lie derivatives:

[A,0]B=Ad4B=[A,B]. (6.199)

Now the formulas (6.169), (6.170), (6.171), (6.172) can immediately converted to identi-
ties about the adjoint operator. For example (6.169) gives

[4,0] B=[A,B] = —[B, A] = —[B, ] A. (6.200)

So the adjoint operator satisfies the following important identities:
Skew-Symmetry of the Adjoint Operator:

[A,0] B = —[B,o] A (6.201)
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Lin

ity of the Adjoint Operator:

[A,0](6B+cC) =b[A,0] B+c[A,0]C; (6.202)
Derivation Property of the Adjoint Operator:
[4,0] (BC) = ([4,0] B)C + B ([4,0]C); (6.203)
Bracket Property of the Adjoint Operator:
[4,9][B,C] = [[4,0] B,C] + [B, [4,0] C]. (6:204)
The proofs of these identities follow immediately from the definition of the commutator.
As in (3.51) define the powers of the adjoint by
[4,9°B=B, [4,0"=[4,[4,0],, (6.205)
so that
[A,0]'B = [4, Bj,
[A, 0B = [A,[A4, B]],
[4, °]3 B = [4, (4, [4, B]|],
and so forth. Then adjoint operator can also be exponentiated:
[A,0] = 1 k
et = g E[A’ olf. (6.206)

The case where the adjoint operator is multiplied by the scalar ¢ will be used frequently:

Ao 5 g e 6.207)
€ —Zk'[ ,0] . (
=0 v*

The exponential of the adjoint operator is another operator:

The ne

2
e“?lB = B+ t[A,o|B+ %[A, o]’B + -ga—l[A, oPB+.-.
2
= B+1t[A,B]+ %[A, (A, B]] + %33[‘4’ [4,[4,B]]] +---. (6.208)

>xt result, which we also saw in the matrix context, will be used many times in the

following development.
Theorem:

e“ Be 4 = ¢lAlB. (6.209)
Proof: Define _

F(t)=¢€ABe*. (6.210)
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Then F(0) = B and

F'(t) = ditF(t) =AeBe™ — e Be A = (A, F(t)) = [A,0] F(2). (6.211)

Next, define

G(t) = efl4°IB. (6.212)
Then G(0) = B and ‘

G'(t) = [A,0]G(t). (6.213)

Consequently, F(t) and G(t) satisfy the same initial value problem for a first order ordinary
differential equation. Such functions are unique, so F(t) = G(t) and this gives the theorem.
This can also be proved by computing the power series expansions of F(t) and G(t). The
differential equations gives a recursion for the coefficients in the power series and then a
simple induction gives the result.

The exponential of an adjoint operator satisfies a set of identities analogous to the iden-
titist:tisﬁed by exponential of a noncommuting variable: ‘
Linearity of the Exponential of an Adjoint Operator:

el4l(b B + cC) =bel B 4 cel4el O (6.214)
Product Preservation by the Exponential of an Adjoint Operator:

e4?l(BC) = (el4°IB)(el4lC) ; (6.215)
Commutator Preservation by the Exponential of an Adjoint Operator: |
e4[B, C] = [4°B, eI . (6.216)
Proofs: The linearity is easy. The product preservation follows from the previous theorem:
e (BC) = (B Cle*=e Be e’ Ce = (e*°1B) (el4°lC) . (6.217)

The commutator is defined in terms of products, so the commutator preservation follows
immediately from the product preservation. ' ‘
Near the end of this section we will need a similarity property for exponentials of adjoint

operators. To describe this property it is necessary to know how to apply any function to a
noncommuting variable. So let

f@) =3 apst. " (6.218)
k=0 .

So far only f(z) = exp(2) has been considered. Later several functions defined in terms of
the exponential will be used. In any case, f(A) is given by the formal series i

F(4) = 3 mab, (6.219)

k=0
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The following property is termed similarity rather than composition because it is also
analogous to the notion of similarity transformations for matrices:

Similarity Property of the Exponential of an Adjoint Operator:

e°lf(B) = f(elAIB) (6.220)
Proof: This is a computation:
o0 o0 o0 .
el4°lf(B) = €A " g, B* = > axel4®IBE = 3 g, (elAIB)k = f(el4lB). (6.221)
k=0 k=0 k=0

The previous two theorems can be combined to give a nice form for the derivative of the
exponential of a general ¢-dependent quantity.

