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Abstract

In this paper families of solutions to the two- and three-dimensional Helmholtz
equation have been determined using the technique for solving partial differential
equations known as extended separation of variables. In two dimensions this
method results in three Nth order families of solutions composed of various
combinations of polynomial and sinusoidal functions that have been cast into matrix
form using a constituent matrices approach. In three dimensions standard
separation of variables is used on the equations containing the coupled coordinates
until vector-differential equations analogous' to. the two-dimensional case are
obtained. An extended separation of variables solution to Maxwell’s equations is
found and subsequently shown to be the lowest order transverse electric mode of a
uniform perfectly conducting rhombic waveguide.
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I. INTRODUCTION

The mathematical technique for solving partial differential equations known as separation of
variables is so well known that it is seldom given‘much explanation. It has been mentioned in the
by-now classic book by Miller [1] that “The method of sepafation of variables, .... although easy
to illustrate for certain important examples, proves surprisingly subtle and difficult to describe in
general.” He states further that “... separation of variables is a method for finding solutions of a
second-order partial differential equation' in n variables by reduction of this equation to a system of
n (at most) second-order ordinary differential equations.” |
The above statements with only slight modification can be applied also to the technique for
solving PDEs known as extended separation of variables introduced by Gauchman and Rubel |
[2]. While separation of variables searches for sblutions (of a PDE in the Cartesian coordinates x

and y) of the form u(x,y) = X,(x)Y,(y), i.e., a product of solutions of each independent variable
) N

alone, extended separation seeks solutions of the form u(x,y)= X;(x)¥,(y), i.e., sums of
-

products of functions of x times functions of y. Obviously N = 1 reduces extended separation to

the normal separation of variables technique. |

In this paper we apply extended separation of variables to the Helmholtz equation in both two

and three dimensions. We use a matrix polynomial formulation to solve the general N case in two

dimensions. The three dimensional equation is thén solved similarly but in much less detail. We

then indicate the role the resulting types of solutions play in solving electromagnetic boundary

value problems [3-7].

II. MATRIX SOLUTION OF THE TWO-DIMENSIONAL HELMHOLTZ
EQUATION

Assuming that we wish to solve
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(A+k§)f(x,y,z)=0 (1

ik,z

in Cartesian coordinates and assuming that the z dependence is given by e™™* while the time

dependence is e, (1) becomes
(A, +k Ju(x,y)=0 2)

»
& oy

where A, = , kK*=kg -k}, and f(x,3.2)=u(x,y)e" ")

Let u(x,y) have the general form

N

u(x3)=Y, X,(x)Y,0)=X(x) YO)=Y() X®) 3)
j=1
where t denotes transpose and
X, (x) Y (y)
X(x)=| : , Y(y)=| X 4)
Xy (%) Yy ()

Substituting (3) and (4) into (2), the two-dimensional Helmholtz equation can be written in the

form

X"(x) Y(y)+ X(x) Y"(3)+k2X(x) ¥(y)=0 5)
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where the primes signify differentiation with respect to the variable explicitly shown.

By Lemma 1.1 of Gauchman and Rubel [2], there exist real numbers, y,, ¥,, ... Yy such that
det[ ,-(y,- )]i.j=l....N #0 . \ (6)

Substituting y, ... y, into (5) successively, after some algebra one can obtain a system of N

homogeneous linear equations given in matrix form as

SX”(x)+8"X(x)+k*SX(x)=0 0)
where
§= [Y’ (y i ) ]i, j=l.N | | (8a)
5= [Y"” (y i )]i.j=l,...N ’ (8b)
and
Xx)
X"(x)=| . (8c)
Xy(x)

Since S is given from (8a), from (6) its determinant is nonzero. Thus S has a unique inverse and

(7) becomes




S7SX"(x)+[S7'S” +k*S™'S[X(x) =0
or
X"(x)=-[S7's" +K’I[X(x) ,

where I is the identity matrix. Setting A =-S'S”, (10) becomes

X"(x)=(A-kD)X(x) .

©)

(10)

(11

If we assume that the matrix A is an N x N general matrix (i.e., that it is nonsemisimple [8]), then

A can be reduced to Jordan canonical form [2], or

k* 1 0 0+ O]

0 x* 1 0 0
A={0 0 x* 1. O

: K’

0 0 0 0 k%

(12)

The constant, X, is usually referred to as a separation constant when using the usual separation of

variables technique. Thus the matrix A could be called a separation matrix in the extended

formulation.

