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(:> ' R : Abstract

This note develops various norms of time-domain functions and convolu-
tion operators to obtain bounds for transient system response. Besides the
usual p-norm one can define another norm, the residue norm (or r-norm), based
on the siigularities in the complex-frequency (or Laplace-transform) plane.
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I. Introduction

In describing the interaction of electromagnedic fields with complex
systems electromagnetic topology is used to organize the system into parts
which can be separately analyzed and the results subsequently combined tl,
7, 9]. Due to the complexity of the problem it is often more practical to
look for bounds on the electromagnetic response instead of “exact" answers.
In this context the use of norms has been developed to obtain rigorous bounds
which are in some sense also "tight" bounds. For this purpose several papers
discuss the use of vector.norms and associated matrix norms of wave variables
and associated scattering matrices, primarily in frequency domain (1, 2, 3,
5, 7].

~More recently these norm considerations have been extended into time

-domain [4, 6]. In this form the transient waveforms are characterized by

positive scalars related to appropriate system response parameters. This note
considers the p-norms of transient waveforms and the associated operator norms
for time-domain convolution operators (what transfer’ functions become in time
domain). Another type of norm called the residue norm is defined based on the
singularities in the complex-frequency (or Laplace-transform) plane, and
related to the p-norm. ;



II. Norms of Time-Domain Functions and Operators

Norms of vectors have been defined by the properties [8]

=0 iff (x.) = (0)
||<x,,>u{ ) =

[atx )| = |a] H(x )| » a=a complex scalar | (2.1)

> 0 otherwise

[10g) + T < x|+ [1y,)]] (triangle inequality)
||(xn)|| depends continuously on (x_)

Associated matrix norms are defined by

J1CH m)” : s ) - )] (2.2
’ (x,)#(0.) ||(xn)||4

where the matrices are allowed to be rectangular as long as there is a com-

patibility of numbers of rows and columns to allow dot multiplication. These
matrix norms have the properties

(A || <
L "M d {> 0 otherwise

etk 11 = la] 11ty )]

=0 iff (An,'m) = (0. )

n,m

(2.3)
||(An,m) + (Bn,m)l' < |l(An,m)|| + ||(Bn’m)l| (triangle inequality)

"(An,m) . (Bn,m)ll < ||(An,m)|' ||(Bn,m)l‘ (Schwarz inequality)
j|(An’m)||. depends continuously on (A_ )
Here (An m) and (Bn m) are general rectangular matri;es as long as they are

compatible for addition and/or dot multiplication as required.

The vector norms are generalized to functional norms in the sense that
a vector of infinitely many components (an infinite dimensioned vector space)
can be considered as a function of a real variable (taken as t (or time) in
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this case, but could represent other kinds of parameters). These have the
properties [4, 14]

el {

[laf(t)]] = |«] |IF(t)]| » « = a complex scalar

=0 iff f(t) = 0 or has zero "measure" per the particular norm .

> 0 otherwise (2.4)

)+ ste)]] < [IFR) ] + {]ste)]]

In a manner similar to associated matrix norms we can define associated opera-
tor norms via ||A(f(t))||
A ] = sup ———o——

f(t)2 0 ||f(t)]]
wﬁere now A is an operator which operates on a function to produce another
function, say as

(2.5)

F(t) = A(f(t)) (2.6)

Here A‘can include integration, differentiation, or any kind of linear opera-
tion that results in the following properties of an operator norm

a0 )] | {

Heal )] = Ja| |aC)]]

=0 iff A( ) = 0 or has zero “measure" per the particular norm

> 0 otherwise

(2.7)
HaC) + 2O ] < [aO) ]+ 2O

||l ))“ < A O]

Note that A and T are required to operate over the same range of t on which
f(t) is defined

One should be careful in considering the norms of functions and opera-
tors. Tﬁere are considerations of continuity, continuous derivatives, inte-
grability, etc., which may need to be considered, depending on the particular
norm under consideration. Note here that while we are defining function and
operator norms as a .natural extension of vector and matrix norms, this concept




can be further generalized to vectors of functions, matrices of operators,
functions of several variables and associated operators, etc.

