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Abstract
A simple procedure is given for constructing a complete basis of solutions
to a given linear constant coefficient partial differential equation. A variety of
examples are presented including eigenvalues problems such as the Helmholtz
equation.
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I. INTRODUCTION

I u is a smooth function that satisfies a linear constant coefficient pa,rtia;l differential equation
(PDE) then the derivatives of u are related to each other in a linear fashion. This observation
leads to a simple constructive procedure for generating a basis of solutions for the PDE.

For example, suppose that u, = u; where the subscripts} denote differentiation. If we let
ui; = 0"u/dz'8t’ then uy o = up,y. Less trivially, the PDE also implies that tgz = us = ug.
That is, usp = u3,1 = uo,2. Similarly, u;0 = ti_13 = +++ = uo;.

Expanding u in a Taylor series in = and ¢ gives

2 2

U(m, t) = U0 + U1,02 + Uo,lt + UQ’Q% + ul,lzt -+ uo,zg + ...
z? 12
= Ugo+ U1,0($ + t) + 'UQ'o(? 4zt + E) + ..
t)? )i
= uoo+ui(z+1)+ uz,o(z; L u.-.o——(x; S 4. 1)

Since the PDE does not relate u; to u; for ¢ # j, the expansion (1) can not be reduced
further. For this reason the values of u;o for ¢ = 0,1,... are free (modulo any boundary

conditions) and the functions .
(z+1¢)

i!

i =

(2)
form a basis of solutions. This basis is complete in the sense that its span includes any
solution which can be expressed as a convergent power series (see [1] for a discussion of this
restriction). Also note that the basis functions are exactly what we expect in terms of waves
moving to the left: it is well known that if u satisfies % = %% then u is a function of z + ¢
only: u(z,t) = u(z +t). In this case, u(z +t) = %L&gﬁ which is just (1).

In effect, the above procedure is just an extension of the proof of the Cauchy-Kowalewski
Theorem [2], [3] in which prescribed values of the z derivatives of u are used to reconstruct
the function via the PDE. For this reason, we will call a basis that is generated in this way

a Cauchy-Kowalewski basis.




In the following, we apply this procedure to a variety of linear PDEs. The restrictions
that the PDE places on the power series coefficients allows us to rearrange the power series
into a linear combination of basis solutions.

Application of this method to Laplace’s equation (see below) yields the harmonic poly-
nomials for two-dimensional problems and the spherical harmonics for three-dimensional
problems. For other problems, this procedure generates solution béses that are nonseparable
in nature [4], 5] [6], [7], [8]; such bases are often useful in solving boundary value problems
on domains with complex geometries [9], [10].

In Section 2, the main results of this paper are developed for the Helmholtz equation in
two dimensions. Because this is an eigenvalue PDE problem, the resulting basis solutions are
given as power series rather than finite polynomials. However, we show that these solutions
have a simple representation in terms of spherical Bessel functions of the first kind. These
basis solutions are easily generated by the recursions given below and were used in [9] to find
upper and lower bounds on the eigenvalues of the Laplacian over rhombic domains.

More generally, the procedures given in [11] for finding upper and lower bounds on the
eigenvalues of elliptic operators can be implemented using the basis functions described in
this paper.

In Section 3, the method is applied to three problems in higher dimensions: the Helmholtz
equation in three dimensions and the anisotropic wave and heat equations.

Section 4 shows the connection between the symmetry operators of the two-dimensional
Helmholtz equation [12] and the basis solutions of Section 2. Section 5 contains our conclu-
sions.

We close this introduction with a look at Laplace’s equation in two dimensions. Suppose

that u satisfies

Py O%u
322 + -a;; =0, (3)
and has the power series expansion
) zo’ J
ZCRVED DD DETEE g 4)
i=0 j=0 < Je
where
al+.7u
Ui = preg (z,9)=(0,0) . (5)




, . - — s ————

By (3),
U2,0 = —6-3:—2 = -W = —Up,2 - : (6)

Thus the quadratic terms u2,0§ + uo,gl.é can be written as u;g (%’- - ”,;) Since no other

restrictions apply to u;g, the function % - ”,; must satisfy Laplace’s equation (as is easily
seen by differentiating). This gives us the basis solution

2 2

7T Y
oo = TR (N
Simila.rly, U3,0 = —U3,2 SO that
z3 zy? 3 zy?
Us,or + U1,22—y! = Uzo (? - -ZL')
= uso¥s0.