Substituting (12) into (11) and writing out (11) in component form, the resulting X(x) ordinary

~ differential equations (ODEs) are




X[(x)+(k? -k?)X, (x) = X, () a3

X))+ (K - k)X, (x) = X, (x) (13b)
Xy (x)+ (k> -Kk%)Xy(x)=0 . (13c)

Equations (13) are individually solvable, beginning with X,(x) and successively solving for
X1 (X), Xyn (%), oo X, (X). |
To determine the corresponding set of ordinary differential equations in y, one must return to

(5) and substitute the transpose of eqn. (11). Then (5) becomes

X(x)'{(A-kzl)‘ Y(y);y"(y)+k21y(y)} =0 | (14)
or

Y(y)=-4"¥(y) . (15)

Thus the Y(y) ODEs in component form are

¥(5) =% () (16)
5(3)=-x’%(y)- K () (16b)
Y:()’) = “’CZYN(}’)_ ) ()’) . (16¢c)

‘Now the Y ,(y) equation is immediately solvable while the remainder can be found successively

from Y,(y) ... Yy(y) via, e.g., variation of parameters. For now it is assumed that k* and x? are

both real and that k? is positive while k2 could be positive, negative, or zero.




Considering (11) and (15), these two equations are vector-differential equations, and it is
possible to reduce their degree by increasing their dimensionality [8]. For example to solve (15),

one can define a new vector

Y(y)
M(y)=|--- (17)
Y'(y)
such that
am '
d(y ) _ DM(y) (18)
y
where D is a 2N x 2N matrix given by
_ [_Q i _1.]
LAt o] (19)

The vector-differential equation in (18) has the formal general solution [8,9]

M(y)=e™M(0) (20)

where e™ is the matrix exponential associated with D in (19), and M(0) is a vector containing the

boundary conditions for both Y(y) and Y’(y) at y = 0 so that




(21)

While (20) is a very simple looking and clégant’solution to'(18), it is also a difficult form from
which to determine explicit Y(y) solutions. We have introduced A(20) because when the value of N
is large, a matrix formulation is the most compact way to achieve the solutions Y, (¥), s YY)
For very small values of N, it is easier to solve the equations beginning with Y,(y) and progressing
to Y,(y), etc. via variation of parameters. But variation of parameters quickly becomes extremely
tedious for N larger than three or four. |

Using (20), the matrix exponential can be written in a constituent matrix formulation [10] so

that in general

5

e” =Y (Z,+Z,y+..+Z,, ym) e (22)

k=1

where Z,; are constituent matrices for the matrix exponential, s is the number of different

eigenvalues associated with the matrix D in (19), A, are the values of the different eigenvalues, and

m, is the multiplicity of each different eigenvalue. In (22)

Z, = [C(}') }(mk_j) | @)

where C(A) is the reduced adjoint matrix of (AI-D) and y,(A) is




w(A)

Vi(d)=—— (24)
(’l = )
and W()) is the minimal polynomial associated with (AI-D) [10].
As mentioned previously, there are three possibilities: K> 0, K< 0, k= 0.
Case I: k=0
When x* =0, the matrix D has the form in eqn. (19) with
0 0 0 - 0]
1 00 -0
A'={0 1 0 --- 0 (25)
-0 1 "L
000 - 0
Thus
Al -1
o
4 (26)
The characteristic equation of (26) is
A(A)= 22V @7

Thus the only root in this case is A, = 0 with a multiplicity, m, = 2N. Using the general

_constituent matrix formula given in (22) withs =1, m, =2N, and A, =0,




e”=Z,+Z,y+..+ Z Wy

(28)

The minimal polynomial of (26) is the same as the characteristic equation in (27), i.e., Y(A) = A,

This causes y,(A) = 1 in this case when (24) is used. The formula [10]

SPRTC

(29)

(where A and p are both scalars) can be used to obtain the reduced adjoint matrix associated with

(26), i.e.,
C(A)=¥(ALD) .

Using Ww(A) = A™, (29) becomes

N _lliN 2N

(A, p)= u—”:;— = 2} pHr
p=

Substituting the matrix D for p in (31),

2N
ca)=y, prear

p=l

(30)

€3))

(32)

- Since y,(A) is a constant in this case, the constituent matrix formula can be rewritten as (k = 1

only)

10




1 (2N-j)
et L,

and C(Z.)(zN'j ) al-o means the (2N-j)-th derivative of C(A) with respect to A, evaluated at A = 0.