There are vgrious kinds of operators of physical interest. A very
important one is the convolution operator (with respect to time) that charac-
terizes linear, time-invariant systems. We symbolize this special operator
by g(t)o where

F(t) = g(t) o f(t)

T gt -t') f(t') dt"
=7 olt') f(t - t') dt’ , (2.8)

If (as we normally do) we assume that g(t)o is causal (no response before an
excitation) then

g(t) =0 for t <0 (2.9)
and t . “
F(t) = [ g(t - t') f(t') dt’

-

=Zﬂv)ﬂt-ﬂ)u' | S (2.10)

The concept of convolution is closely related to the Laplace transform
(two sided) defined by

3

T(s) = [ 7(t) e Stdt

§—

t

£(t) "?%T é T(s) etds (2.11)
r

Br = Bromwich contour in strip of convergence of Laplace trans-
form (parallel to jw axis) .
S =Q+ juw

In terms of the Laplace transform (2.8) (or (2.10)) becomes

F(s) = a(s) T(s) (2.12)




so that convolution in time domain becomes multiplication in complex-frequency
(or Laplace or Fourier) domain. .

Still in time domain convolution is an operation for which we consider

a general convolution operator g(t)o which is to be distinguished from the

function g(t). Following (2.5) we define the associated norm of a convolution

operator as ||g(t) o f(t)ll ,
||a(t)o|| = sup (2.13)
f(t)2 0 ||f(t)]]
which depends on the particular function norm chosen (and which requires that
f(t) be limited to functions for which such a norm exists). Note that in
general the norm of the operator g(t)o is not the same as the norm of the
function g(t).




[II. p=-Norm of Time-Domain Convolution Operators

The p-norm of time-domain waveforms is [4]

. 1
||f(f)l|p = {f |f(t)|Pat)P ' (3.1)
1<p<a=
with a.special case of the =-norm as
)], = sup  |f(t)] (3.2)
el <o

where isolated values of f(t) are excluded by considering limits from both
sides of values of f(t) of concern.

Considering a convolution operator g(t)o as in (2.2) we- have from
(2.13) and (2.10) for p-norms

la(e) o £(8)]]

g(t)o}|, = sup (3.3)
4 s (ORI
® ' o l
{/ lé g(t') f(t - t') dt'|Pat)P
) 1],
where g(t)o has been assumed to be causal. Apply the Holder inequality
(Appendix A) with A p-1
f(t) = g(e)] P
1
fo(t') = |gt)|P [f(t - t)] .
' - (3.4)
plz[l'%]‘lzp-l
Py, =P
AThen - )
If g(t') f(t - t') dt'] _
°. =l . L
< {é lg(t*)] dt'}.P {é lg(t")] |f(e - t')|P at' )P (3.5)

v
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(:) ~ Integrating over t of the pth power of the above (as in (3.3)) gives
[ a(t") f(t - t') de*|Pae
- 0 .

< TAT Jsen)] et (T Jaten)] Jete - o) et et

8 5‘—;8

= [ [lsen |5t {Z lg(t*)| |f(t - t')|Pdt'} dt

= |]o()] |8 z lst)| (] |#(t - £)]Pdt} gt

= |a(e)] 3" Z ls(e")] |]f(t)][Pat

= [lge) |87 [1fce)||® Z la(t")] at*

= He@ 15 e 18 a1

= Ha@®11§ e (3.6)
O Substituting this resuit. 1;1 (3.3) we have.

Jlswo] |, < [fse)]];
(3.7)
. 1 <p @

This is a remarkably compact result saying that the p-norm of g(t)o (the
convolution operator) is bounded by the 1-norm of g(t) (the function).