These functions can also be obtained by using the extended separation of variables technique
in [13]. From ug; = —ug3 we get the solution 1, = (5;1 - %’,—) .
In general, we obtain the basis solutions
: n (_l)n-ix2i+ky2(n-—s‘)+t
Yante = D i + k)I(2(rn — 1) + 2)! &)

i=0

where k=0o0r1,£=00r1,and 0 <n < 0.

These solutions are just the well known harmonic polynomials! For example,

" _x_’_y:_rzcos%
WT 9 T 9T T e
and
" 2y y® r3sin3f
91 = —m — o =

2 3 3!
In the same way we can show that the Cauchy-Kowalewski basis for Laplace’s equation
in three dimensions simply consists of the spherical harmonics (see p. 192 in [14]).

Thus special solutions to particular equations can be obtained by a general procedure.




IIl. THE TWO-DIMENSIONAL HELMHOLTZ EQUATION

Assume that u can be expanded in a power series (4) which is absblutely convergent for
z? + y? < r?. If we further assume that u satisfies the Helmholtz equation

*u  F%u

922 6_3/7 = =My, (9)

then only the lower order coefficients u;o and u;; are needed since the higher order coefficients,

uij, with j 2> 2 can be written in terms of these lower order coefficients. For example, by (9)

Upg2 = —Azuw - U2gp. (10)
Similarly,
Ugyg = ——)\2UQ2 - U2
= =)\? (-—Azu.;)o - U2o) - (—Azuzo - U4o) (11)

= Mugo + 2X%ug0 + uyo .
Since the series (4) is assumed to be absolutely convergent, we may rearrange its terms to

eliminate the coefficients u;; for j > 1. This gives our main result.

Theorem 1: If u satisfies (4) and (9) then for z2 + y? < r?,

u(wa y) = f: Hn,o(.‘t, y)un,o + i Hn,l(xa y)un,l (12)

n=0 n=0
where the Helmholtz basis functions H, ; satisfy

aan,j 62Hn'j

822 oy = X Hui (13)

+

and are given by

n g2(n=-m)+i ke M 2(M-m _2M+j
Hynij(z,9) = Y @ —m) )] { > (—I)M( ),\ (M )(2!1,W+j)!} (14)

m=0 M=m m

fori=0or1land j=0orl.




Proof: Write (9) as :
52 , O

m‘u = - ()\ a 2) ' (15)
From this we may express higher y derivatives in terms of lower derivatives by using a

binomial expansion of (8%2;) M:

] 2M4J
UiaM+J = aa,. ‘a%m;:ru for J=0 or 1

= &b ()"

i 2\M
- B (o)
— 8 87 «M 1M M \2(M-m) 82m 16
= 75,7 Lm=o(—1) 3w U (16)
m

m

M
T o(—1)M ( ) XM=y, am,
m

The power series of 4 can be written as

zll

u(z,y) = LoXiotiifh
(17)

g3P+I M4+J
21..0 EJ_O 2P=o :M-O U2P+I2M+J (27:;7)‘. M+

where we have used the change of indices i = 2P + I and j = 2M + J so as to separate the
odd and even powers of z and y.

Substituting (16) into (17) allows us to eliminate the higher order y coefficients in (17),

1 1

_ o oo M ! M M A2(M—m) z2P+I y2M+J (18)
U(x’y)— ZZ 2 E E(_ ) (2P+I)' (2M+J)"‘2P+I+2m,.7°

I=0 J=0 P=0 M=0 m=0 m




In order to bring together all the terms with the same value-of 2P + I + 2m, we use the

relations :
© M © 00 ) © n
X=X Y ad }Y=%> .
M=0m=0 m=0 M=m P=0m=0 n=0 m=0

where n = P + m in the second series relation. This gives

A(n=m)+I
U(Z«', y) = E}:O 2}:0 Z:‘;O { :1:0 (:n—m):! 1 Ei}=m(~1)M (

3 R

—m) 3M+JT
) \2(M=-m) T Y] !] Ugnt1,J

= Tleo o Hant1,5(Z,y)U2n41.0-

This proves (12) and (14) under the substitution of (i, ;) for (I,J). Differentiating (14)
shows that H,,; satisfies the Helmholtz equation (13). ]