Corollary: :
d A _ € A(t)o] _ 1 , 4
—e = Al(f)eA® 6.222
dt’ [A@,o] 4 @e (6.222)
d At) ) 1-— e—[A(t):o] ,
- = _— X 6.223
@& = TApe AW (6.223)
Proof: Note that we are applying Formula (6.218) using the analytic function
fe) == ! (6.224)
with z replaced by [A(2), o). Formula (6.195) for the derivative is
4 a0 - / ' grat) A'(t) eTA® dr A (6.225)
dt 0
Formula (6.209) in the previous theorem allows this to be rewritten as
9 gaw) _ / L erlawel g A'(t) e4® (6.226)
dt 0
- The anti-derivative with respect to 7 is simple:
1  eTlA®el _
ARl g = & " T2 6.227
o O = e (6220
which gives the first part of the theorem, and a similar calculation gives the second part of

the theorem.

The results of the next two theorems are two important exponential identities that are
frequently called the Baker-Campbell-Hausdorff (BCH) formulas (or identities). The proofs
of these identities are base on computing logarithmic derivatives and then using some of the
previous results. The logarithmic derivative of

F(t) = e*4e'P (6.228)
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which is frequently used, has two possible forms:

FIO)F'(t), F')F(1). (6.229)
The derivative is given by the product rule;

F'(t) = Ae" e + ¢!A BB = et gtB | gt g ot A e'B. (6.230)

Multiplying on the right by the inverse,

Fl(t)y=etBetA (6.231)
gives
F't)F7'(t) = A+ e Be™ = 4 +¢tiAclpg (6.232)
Now we can give the formula for the exponential of a sum:
Theorem:
e*tB = ¢4eBeC2glacCi . . (6.233)
and
eAtB _ . e~ C4else=CaB oA , (6.234)
where C} is a linear combination of k-fold commutators of 4 and B. In particular,
1
C2 = —'2'[A: B] ’
1 1 i

Proof. We first prove that the second identity follows from the first. Note that Cy =
Cx(A, B), and because C; is a k-fold commutator,

Ci(—A4,—B) = (-1)kCi (4, B). (6.236)
Now replacing A and B by —A and —B in the first identity gives
e A8 = g4 BeCrg=CagCu . . | (6.237)

"Taking the inverse of both sides of this identity gives the second formula in the theorem.
Next, let

F(t) = e tAe tBetA+B) ) (6.238)
Then
FIQ)F7(t) = —B—e® Ae'® + e B tA(4 + B)ethetB,
= —B-¢ 1B 4 e Brlg-tA%)(4 4 B). (6.239)
Next define .
G(¢t) = et’C2et*CagtCa | (6.240)

37




Then
G'($)G7H(t) =2t Cy + 382 1000y 4 443 P 1CrelgPICsl o, 4 . ..

Expanding the exponentials of the adjoint operators yields:

F®)F'(t) = -B-A+t[B,A]- 523[3, (B, A]) +--
+(A+B) —t[A,B]+§

[4,[4,B]] +---
—t[B,A] +t*[B,[A,B]] +---
+2 (BB, 4]+

= <[4, B+ (4[4, B] +2(B,[4,B]) + -
G,(t)G_l(t) = 2t02+3t203+'°'.

(6.241)

(6.242)

Collecting coefficients of powers of ¢ gives the formulas for C, and C;. Any number of the
Ci may be computed by carrying the calculations though the k-th power of {. An inspection
of the computation shows that the coefficients of k-th power of ¢ must involve only k-fold

commutators of A and B.