This result is related to what in linear-system theory [15] is called
bounded-input -bounded-output stabi]if&. Here the important point is that a
convolution-operator bound is given by the l-norm of the convolution function.
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Iv, 1-Norm of Time-Domain Convolution Operators

In the case of the l-norm the results of the previous section also
apply as can be seen from

[ ] alt') f(t - t') dt'| dt

gt)ol|, = suyp =0 (4.1)
lsterel, f(t)# 0 [,

? 'Z g(t') f(t - t') dt'| dt

< [Z lg(t*)] |f(t - t')| dt'] dt

® 4

= [ lat)] [f [f(t - )] dt] dt

=l [ lsten)] e

o

= [Ife) ]y Heo) ],
giving

[la(t)ol |y < [latt)]], - (42)

For a lower bound consider the definition in (4.1) and substitute in a
special f(t) as ' '
f(t) = 5(t) (delta function)

[stt) ], = ? |s(t)] dt = ? 5(t) dt = 1 (4.3)

-

T at') s(t - t') dt' = g(t)
giving 0 o "
latt)ofly >f Jot)]| dat = é la(t)| dt = [{g(t)]], (4.4)

Note that it is important that the 5 function have a 1 norm (in effect, be
integrable) for this result.

Combining (4.2) and (4.4) we have

[a(e)ol]y = [late)]]4 - (8.5)

10




V. 2-Norm of Time-Domain Convolution Operators

For the 2-norm it is convenient to use Laplace- (or Fourier-) transform
.concepts. The two-sided Laplace transform is

F(s) = | f(t) ety

S =Q+ jw = complex frequency
5.1)
1 st (
f = 3T ?

(t) ZEJ é (S) e’ dt

r

Br = Bromwich contour in strip of convergence
(parallel to ju axis)

In terms of the Laplace transform our convolution problem is just mu]tipﬁca-
tion, i.e. F(t) = g(t) o f(t)

- (5.2)
. F(s) = 3(s) T(s)

As discussed in another paper [6] the 2-norm with respect to time is
related to the 2-norm with respect to frequency w. As

' 1
. . @ ?
. e, = {f |fce)| %ty
. ( . ': 1
TG |, = 1 170 2de}?
- (5.3)

1 .
f(t = — | |F(jw)
IMCUPEE—ILEMIIP

which is one way to state the Parseval theorem.

Now the 2-norm is expressible in both time and frequency domains as

[la(t) o f(t)]],

g(t)o||, = sup
1 12 flt)x 0. |lf(0)]],
113(3w) Fliw) ],
= sup
Fliw)= 0 H?(jw)ug
- 1
(186w FGw) | %dal®
= sup e (5.4)




We have the inequality

-

[ 1800) Fliw)|? dm<f 13(5w) |2

-0

max I?(jw)lzdw‘

Ig(Jw)'max '

Fldw) | 2dw (5.5)

Here the maximum of lﬁ(iu)t is over all real w. This can be used to define an
Unay Via
13 upg, )| = 13|, | (5.6)

Of course there may be more than one wpax Meeting this definition. This gives

Hatt)ol|, < [9(3w)|pay = 183, )] (5.7)

For a special case consider

L FU % = oo -, ) (5.8) -
~ which gives —
[la(e)el |, > |3(in, )] - (5.9)

assuming that |g jw) | is suff1c1ent1y smooth near = Qnax'

urhining (5.7) and (5.9) gives -

[a(t)ol], = |30 ay = 1300, ) (5.10)

Combining this with (3.7) gives

|3(30) | gy < Ha(®) 14 . (5.11)

Interpreting (5.8) physically this means that the spectrum of f(t) is

concentrated in some region near w = Wnax leading to (5.9). This should be

considered as some sort of limit process.




VI. ==Norm of Time-Domain Convolution Operators

For the =-norm the results of section 3 also apply as can be seen from

|Z g(t') £t - t') dt'|

o sup -
llg(t)o]|_= sup t .
| f(t)# 0 (0 [gyp (6.1)
K glt') f(t - t') dt'|
< ;f la(e")] |f(t - t)] at’
f(t T la(e")] at
< [f(0) |gyp [ |a(t*)|
= [f(t)]gyp Hat®)]];
giving
Hate)o||, < [a®)]], (6.2)

For a lower bound choose f(t) in a special way. Think of fixing t and
choosing ‘ ' - “

+1 if g(t') >_0
f(t -t') =< 0 if g(t') =0 - (6.3)