Efficient evaluation of the basis functions H.,; is important if the Helmholtz series (12)

is to be used in numerical computations. The first few basis functions are given by,

sin \y

Hoo(z,y) = cos My, Ho(z,y) = o (19)
and
Hofz,g)=ccosy,  Hig(a,y) = 2520 (20)

For the next two basis functions, it is still not too hard to recognize the series in (14) as the

product of polynomials and trigonometric functions:

Hyo(z,y) = = cosly —y-

z?sin\y | ycos )y _sin)y
2 A 2)2 2)3 °

H2l(z’ y) =

but for the higher orders, we must proceed in a different manner. Fortunately, there is a
simple method of evaluating the H, ; based on spherical Bessel functions of the first kind,

Jn, Where
: o A (352
in(z) = 135D |1 ~ Mansyy + W2n+3)(anss) "
(21)

n+k 2k
= n!2”2"2:-.0( n )ﬁ-éfz%l'—lﬁ

7




In order to see the connection with H, ;, write (14) as a finite sum

n g2n—m)+i
Hanyij(z,y) = :‘;o 2(n —m) + i)!92m+j(y)
where
. Iy 2(M-m) 2M+j
Gam+i(¥) = Em( 1) ( ) A m
for j=0or 1.

Lemma 2: Let z = Ay then
(=1)"2™+ jm(2)

Gm41(Y) = e m=0,1,
-1 mzm+1jm_ z
gam(y) = : )m!2m).2m 1) m=1,2,

Proof: Use (21) and (23)to get (24) and (25).
Using Lemma 2 and the well known recursion [15]

mi1(2) = (T2 jn(2) = imea (),

we obtain a recursion for the functions gam+;:

Lemma 3: For gsm4; defined by (23),

-(2m+1) 2

y

Gam43(y) = m92m+l(y)—mg2m-l(y)
—(2m+1) y?

gamia(y) = mgzmw(y)— 4)‘2(m+1)(m+2)92m(3/)

Proof: Use (24) and (25) in (26) with z = Ay.

The first few functions in this series are given by

(22)

, (23)

(24)

(25)

(26)

m=0,1,.. (27)

sin A

go(y) = cosdy , gy = Ay
_ —ysinly _ ycosdy sinly
gz(y) = _—_2_)«—_ ) ga(y)- N2 3

y?
y
94(y) Tz o8 Ay + = 8)3 sin \y

3 2

_ =3y v
gs(y) = 50 cos)‘y+[8,\5 8/\3]sm)\y.

8
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The recursions in Lemma 3 and the finite series (22) give us a simple method for evaluating
the Helmholtz basis functions, H, ;.

In general, g24(y) is even in y while gzn41(y) is odd. From this we see that Hy, ¢ is even
in both z and y, while Hj,41, is 0dd in z and even in y. Similarly, Hj,, is even in z and
odd in y while Hjny1, is 0dd in z and y.

From (23) we find that

8
5592+l = Gan

8”2 ) (28)
3EImi1 = —Agan41 — Gan-1 -

These relations can be used to show that the basis functions obtained by the above procedure
are related to those obtained by the method of “extended separation of variables” in [13].
Also note that since the Helmholtz equation in (9) is symmetric in = and y, we could have

chosen to eliminate the higher order z derivatives rather than the higher order y derivatives.

Ill.  HIGHER DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS

The Cauchy-Kowalewski expansion method can be applied to any linear partial differential
equation with constant coefficients in any number of variables. In this section, we apply this
procedure to PDEs in three and four variables. In the interest of brevity, most of the details

in the derivations will be suppressed.

THE ANISOTROPIC HELMHOLTZ EQUATION

Let u satisfy the anisotropic Helmholtz equation in three dimensions:

Uz = QUzz + buyy +cu . (29)

No assumptions are made as to the sign of the coefficients a,b and ¢ or even whether they
are real or complex.