Using (32) the derivatives of C(A) can be easily written down:

o= [1 -]

p=| j’=1

Evaluating (33) using (34), we find that

0 DZN—]
Z“=D =1; Z,=D ; LIN (2N—1)'
Thus given D in egn. (19) with A' as in (25),
D2y2 DZN—lyZN-l

e” =1+Dy+ +

e + —
2! (2N -1)!

(33)

(34)

(33)

(36)

For this case, we find that D™ = 0 as well as its higher powers. Evaluating the powers of D, e

can finally be written explicitly as

£
Dy _|-@ L __.
©T|eEVdE

dy* v dy

(37)




where the matrix F has the general form

)’3 0 0 o0
y .
-2 y 0O 0 --- 0
!
yz" y’ |
F= el -5 y 0 - 0 (38)
N CaN-l '_ " aN-3
)" 2L (1) 2 e e ey
T @N-1) (2N -3)! |

where i is the row number, and :i— in (37) denotes matrix derivative. Each entry in F is a single
34

term polynomial in y. The general form (37) is true not only when k* = 0 but also for any value of

X.

Returning to (20), we can rewrite it as

dF !

YO)_| ALl [xo)
Y'(y)| |4’F! dF | |y(0)
dyz : dy . (39)

Y(y) can be determined from the top row of (39) as

Y(y)=%—¥(0)+FY’(O) . (40)

| It is unnecessary to obtain Y’(y) in this way (except as a check) since once Y(y) is known, Y'(y)

can be computed directly. Thus explicit knowledge of the matrix F is all that is needed to

determine the Y(y) solutions.

12
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For general N,

R0)=50)+E/(0) | @12

B0)= B0+ KO- K02 -K (0% @1b)
N N el yZI'—Z , y2(—l

YN(y) - ; ( 1) [YNH—I(O) (21_ 2)' + YN+I—£ (O) (21 _ 1)'] . (41C)

Note that when the separation constant, Kk, is zero in the separation matrix, A, the Y(y) solutions

are all pure polynomials. For the case of standard separation of variables where N = 1, the only

Y(y) solutions are Y constant or Y linear.

Returning to (11) to solve for the X(x) solutions in the ¥* = 0 case, (11) reduces to

X!(x)+k*X,(x)= X,(x) (42a)
Xn(x)+k*X,(x)=0 . (42b)

In solving (42) or (11), the matrix D now takes on the form

(43)

(and since we are now solving for solutions that are functions of x alone)

13
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dM(x)

=DM (x) RN
where now
] w2
and
M(x)=e”M(©0) (46)
with D given by (43).

Although ¥ is still zero in this case, k? the transverse wave number, is assumed to be real and

positive. Using (43)

. S |
M_D“[kZI—A! AI] @

and the associated characteristic equation for (47) is

AA) = (2 +x)" = §N:

0

(NJ kZmA'Z(N-m) (48)
m .

)

14
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N
where ( J is the standard binomial coefficient. For this case (k* = 0, k* > 0), there are two
m

distinct roots, A, = ik and A, = -ik, each with multiplicity m, = m, = N. The general constituent

matrix formula in (22) with s =2, m; = m, = N, A, = ik, and A, = -ik becomes

| er=i xe-l[zl'teikx_i_zz'te-ikx] ) (49)

&=l

Since A, and A, are complex conjugates
Z2,,=2,* . 50)

Now the reduced adjoint matrix associated with (47) is

> N 2m2(N—m) 2(N-m)-p 4 p-1
c(A)=Y L > D Lol (51)

p=i

Its derivatives are

C(l)(l) _ i (N) k2m Z(EM)I:I_lI( :|D2(N-m)—plp-t-l (52)
=2 |, p—4) :

From eqn. (24), in this case

v, () =(A+ik)" (53a)

15
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and
v,(A)=v{(4) . | (53b)

Since y,(A) and y,(x) are now not constants but functions of A, when (23) is used to obtain the

constituent matrices, the higher-order derivatives are more difficult to obtain.

Via Leibnitz theorem,
d[C(A;'(A)] & (¢ d"’C(l) d'(y,™)
DY (r) A dn 69
where
r d’(y;'(A " : \—(N+r
[vi' )] =—(”l%(")_)=('l) (N), (A + i) " (55)

where (N), is a Pochhammer polynomial [11].

Substitution of (54) and (55) into (23) provides a specific formula for the constituent matrices,

i.e.,
) : e i N-j C(N-i")(/’L) ‘ '
gy O,

Using (51) and (52) in (56) and evaluating all derivatives at A = ik,

16
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N 2(N=m) e7

N . p~2N+j-1 _ . 2(m=N)+p+j-1 N2(N=-m)-p | .