-1 if g(t') <0
This gives

|f(t)|sup =1
|z g(t') f(t - t') dt'|
: = | Je(e)] at®
. 'Ig la(t")] dt*| |
= |la)]]; (6.4)

which when substituted in (5.1) gives

| IHa(e)ol ], > |a(t)] ], (6.5)
Combining (5.2) and (5.5) we have _
s, = )11,  (5.8)
13




VII. Residue Norm of Time-Domain Functions

Let us assume that our time-domain functions are of the form

f(t) = TR e " u(t) (7.1)
n
with conjugate symmetry as
S = s¥
L (7.2)
= R¥%
R-n Rn

except that for n = 0 another index is needed to allow more than one pole on
the negative real axis and so that in time domain the function is real.

In complex-frequency domain the above is

F(s) = I RLs -5 17 (7.3)
n

which is a sum of first order poles. So- that f(t) may be bounded let us
., require.. . - .
Re[sn] < for all n - (7.8)

Let us now define another norm as the residue norm or r-norm as

e, =1 IR, | (7.5)
n

with the restriction this sum converge. Here the subscript r is purely sym-

bolic and does not assume numerical values. One can verify that this is a
norm by application of the required properties in (2.4). Let us assume that
] all the sp are distinct so that no terms in (7.1) cancel (in particular so
that f(t)# 0 unless all the Rn are zero). Then

=0 iff all Ra = 0, or equivalently f(t) =0

)| { (7.6

> 0 otherwise




Also we have
~ [1ef(®)]], = 3 fay| = [l T I8,]

= |af |[f(t)], C(1.)

The ;riangle inequality is verified by considering two separate functions,

distinguished by superscripts, as '

1) sél)t
e u(t)

f(l)(t) =) R£
" ((2) (7.8)
f(Z)(t) = E Rr(\Z) e N tu(t)
n
Then if the two sets of natural frequencies {sél)} and {sﬁz)} are distinct
(have no common elements)
(1) (),

S t
e @) + (B = TR e™ Tuwr ]+ (1R e Tum )],
n n

1 2
AR

e 1], + 12 ]| (7.9)

r

However, if some sﬁl) = sﬁ?)~then the associated residue is Rgl) + Rg?) and

the term in the residue norm is
R+ {D) ¢ RID |+ rl2)) (7.10)

(1) and 5(2) then

This being true for all such pairs of S A

||f(1)(t) + f(z)-(t)H <

r

+
—
~

and the r-norm has all the properties of a norm.

While (7.1) can describe many interesting waveforms, a general time-
domain waveform can contain other types of terms as well. In the génerai




theory of the singu]arity expansion method (SEM) there can be branch singu-
larities which take the form [13]

n o (7.12)

C

n' n'th contour in left half s' plane

Near the branch point(s) one may need to be careful in defining the branch
contribution. Here for contours not on the negative real axis we take the
contours in pairs '

C_i = Ch  (symbolic)

» (7.13)
Rog(s') = Rou(s'*) = R, (s")

so that the resulting time-domain function is real valued.

.

Combaring (7.12) with (7.1) and (7.3) note that the form is very simi-
- lar., In particular one can think of approximating an integral as in (7.12) by
a sum as in (7.1) and (7.3). So let us define the r-norm of fn.(t) by

Hf, ()], = é' IR (s")] [as'| | (7.14).
n
in agreement with (7.5), provided of course that this intagral exist. Note
that if Ca is moved in the s plane (even with fixed branch points) a different
result may be obtained since the integrand is not analytic. Hence the defini-
tion of CA must in general be fixed for the problem at hand. The reader will
note that a sum of such terms fn.(t),with those in (7.1) to give a more gen-
eral f(t) and the r-norm as defined by a sum of terms as in (7.3) and (7.14)

js a legitimate norm satisfying (7.6), (7.7), and (7.11).