We assume that u can be expanded in a power series

@) =33 5wl )
ur,y,2)= ULIK =T =TT
I=0 J=0 K=0 It JIK!

9




where
ol 8’ 9Ky

u i
LIK = 521 Oyt 0zK

By using a binomial expansion and (29) we obtain
5 1% @ & 1k
[-5;] u = [aa-;+b—657+c] u
K R-k [ K K-k 2\ k1 2\ k2
DD ! (ai;) (ba—z) R-ki-hay
k=0 k=0 \ k; kq Oz dy
For N3 = 0 or 1, this gives

K R-k f( f{ -k
Ul J2R4Ns = Z Z ( ) ( “klbkzck_k"k’unzkl,uzk,,m .

k31=0 k=0 kl kz

With the following change of indices

= 2f+ M

= 2J+ N,

= 2K + N
ky+ Ky + ks
= j—k

= k—ks

= i—kl,

~ e e b X NN
I

we may rewrite (30) as

J K

I
u = E}V;:O Z;‘_’—_o E?}o:o Z:r.o E:;:O E;:.—_o %T%Tz?'f

ki + k2 + ks k2 + ks
( ) ) ( . akibkack U214+ Ny+32k;,204 N3 +3k3,N3 *
1 2

The summation relationships
1 0

FEEE wm BE-EE

f=0 k1=0 =0 k=0 J=0k2=0 3=0 ky=0

10

(31)

(33)

(34)

(35)




can be used to rewrite (34) as

u(m) Y, Z) = Z}V1=0 E:O Eg?':o {Z;‘I =0 E‘l’cz=0 Ez=0 akl bk’ cka

23(i=k1)+ Ny y3i=k2)+ N3 23(k1 +k3+k3 )+ N3
RE-k)+¥NT  RG-k)+Ma]!  R(Ritka+ks)+Va) (36)

k1+k2+k3 k2+k3
u2‘+N1v2j+N21N8 ¢
ky ks

Let 12i4N,2i+N,,N, be the expression in brackets in (36) and let

kv ky + k ky+k
92k N1 ,2k3+ N3, N3 = Zz‘;:o a1 k2 cks ( 1+ ,: + ks ) ( 2: 3 )
1 2

37)
23(k1+ka+k3)+ N3
Bk +k+E:)+ o]
Then
. . (i=hy )+ Ny o 3(5=kg)+N:
VrisMaitaNs = Th=o Tho BEokeNl BEt e N
(38)
92ky +N1,2k34 N3, N3 +
The two dimensional isotropic case is recovered by setting a = 0,0 = —1,c = =)\%,k; =
0, N1 = 0 in (37). For this case we find that
k2 + ks (k2 +k3 )+ N:
Godka4Ny Ny = Lisoo(—1)f+ee e ( ks BRI FRET
(39)

k
- s cowen (1) @y

with £ = ks + k3. As expected, this is the same result as that we obtained for the two-

dimensional Helmholtz problem.

For the isotropic three-dimensional case, @ = b = —1,c = —)2?, the g functions are given
by
00 k k- kl z?k-l-N;
92ky +Ny 2ks +Na Ny = —1)k k= (k1 +ka)] —_ . (40
2k1+N1,2k3+N3,Ns k=k,z+k,( ) kl k2 (2k + N3)! ( )

11




The lowest order example, N3 = N; = Ny = k; = k; = 0 gives

2k

_ = _1\ky2k 2 '
90,00 = kX:‘:)( 1)*A o = cos \z (41)
and for the N; =0 and k; = k; = 1, we get
«(A2)%* k(k — 1)
92,20 = g( -1)* AT (42)

If we use the relationship

SRR
ky ks ki + k2 ks

the isotropic g functions can be rewritten in a simpler form:

ki + ks \ = k2 k 22k +Ns
= -— (k=n) —_—
92ky +Ny,2k34+N3,N3 ( kz / lgz( 1) A n (2’0 + Ns)! (44)
ky + kg )
= 92(ky +ha)+Ns (2) - (45)
ko )