2 2 i (1=-p),.._ k D ;
o \/m o

m= p=l ’ .

1<j<N

where again (N), and (1-p)y,, are Pochhammer polynomials. -
Substitution of (57) into (49) results in an explicit matrix form for eP*. Writing out the F

matrix, for the case N = 2, F becomes

[ sinkx sinkx xcoskx ]
k 2k* 2k?
F= (58)
0 sinkx
! k i

while for N = 3,

"4sinkx 2sinkx _xcoskx 3sinkx 3xcoskx x?sinkx |
k K 2k? 2k° 8k* 8k*
0 4sinkx 2sinkx _ xcoskx
F= k K 2k? . (59)
4sinkx
0 0
k

For general N, we have

17
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'[( N -1 sinkx  [(N-1)1]" sinkx I (O -2 ,;cos kx 7
! % ) PE 2 2
0 - 1),]2 sin kx [(N 2— 1] si: 3kx _ (N -2 2)!]2 xc:szx
0
F =
-  oTTeTeTTeeereeeeeeeeeeeiccceicecccccieeciceeic s " - [(N—l)’]z SII;Ckx
(60)

Thus in general F is an upper triangular matrix (in this case and for the X(x) solutions) with
identical entries along the main diagonal and all succeeding semi-diagonals. Since the X(x)
solutions are cumbersome to write out in component form for general N, we write out the N = 2
case simply for illustrative purposes.

Using (53) and (46),

X(x) = S’EX(o)+ F X/(0) (61)

or

X;(0)

YE ]sm kx (61a)

X,(x)= [XI(O)‘Xé(o)flg]coskxf[%@l+xz(o) 2’;{

and

sin kx

X, (x) = X, (0)coskx + X;(0) (61b)

Thus using (41a), (41b), and (61), for the N = 2 case a solution to the Helmholtz equation is

18
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) =[%(0)+ ¥ (0)y] {[X (0)- X’(O) ]coskx

[ X,(0) , X3(0)

X 2k3 —=—=+ X (0)—]smkx} . (62)

KO)+ KO- K02 -1 0% | [ 0cosk+ 50) ]

Equation (62) is one example of a family (since N can be any positive integer in general) of

increasingly complicated solutions to the Helmholtz equation where the solutions in y are pure

polynomials multiplied by functions of x that are combinations of polynomials and sinusoids.

Since the Helmholtz equation is symmetric with respect to x and y, by interchanging the roles of x

and y in (62), (as well as X and Y) a second family of solutions can be generated, characterized by

pure polynomials in x multiplied by combinations of polynomials and sinusoids in y.

Case 2: k*>0,0<x*< k%

In this cése for the Y(y) solutions, AI-D still has the general form in (32) but A' is now

k2 0 0 0]
1 x* 0
2
A= g (1) "l (63)
(0 0 © x|

“and thus the characteristic equation associated with AI-D is

19
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—_ (12 2\V _ - (N 2m 92(N-m)
AA)=(A+x?) =) K" A A (64)
which is identical to (48) with « replacing k. Thus
N . .
e” =3 y 7z, +2,.™], (65)
=]

following the form of (49). We can obtain the constituent matrices using eqns. (51)-(57) with x

replacing k. Thus for the N = 2 case the F matrix is

sin Ky 0
K
F= / . (66)
‘ _(sinxy B ycosxy) sinky
|\ 2¢? 2K K
Thus
dF .
Y(y)= 2 [0+ FY/(0) (67)
just as previously so that
K() =4 0)cosy + K (0= (682)

20
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Yz(y)——Y(O)ys‘""y +,(0)cosky

..Yl (0)[:8"']’07 - yczc::’q] Y,(O) Sany

Similarly the X(x) solutions are found from

where the characteristic equation is now
A= (2 +(k? -x?))" =(22 +8%)"

with & = k? - k%

Immediately

N
er = 2 xl—l[z],lel& +Zl":le-15x]

£=1

(68b)

(69)

(70)

(71)

Again, we obtain the constituent matrices by using eqns. (51)-(57) with 6 replacing k. Thus for

the N = 2 case, the F matrix is

21




[sindx sindx _ xcosdx]
) 28° 282
F= (72)
sin Ox
0
L ) i

and thus

X, (x)= [X (0)- X3(0) = ]cos&x +[ X/(0)  X%,(0)x _X;(0)