Another *type of singularity (at =) is referred to as an entire func-
tion. . As discussed in‘[13] this can be represented by a contour integral at =
of a form similar to that in (7.12). In this case one needs to be‘careful of
convergence of the integrals particularly in the norm as in (7.14).
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The problem of higher order poles can be addressed by noting that the
r-norm of a single term in (7.1) is the same as the «-norm, i.e.

snt : snt u
[[R, e " utt)|]| =R | = [[Ry e " utt)|], (7.15)
Then consider a multiple order pole of the form
tn-l s t

fﬁm)(t) = Rgm) ——7T © " u(t)

Mg o s 1™ (7.16)

?ﬁm)(g)
m=1,2,3, eee

The peak magnitude is found from

m-1 Re[sn]t

1™ e)| = [r(™)] h—t;-me u(t) (7.17)

where the time of the peak satisfies the equation *

(m)
| R
4 |eim ey LR TF!T‘H-"'T)L' [(m- 1) 0% + 0"} Rels 1] e

p
m-1 :
t = (7.18)
p -Relsnl

M@l = max M) = [1fM o],

Re[sn]tp

giving

|Rp(1m)‘ m-1 m=1 1-m
*w-nr R 1l (7.19)

ms= 2’3‘,4, eeoe

e ], -

r

(1)
Ry |
Note that for the higher order poles we restrict

_Re[sn] <0 for alln (7.20)

= 17




i l‘u |4

Then our general form for the r-norm is

(m)
f(t) = £\ (g £, (t
(t) n§m"”+§'"”

Ol R LTS A LMOIR

n,m

where the individual terms are defined in (7.14) and (7.19).

(7.21)
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VIII. Relation Between the r-Norm and p-Norm

Consider first the case of simple poles as in (7.1). If the p-norm of
f(t) is to exist we require ’ '

<0 for P = =

Re[sn] { } for all n (8.1)

<0 forlcp<a

Then the p-norm bf (7.1) can be bounded as
" . snt
e, = 11 Ry e " ue)]]
Snt
< g ||Rn e u(t)llp
. snt
= g |Rn] |le. u(t)”p , (8.2)

using the fundaméntal properties of norms in (2.4). Considering the indi-
vidual terms 1

s t « st =
_\ [le ™ ute)]]; = (f le " |Par)?
= pRefs ] 1
> 1 11
-1 P . 1 P, P
* [pRelsnI] [-Relsnl] P (8.3)
for 1<p <o
For p = = we have Snt Snt
e " u(t)|]_=|e u(t)lsup =1 (8.4)
Then (8.2) becomes
L 1
. 5 N
pPy ‘Rn' [:ﬁgéz;jy} for 1<p <= |
1], < " " (3.5)
rg‘ |Rn|'=Hf(t)||r for p = =

Note for these results to'app]y, not only must (8.1) apply, but also the .
series in (8.5) must converge. An interesting term in (8.5) is




1 forp=1
1 1
P_. )—=.707 forp =2
P ’ 1 1
T3 = pan(p)
1im p = lim e =1 forp=o (8.6)
pr= pr=
S S
. p e
min p = e = 692 at p =e = 2,718
1<p<= 1 '
max p P at p = 1,=
1<ps=
If we define
Quax = sgp Re[sn] <0 (8.7)
Then from (8.5) we have the 1oose; (but simpler) bound
' 1 1
e, < p Pl—1 |If(0)]] (8.8)
P “max r

Thus the p-norm can be bounded in terms of the r-norm.

A contour integral contribution as in (7.12) can be bounded provided
the contour Cnh+ has its location in the Teft half s' plane bounded to the left
of the jw' axis as

sup Re[s'] = Q< 0 : (8.9)
Then we have s'eC,,
1
£ (e[ = (f |£| R (') e® Fu(t) ds'|Pat}P
- , 1
< {é [é IR . (s")] aRels'Jt, (4) lds'|1Pat}P (8.10)
nl

This can be bounded by regarding an .integral as the limit of a summation,
i.e., generalize (8.3) as

ALAOI

o= 1L Routsty e Fuge) as| ]
Cn|

N

[ 1Ry (s") SRR

nl

= 0 IR e Fute) ]| ldst| (8.11)

n

20
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Then applying (8.3) and (8.4) a result analogous to (8.5) is

1 1
) ; ' R
p " [ IR (s")] [__—_—T_] |ds'| for1<p<a
[f e ()] < o -Rels’] - (8.12)
é |R'n'(si)| |ds'| = ||fn'(t)||r forp = o
nl

Again we need that |R (s')| be integrable on C,. with special attention paid
to Refs'] » 0 and Re[s'] » == (if such cases occur). For the bound on the
general p-norm it may be possible to allow Res'] » 0 and/or -« provided the
behavior of |R;(s')| is such as to allow integrability there (thereby loosen-
ing (8.9)).