To summarize the three-dimensional isotropic case, the expanded solution to (29) with

a=b=-l,c=-\is

1 1 1 00 o0
u(za y’z) Z z E Z Z u2i+Nx,2j+Nz.Ns¢2i+N1,2j+Nz,Na (46)
N;j=0 N=0 N3=0 1=0 5
where the basis functions are
i 22(-k1)+N; 2(j—k2)+Na ki + &
y 1 2
= z
¢2s+N1,2J+Na,Ns g_:o kzz_:o [2(2 _ kl) + N1]| [2(.7 — kz) + N. ]..‘72(k1+k,)+N3( ) ) ( ks )
(47)
with
am—p)_ 2N
— m me=
92k+N(2, A) mz-k( 1) A (2m+N)' (48)

and N = 0 or 1. Thus the results of the previous section concerning the two dimen-
sional isotropic functions g, of the previous section can be applied to the three-dimensional

Helmholtz problem as well.

12




THREE-DIMENSIONAL ANISOTROPIC WAVE EQUATION

The three-dimensional wave equation
Usy = AUz + buyy + cU,y (49)

is of interest in the area of electromagnetic wave propagation. Let

ol 87 8% 8ty
ULJKL = 5ot Oyt 92K otL °

By using the wave equation and the binomial theorem with N; = 0 or 1, we find

61 aJ aK aN. 2 L
Yrakat+n, = o1 dy7 9zK Hthe ('aﬁ)

o' 87 ok oM [ o2 & @ \E
= a6z2+b c u

dz! 9y’ 9zK At dy? + 022
L iL- 7 [, —
= > 251 - L-h alrplr L (h+ha)
13=0 l3=0 11 12
ULy, J42l K+2(L~l~1a), Ny * (50)

This gives

1 oo ) ) 00 L £y j’ i’ - ll
u= EN.=0 2T Lm0 LK=0 2 1=0 2:,:0 21,:0

51)
- ol yJ 2K $3L4N, (
ahip - e B

YUrial J+21, K+2(L=1y=13),N¢*

13




Using the correspondences

I=21+N, I=i-1l
J=2J+N, J=j—-1,
(52)
K=2K+N; K=k-1Is
L=li+1,+1

we rearrange the series in (51) to obtain

1 o0 o0 oo

U= ) 33 S h2ih Ny 254 Na 2+ Na Ne Y2ick Ny 25+ Ny 24N, N (53)
N;=0 i=0 j=0 k=0

where
i J kK L+L+1 lp+1
1,[’21'«}-N1,2.7'+N::,2l«=+Ns,NA = Z E E ’ T
11=0 I3=0 I3=0 Il 12
ahplacls g2(i=h)+M y2U=l)+Ns 22k l)+Ns

RG— 1)+ M) 20 — 1) + NaJ! 20k — T3) + Na]!

t2(l;+lz+la)+N4
[2(1 + 12 + Is) + Ny]!

We note that the basis solutions 124N, 2j+N,,2k+N, N, are finite polynomials in z,y, z and

(54)

t. For example,
Y= 3[e%y?2? + ay?2 1 + b2 + ca®y’t?)
(55)
a ]
Hlaba? 4 bos? + acyl + S
THREE-DIMENSIONAL ANISOTROPIC HEAT EQUATION

As a final example, we consider the three-dimensional anisotropic heat equation which is
important in heat conduction and diffusion problems. Under appropriate variable transfor-
mations, this equation can become a free-particle Schrédinger equation or a paraxial wave

equation in three-dimensions. Starting with
Ut = QUgg + buyy + cu,, (56)

14




and defining

o' 87 oK ot .
UKL = 5T 5y 52K B 1)
find
h o 8 oK (¢ 8¢ 8 \r
UILJKL = 37 547 0K (aa22 + b6y2 + cazz) u. (58)

Using a binomial expansion gives

aI aJ aK L L-} L—h . e 6211 8213 62(L—11—13)
ULIKL = FT5.T 55K PIDD L L U By 572 C-h-T)

1;=0 I3=0

tufp\ (-1
= E > ( ) ( I ' ) a"1b2ct _""’UI+211.J+213,K+2(L-11-ta) . (59)
2 .