5 25 55 ]sin&x, (73a)

X,(x)= 2(0)cos6x +X3(0) S"“S" (73b)
Thus for 1 > 0, & =k* - &7, for N = 2 a solution to the Helmholtz equation is
(x,y) {[ (0)- X'(O) :Icosb"x +[ X/ (0) + Xz(O)—x—+ X (?):lsmdx
o 200 206
{Y,(O)cosxy +7’(0) s“:c d } {X (0) cos & + X;(0) S‘“‘S"} (74)

r(0) 1)y ¥,
Y,(0)+¥’(0 cosky +| 21— — L= Lo sinky
{[() ()2x] [K w we |
where normally 8 would be k,, x would be k,, i.e., there are two nonzero separation constants in

this case. When both separation constants are nonzero, the x and y solutions are both
combinations of polynomials and sinusoids multiplied together. This shows that there is a third

‘family of solutions in this case for general N.

22




In considering the cases where x> > 0, we have so far been concerned only with the so-called

propagating waves. However, when k” < 0, this changes.

Case 3: ¥2 < 0 and real.

In this case
Al : ~I
A-D=|--=boen
.1
where
—x* 0 0 0 ]
1 —x* 0 :
A= 0 | : (76)
| 0 0 O =

(assuming that k¥* > 0 so that we simply put a minus sign in front to make it negative) and so the

characteristic equation associated with AI - D is

AA)=Y (Z)(A)"‘x"")f‘"‘"') (77)

The roots are now A, =K, A, = -k, each with multiplicity N and thus
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e =3 y (2,7 +Z, ™) . , (78)

C(M) and C“(A) are given by (51) and (52) with k? replaced by -k From (24) in this case

v, (A)=(A+x)" (79a)
but
w,(A)=(A-x)" . (79b)

For this case, Z,, and Z,, will have to be computed separately. Without detail writing out the F

matrix for the case N = 2,

sinhky 0
K
F= . (80)
sinhxy _ ycoshky sinhky
2x? 22 K
Thus for x? < 0,
K() = §(O)coshiy + K/ (0) 22, (812)
sinhky ,.~| sithky  coshky 0~y SINKKY

B(3) = -K(0)y— = + B (0)coshry + F/(0) 5>~ y——= [+ (0)——  (81b)

24




These represent the attenuating or evanescent wave solutions of the Helmholtz equation.

corresponding X(x) solutions for k* < 0 are found similarly.

The

IIIl. MATRIX SOLUTION OF THE THREE-DIMENSIONAL HELMHOLTZ

EQUATION

To solve
(A+k3 Ju(x,y,2)=0

using extended separation of variables, we assume a solution with the general form

N

u(x,y,z) = Y, X;(x)Y,(y);(2)

\ =

or

u(x,y,2) = §(z)' V(x,y)

where

¢\(2) . Xl(x)Yl(y)
@)= i |, V(xny)= 5
En(2) XN(x)YN(y)

‘Using (84) and (85), (82) can be reWritten as
§” (2)'V(x,y)+8(2) A V(x.y) + k8(2) V(x,y) = 0

25
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Following the same procedure as for the two-dimensional case, we obtain two equations

AV(x,y)+(kI- A)V(x,y) =0 | (87a)
and | |

{"(2)+A'%(z)=0 . (87b)

Equation (87b) is solved just as in the two-dimensional case with A given by (12). Equation (87a)

can be solved as follows. Using A in (12), (87a) can be rewritten as

X7, () (3)+ B ()Xo (6) + (k2 = 2) Xy (1) (x) = O (88a)

and

X7 ()Y, (y)+ ¥(9)X,(x) + (ks = €)X, (x)Y;(7) = X, (2)Y;., (7);

(88b)
j=N-1,..1
The Nth equation admits a standard separation of variables solution,
X, (x) = A,sinax + B, cosox (89a)
and
Yy(y) = Agsin fy + By cos fy (89b)
where B =k —x* —a’ . But the jth equation given by (88b) provides the condition that
_‘_9__ Xj+|‘(x) _e_ Yj+l(y) =0 , (90)
x| X j (x) Joy Y, }')

26




thus either one derivative or the other in (90) must be zero. We are free to choose (arbitrarily)

either one to be zero.