A looser (but simpler) bound is found from (8.12) with the restriction
of (8.9) as 1 1

@11, <0 (2= (17, 0], (8.13)

Thus for a branch contribution as well the p-norm can be bounded in terms of
the r-norm.

One can also consider entire-function contributions which also have the
form of a contour integral (at =) with bounds as above.

In the case of higher order poles with the restriction (for m > 1) of
Re[sn] <0 forl<p<go (8.14)

we have the extansion of (8.2) using (7.16) as

m-1 s t

'If,(,"")('c)llp = [R{M| e " u(e) || (8.15)
The individual terms as
p 1
tm-l snt e tm-l snt >
HFn"-'l_)T,e u®l]; = {cf) woDT e dt}
pRe(s Jt =
* T - TV {0 ¢p(m-1) ¢ " gt )P (8.16)

21




are solved via a common integral as [12(6.11)]

r(z) = k2 f g2l e'ktdt for Re(2] > 0 , Re(k] >0
0 (8.17)
k = -pRe[sn]
z=1+p(m-1)
r(z) = gamma function
r(z) = (z - 1)!
This gives
® _ pRels_Jt e '
étp(m Do M ar = [oprels 171D p1 4 pim - 1)) (8.18)
and
P |
m-1 s t - = .l =
1t n 1
=T e " v, = 1T [-pRels 1] P (1 + p(m - 1))
1
1 . 1 = ~
- = -mt+l = +m-1 p :
= P 1 P r'(l + p(m - 1))
P [:'R—e-tg:]'] T(m) (8.19)
which is a direct extension of (8.3). Then for higher order poles we have
) (my =5 ™ 5 -l r'%( -
m m 1 1 +p(m-1
118 ()], = Ry p P r i I.F(’,s,) ) (8.20)

n

With the r-norm of a higher order pole as in (7.19) (defined via the
=»-norm) we can write the p-norm as

' - l--m+l 1 1 l'l :
e, = ol P gty Plr sy ™ P+ ot - 1)
| ! 1
- llf,(,"")(t)H,. p p[:gg%-s—nﬂpﬁ\@,m) CESY

A(p,m) = [ETEE:—TT]N'le(l +p(m - 1)) form=2,3, «

22
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where p P has been considered in (8.6). The additﬁ‘ona] factor A(p,m) can be
considered for special cases. For p =1 (the l-norm) we have

(m-1)an(=27)

A(Lm) = [—2—]™! ¢
- e(m-l)[l-m'n(m-l)]
1 form=1 (from 8.5))

e = 2,718 form= 2 (8.22)
® form = o

For p = 2 (the 2-norm) we have

1 1
A(2,m) = [ﬂ_'_“_g:_ﬁ_]m-l (2m - 2),] o(m- 1)[1—xn[2(m- )]]C(Zm )!]’Z
1 form=1 (from (8.5))
= ¢ 8-21.922 form=2 (8.23)
/2
@ form= o

For p = » (the =-norm ) use the Stirling approximation [12(6.1.37)] as

1
r(z) = e'? zz Z /2x [1 + 0(2'1)] ‘ . AS 2 s+ =

C )
L

Ml +p(m-1)) =/Zn e L1p(n-1) 143 "P(m-l)]xnthp(m-l)]n +0(p~H1
1 1 . aS P » =
P

-[= +m-1]+[ +(m-1) Jan(1+p(m-1) ] )
(1+p(m-1)=(2m® e 5 2 [1+ 0(p~2)]
dS P » =
el-m+(m-1)1n[1+p(m—l)]E1 + O(p'l)] s p » =
=1+ pm- 1T ™1+ 0(p7h)3 as p > =
‘ (8.24)
giving .
A(=,m) = 1im A(p,m)
pro
= Liz [p me_ . ]m-lti + p(m - 1)]m-l el-m
1 -1
G
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which agrees with our definition of the r-norm via the «-norm in (7.15).