13=0 I3=0 l]

Proceeding as in the previous example we find

1 o0 o0 o
u= 3’ Z D Y20k 254 Na,2k+-Ns,0U20-4Ny 254 Np, 2k4 N3 0 (60)
N;=0 i= 0 k=0
where
. . L+l +1 lp+1
V24N 2j4 N3, 204850 = Tl =0 Lhy=0 Eﬁ:o( ' ; 3) ( 21 : ) ahblach
1 2 (61)

,,-2('-11)+N1 2J=12)+ N3 ,3(k=ig)+ N3 ¢li+ig+ly
RG=-0)+¥M RG-0)+N3] RE=1)+Ns ]t 1 +la+Ts]t

For example the first few basis functions for the heat equation are

¢000’° =1 ’ 1/)1’0,0 =2 H 1!)0,1,0 =y H 11)0’0’1 =2

¢1,1,0 = xy ) ¢1,1,1 =2Tyz H "»Z’O,l,l =yz ; ¢1,0'1 =2z
2

Y200 = F +at i o0 = lzi +5 ; tYoo2= % +ct

2,2 ]
brao= Sf 4 2t 4 10 1t
(62)
The specific examples of basis functions for the anisotropic heat equation are of course
simpler than their counterparts for the anisotropic wave equation due to the presence of a

first derivative only in the time variable.

15




IV. HELMHOLTZ SYMMETRY OPERATORS

In this section, we examine the relationship between basis solutions and symmetry operators
of the two-dimensional Helmholtz equation.
From (22) and (23), the basis solutions of the Helmholtz equation in (9) can be split into

four types, i.e.,

n z2(n=k)

Hano g2r(y 63
2 g k)]' 2 ( ) ( )

n 22n—Fk)+1
H,, = 64
2n+1,0 E_g PCEDES] 92:(y) (64)

n z2(n-k)
Hany = g,o B ) 9 (¥) (65)
" 2(n—k)+l
n 66
n+1,1 = k§o B+ 1) g2k+1(y) (66)
and we can write the solution of (9) in the form
w2, y) =Y tanoHano + Yant1,0H2n41,0 + Uzn1Han1 + Uznt1,1 Hang1,0- (67)
n=0

We know from [12] that the symmetry operators associated with the two-dimensional Helmholtz
equation are

) 0 0 0

E, P1=—, P2=a—y, M=ya—z—$-a-§ (68)

o0z

where E is the identity operator. Repeated application of these operators on a given solution
of (9) will produce further solutions. We wish to point out the following relationship between

these operators and the basis functions Hy, ;.

Lemma 4:
..?.. —_— zi Hm-l 1= cmHm o+ i aiHm—i o+ i bl'Hm-i 1 (69)
az ay y ’ pact ’ p "

where e, = —m, a; = a;(m), and b; = b;(m) are constants.

Proof: First note that

# (8 8 _ _y2[,0Hn11 _ OHn-1a
(5 5) o) - ] o

16




A

since AHy; = —A?H,; for all 0 < £ and 0 < j < 1. We wish to show that

0 7] :
( 5; - 35;) Hm—l,l = cmHm,o + F (71)

where F is the sum of terms of the form z'y*g, with 0 < k <1 and I < m —1. We know that
both Hy, o and (ya% - z%) Hy,_, satisfy the Helmholtz equation. Once (71) is established

we can use

AF+)F =0 (72)
and Theorem 1 to get
m
F= E at'Hm—i,O + bt’Hm-i,l (73)
=0

because the z derivatives of F' of order m and higher are zero. Hence the proof will be
complete when we show that (71) is true.