Choosing %[———Y; '(;);)
- i

] = 0 implies that

Y, =cY(y) 2y

where ¢ is some constant which can be set to one without loss of generality. Thus once Yy is

known, we know all of the Y,(y) solutions because of (91). Thus using (91), (88b) becomes

Yj (y) +(k2 _Kz)A_ Xj+l(x) _ Xj (X) (92)

Yy T X X

which is now separable in the standard sense. 'Setting both sides of (92) equal to the separation

constant, 0 (to remain consistent with (89)), the subsequent equations are

Y5+ (kg —x* - a?)Y,(y) =0 (93a)

and

X! (x)+ X, (x) = X, (x) . (93b)

The solution to (93a) is given by (89b). After writing (93b) in component form with 1 < j < N-1

and including the Nth equation (88a), the X(x) solutions may be found from the vector differential

| equation

27




X" (x) = -GX(x) (94)

where
(a2 =1 0 - 0)
1o a* -1 - 0|
G=|0 0 a* -1 0/ . (95)
\0 a2)

Again since G is in Jordan canonical form, the techniques of Section II can be used to solve (94).
d [ X;.(x) . .
In (90) had we chosen Ex- —m— to be zero, a similar equation to (94) would have been
(x
j .

derived for the Y(y) solutions with X (x) = X;(x).

IV. AN EXTENDED SEPARATION OF VARIABLES SOLUTION TO
MAXWELL’S EQUATIONS

We would like to take the results of Section II.and apply them to a particular problem. The
solutions of Section II are particularly useful for solving electromagnetic waveguide problems
where the waveguide is uniform along its length and is assumed to be perfectly conducting. Once
solutions of the Helmholtz equation are known where

u(x,y)=E/(x,y) or H,(x,y) | - (96)

the remaining electromagnetic field components are given by

28




_iweg OE, ik JH

T Yy ko

_ iwe,e dE, ik, oH,
¥ .k2 ax kZ ay

97
_ —iopu H, ik, JE,
* K d koo

_ —iwuu oH, ik, JE,
y k2 ax kZ ay

As usual if u(x,y) = E, and H, = 0, transverse magnetic (TM) modes are obtained, while if u(x,y)
=H, and E, = 0, transverse electric (TE) modes are obtained. The solution given in equation (62)
composed of pure polynomials in y and products of polynomials and sinusoids in X is a solution of
the two-dimensional Helmholtz equation that can also be used to obtain the lowest-order mode in a

perfectly conducting waveguide with a rhombic cross section [4,6]. Setting

¥’(0) = X,(0) = X,(0) = %,(0) = ¥(0) =0 (98)

in (62), (62) becomes (for the lowest-order TE mode)

' sinkx sinkx xcoskx y*sinkx
H (x,y) = Y(0) X/(0 X0 - -X;(0 . 99
L(x,y) = X( )|: 1(0) X + X5( )( YE e ) »(0) 2k ] A 99

Setting

o= X0 %0 (100a)
k 2k
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b:Z‘Z{.Z:.(_Q (100b) ‘

2k ' ‘
. _=X;(0)
c= 100c
Y (100c)
to recapture the notation of Reference 4, (99) becomes
H,(x,y) =(a+ by’ sinkx + cxcoskx) (101)

with b - ck = 0. Equation (101) is an exact extended separation of variables solution to the
Helmholtz equation and the numerical values of a, b, c, and k are used to satisfy the boundary

conditions. The transverse ficld components (with H, as in (101) and E, = 0) are

H (x,y)= -T:I:—‘{[c +k(a+ byz)]coskx — ckxsin kx} , (102a)
H,(x,y)= —_-If-fi%ysinkx , (102b)

E = ”";c’#zby sinkx (102¢)

E, = ig’fzi'q-{[c+k(a+by2)]coskx—ckxsinkx} . (1024)

Thus (101) and (102) are exact solutions to Maxwell’s equations determined using extended
separation of variables. With appropriate numerical values for the constants, these are the

electromagnetic field components for the lowest-order mode of the perfectly conducting uniform
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rhombic waveguide where Maxwell’s equations are satisfied exactly but the boundary conditions

are satisfied numerically (and thus approximately) [4].
V. CONCLUSIONS

Families of solutions to the two- and three-dimensional Helmholtz equation have been achieved
using the technique for solving partial differential equations known as extended separation of
variables. In two dimensions this method results in three Nth order families of solutions that have
been cast into matrix form using a constituent matrices approach. In three dimensions standard
separation of variables is used on the equations containing the coupled coordinates until vector
differential equations analogous to the two-dimensional case are obtained. An extended separation
of variables solution to Maxwell’s equations is. found and subsequently determined to be the

lowest-order transverse electric mode of a perfectly conducting uniform rhombic waveguide.
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