Analogous to (8.5) and (8.12) we have the bound for a sum of higher
order poles '

el < 1 1ol

1
1
- = -m+l - m-1 p
1 1 -1
) ‘Rﬁm)| P P [:ﬁ;f;‘jﬂp ( +P?;? ) for 1<p<a=
= 4 n,m nl
-Mm
. m I IR m)l [-Ee'sl i %Tﬁjﬂs ||f(t)||r forp = o

(8.26)

wiph the restriction of (8.7) this bound is loosened somewhat by replacing all
the Re[sn] by Qmax

Then our general form for the p-norm is
) ) . _
ORI RGOS S AN CY

n (8.27)

ol (m) <
@) < ngm e @)1, + I ILMOIIA

where the individual terms are defined in (8.5), (8.12), and (8.26).




IX. Residue Norm of Time-Domain Convolution Operators

Now consider the r-norm of a time-domain convolution operator g(t)o

defined by _ ||9(t) o f(t)||r
[Ja(t)e]|. = sup ' (9.1)
fie)eo  |[f(e) ],
Section 7 has considered the r-norm of time domain functions. For later use
let us define bounds on the real parts of the singularities of the functions,
i.e.

T(s) analytic for Re[s] > Q¢

~ V(9.2)
g(s) analytic for Re(s] > gg

Now for the r-norm of f(t) to exist and for the response g(t) o f(t) to be
bounded we require A
Qe < o , dg <0 (9.3)

Furthermore it will be useful to bound one or both of these to the left of the
imaginary axis for various applications.

1. First order poles

Let us restrict the consideration at first to first order poles as in

(7.1) st
n

with conjugate symmetry as in (7.2). Similarly let g(t) be represented by

s;;
g(t) = J G, e ~ u(t) (9.5)
'} .
2 .
with conjugate symmetry as
s' =g'*
X (9.5)
= .4
G-l Gl

except that for 2 = 0 another index is needed to allow more than one pole on
the negative real axis.
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f(t) = TR e " u(t) | (9.4)

B PO U IS O




In complex freqhency domain we have
- -1
T(s) g Rn[s - sn]

| §(s) = T 6,ls - 5,177
which gives a product 2

Eks) T(s) = 12 G R,[s - si]'lts - sn:l'1 )
‘ oN

R L S T

A ]
for Sy * Sy for all (n,2)

In time domain this is

j s't s t
g(t) o f(t) = § Gan{[s' sn]'l e * u(t) + [sn - s']'1 e " u(t)}

,n L 2 2
From this one can write the r-norm from (7.5) for first order poles as

o) o fe)]|o =2 3 18] [R,] Is; - s |t

= T IRgI12 T1el Isy - 5ol 7
Defining

(0) _ ' -1
G = max 2 G s' - s

(provided sum exists) we have

la(e) o f0)]], < 6! V]]f(0)]],
and

l9tt)el], <« 61

as one way to consider the r-norm of a convolution operator.

- (9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)
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Howevér, note that G(O) is a function of the poles s, of ¥(s), not just |
of the G’Q and si. This problem can be alleviated if we can give a lower bound
to the |si - sﬁl, say | 1
A=inf |st -=s | >0 (9.14) |
2,n L n A l
Then we have

6 <2 g, | O (9.15)
giving
latt) o f&) || < £ ||a®)]], |1Fe)}],
(9.16)
sl |, < £ {late)]],
assuming the sum ‘
[ett) ], =1 ls,| (9.17)
L

converges. Note that the result in (9.16) is consistent with the symmetry of
the convolution operation, i.e.

g(t) o f(t) = f(t) o g(t) (9.18)

,“w so that either g(t)o or f(t)o can be considered as the convolution operator.
ﬂ ‘ However, the presence of A in (9.16) is still undesirable in that it depends
on both f(t) and g(t) in the sense of closest approach of corresponding poles.-

|

2. Second order poles appearing from convolution

Even though F(s) and g(s) have each been constrained to have only first
order poles, the product can, in principle, have two such.first order poles
(or pole pairs) coincident giving a second order pole (or pair of second order
poles). Say for some (n,%) pair

'
=
SFI S}.