Case I. Assume that m = 2n + 1 is odd. Then
2(n-k)+1

Hmo = Hany10 = E “B+ 1 92x(v) (74)
and n 2(n-k)
Hpo1y = Hany = Eo B =l Gak+1(Y) . (75)

Using the fact that 3% 2k+1 = gak; k 2 0, we can write

(ya% - 3‘38;) Hn1p = (ygez - 338;) [ELo %%i? 92k+1 (y)]
(76)
= ¥ Theo Fremmy 93k41(8) — Tieo ST 924() -
But if ( 9 N~
D, gn=k)H1 t 2(n - k) +1 g2
then
22n=k)+1 n ok g2(n—k)+1 78)
S(z’ y) = (2n + 1) kz—% [2( k) T 1]| g2k(y) - Ig [2(n k) T 1]' 92k(y) (
or 2(n—k)+1
i 2k n=
S(ay) = @n+1) Himiio— X z - oa(y) (79)
ol k) + 1}!
Combining (76) and (79), for m =2n +1,
0 0
- — _ 0 = 80
(yaz xay) Hm 1,1 + mH, 0 F ( )

17




where

oF
>
6::: =0 for j>m,

thus establishing (71).

- Case II. Assume that m = 2n is even. Again by Theorem 1,

n 2(n—k)

Hpo = Hapo = g =R g2k ()

and
n=l  2(n-k)-1

Hp13 = Hyne11 = Hypnegyp10 = 3 Brn—F) =1 gar+1(y)

k=0

As in Case I, we find that

6 _.0\, nl gank)2 net 2(,.-,,,
( Yor ~ “"6'5) me13 =¥ 3 ey g 9 W) — X gy o)

k=0
But if n-1  _3(n-k) 21 9(n — k)z2—H)
T(z,y) = ,; Rn—k) —1]! 92k(y) = ,g 2 - R 92:(y),
then
T(ays) =20 5 o 9(4) + 209m(s) = 5. o g(s) = Ingm(s)
2 B = A] MECED)
or

n=l  Lp2(n-k)

T(z,y) = 2nHano — 2ngan(y) — E [2(n L g2k(y)-

k=1
Combining (84) and (87) with m = 2n gives

- I(n=k)=-2
(v ~28) Hnra + mHng = yTish gy 92k (v)

+2ng2n(y) + Thai fagy 924(v) = F
where F satisfies (72) and (81). Thus '

m-1
F=)Y" aHio+bHi .

1=0

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

Theorem 5: Let ¢o =cosdy andlet E=1, P, = 3’1, P, = 58-;, M= ya%—z%. Let S be
the set of all functions of the form [ EI'PJ” PK"ML' éo0; Iy, Jy, Ky, L, =0o0r 1. Then S

v=1

is a complete set.
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Proof: We show that the operators E, Py, P;, M can be used to generate the basis functions
H,;for 0 <m, 0 <¢ < 1. Since these basis functions are complete, S must be complete

also.
Beginning with the lower order Hy,;, recall that

Hpo = cosly = Edo

sin \y

Hoy = ;)

1
= _FPZ%

Hio = zcosdy= Moo

_ zsindy 1
By = ——=-%

P;Méo (90)
As an induction hypothesis, suppose that we can generate Hoo, H10,. .., Hm-10and Ho1,..., Hn-11
from ¢o. Then by the previous lemma,
1 m
Hppo = -— (M Hpo1p =Y aiHmoio+ b.'Hm-i,1) (91)
t=1

i.e., Hn o can be generated from ¢o. Furthermore

—MNHpy = Hupoe + Hup gy (92)

But
Hpyyy = Hmoy = PoHpo (93)

and
Hpizz = Hn-2a, (94)

s0

Honp = =35 Hne23+ Piingl, (95)
i.e., Hm,1 can also be generated from ¢o using E, P, P, and M. 1
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V. CONCLUSION

A general procedure for generating a complete basis of solutions for aﬁy linear constant co-
efficient PDE has been given. For many problems, especially for noneigenvalue PDEs, these
‘Cauchy-Kowalewski’ basis functions are finite polynomials and as such readily lend them-
selves to finite element and collocation type numerical approximations. For eigenvalue PDEs,
however, the basis functions are infinite series which potentially limits their usefulness. This
drawback presents only minor difficulties in the particular case of the the Helmholtz equation;
by using spherical Bessel functions, simple recursions have been derived for the Helmholtz
basis functions thus leading to easy procedures for their evaluation (see [10] for a discussion
of this point). In general, the basis solutions obtained by the Cauchy-Kowalewski proce-
dure are nonseparable in nature and quite useful in obtaining closed-form approximations of

eigenfunctions and associated eigenvalues for domains with complex geometries.
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