This theorem shows how to break up an exponential of a sum into a product of exponen-

tials. | The next theorem is a converse; it shows how to combine a product of exponentials

into an exponential of a sum.
Theorem:

eAeB — eA+B+D2+Ds+~~~’

where D is a linear combination of k-fold commutators of A and B. In particular,

D, = 4,8,
1 1
D3 = E [A7 [A7 B]] - ﬁ [Ba [A’ B]] .
Proof: Set
F(t) —_ etAetB ,
D(t) = #(A+ B) +°Dy + *Dy + -,
and .
G(t) = eP®
Then

F'(t)F7'(t) = A+¢€49B |
2
= A+ B+1t[A,B]+ %[A, [A,B]] + -
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(6.244)

(6.245)
(6.246)

(6.247)

(6.248)




and
1
GI t G-—l t = T[D,o]Dld
0670 = [ etPapar

- /OI(D'+T[D,D’]+-~)d'r

= D+ %[D, D)+.... (6.249)
Now
D’=(A+B)+2tD2+3t2D3+---, (6.250)
and
[D,D']=1[A+B,Dy]+--- . (6.251)
Thus
GOG(t) = (A+B) +2¢D, +£ 38Dy + 1 [A+ B, D) 4 ... (6.252)

Comparing coefficients of powers of ¢ gives the values gives the formulas for D, and D;.
The sum in the exponent in the previous theorem can be rearranged, and then some of
the terms can be summed in closed form.

Theorem:
edel = Cl4B) (6.253)
where o
C(A,tB) =Y t*Ci(4, B). (6.254)
k=0

Note that Cy contains all terms that contain exactly k factors equal to B. In particulaLr,

Co(A,B) = A,
= _[A]
C, (A, B) = mB

1 1
= B+§[AsB]+'ﬁ[A7[AiBH+ ’

Cy(A,B) = -%% /0 1[51(7),32(1)]#

= -% [B,[A, B]]+---. B (6.255)

where

1-— e"""[A’°]
Si(r) “Tad

Sa(t) = e MeICy(4,B). (6.256)

Ci(A,B),
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Proof: It is clear C(A, B) can be rearranged into the given form. Setting t = 0 gives
Co(A, B) = A. Next, set
F(t) =e%e®, G(t) = C4B) (6.257)
Then
F'(t)F'(t) = B, (6.258)
and - cs) '
1 1—e7l@°
-1 1G'(t) = ~1C vt _7C - ]
G (t)G'(t) /0 e“C'e™Cdr T (6.259)
Combining these two equations gives:
1 1— e_[C’ol
B = -1C vt 7C = .
/o TOC e dr = T (6.260)
Setting ¢ = 0 gives:
B==*0 4B 6.261
=T 1(4, B), (6.261)
or (4,
,©
Cl(A, B) = mB . (6.262)
Recall that if ) )
z z  z z
- =1+2,. %2 _% .. .2
f(z)v e l-t-2+12 720+ ) (6.263)
e Ao _, (A [ASF 4.0
O - 3 © , © _ , ©
fA o) = g =1+ 2=+ 5~ e (6.264)
This formula gives the expanded form for C,.
The computation of C, begins by differentiating the equation
1
B= / e=C C"e"C dr (6.265)
0
and setting
C_T[C’O] -1 ,
B = g
Ry(t) = eCC € =00 ¢ , (6.266)
to get . :
0= / (e-flcﬂl C" 4+ Ri(7) Ry(1) — Ry(7) R, (T)) dr. (6.267)
0
Integrating the left-most term gives
1-—- e-[C’O] " 1
—_ " =— , R d 6.268
o O = || IBa(r), Ra(r)dr (6.268)
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- or

(6.269)

o = 1 — [C,O] / [Ri(7), Ry(7)] dr
Evaluating the previous formulas at ¢ = 0 gives C" = 2C,, and
_ 1 [A4] 1
Cg = —51'7_[‘4,0—] A [SI(T), 52(7')] dT, (6270)
where
e—'r[A,o] -1
50 = g
Sa(r) = e THAfC, . (6.271)
These quantities are now computed through third order commutators:
1
G = [A Bl+ A [4,B] +---,
B+ (T A TYTE
S = —rB+ (-2—-5) (4,5 + (—gﬁ-—ﬁ)[ (4B 4+,
1 7 r 1
S = B+ (-—r+ 2) [A,B] + 5 = 5+E) (A, [A,B]]+---,
. 1
[Sl’SQ] = E[B’ [A’ B]] +eeey
1 ‘
JRCAE _.113[3, [4,B]] +-- (6.272)

We do not see any method of writing the next term in a simple form.
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