* 1R 3 !
Sy =S, (or S_q ® S-z)

Then considering one such case we have from (7.19)

(9.19)

sit st
||[Gle u(t)] o [R e u(t)]||r

1 -2 st
Y "éerRn[S -5, 177 e ds||.

1 1
e -Relsnl IGQ' IRnI




In

no
(9
no

3.

r
no
th
co

A

this formula 2/A in (9.16) has been replaced by 1/(-e Re[sn]). So it is

not. the nearness of Sh and s; (coincidence in this case) which blows up the

L
rm, but rather the nearness to the jw axis. If we require Q and Qg in
.3) to be bounded to the left of the jw axis then such a caoincidence causes

problem.
‘c1ose approach of two poles appearing in a convoluticn

Well, if coincidence of two poles in T(s) and §(s) does not cause the
norm of the convolution to blow up, then close approach of these two shouid
t either, or rather the definition of the r-norm can be modified to take
is into account. Let us say that Sh and si are near to each other, and
nsider a term of the form

s't s t
(t) = [Gle o u(t)] o [Rne n u(t)] = Eij-érGan[s - sl]'lts - sn]°1e5td?9 "

Now back in section 7 when considering the r-norm as a sum of norms of

s-plane singularity terms, the =-norm (or peak value).was used to define the
norm of each term. Then for the case of close—approach above let us consider

tdese two poles as a single term and find the =-norm and use this to define

the r-norm for such a case.

Expanding the product of poles gives

1

i = — - ] "1 LI ‘1 - 1 '1 - ‘1 St
A(t) GR, 7] ér{[s 51] [sx sad 7+ [s, sR] (s - s, 17} e"ds
: s't s t
' -1 2 N
=GR [s, - s, [e” -e” Ju(t) (9.22)
Defining 1
a3 [Si +s ]
bzifs' -s] (9.23)
T2 n )
sg that
! s'' =a+b
]
s =a-0b

(9.24)
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ﬁﬁi we have 4
A(t) = Gan %_b_ [e(a+b)t - e(a—b)t] U(t) . ‘
eat ] .

= Gan =g— sinh(bt) u(t) (9.25)

In magnitude this is [12 (4.5.49, 4.5.54)]
||

|Ace)| = |6, |R,] |sinh(bt)| u(t)

Refalt «
= |6,| IR | &—— (sinh?(Re[b]t) cos’[Im(blt) 1
+ coshz(Re[th) sinz(Im[b]t)f?
Refalt L
= |6,| IR, E-T;T—- {sinh?(Re[blt) + sinz(Im[b]t)}E. (9.26)
™ Let us now assume that . ) . - .
ﬁﬁ@‘ ‘ |b| << |a| o (9.27)

Since b represents the difference and a the sum of two complex frequencies
that are assumed very close to each other. Noting that

Re[a] < Q¢ +Q

g (9.28)
assume that
Refa] < 0 (9.29)
and take the limiting form for small |b| in (9.26). This gives
A = [6,] R ] t efeLelu(e)pn = o((vt)?)1  as b a0 (9.30)

Note now for small b/a that |A(t)| has the form of a second order
pole. From (7.19) we have

A, = A ]]

) | -

11 .
= s 7T 6, IR, - (9.31)




Mhich is the result for a second order'pole in (9.20) noting in (9.23) that

)
a » sn for s2 > S, (9.32)

Rewriting (9.31) for s' near S, we have a definition for the r-norm in such a

b b for s
%

1 2
HAaw) [, = 5 RelsTT - Rels ] 16,1 IR, (9.33)

Thus as long as either (or both) 51 and s are bounded to the left of

e jw axis then the 2/a in (9.16) can be rep]aced by 2/(e[-Re[s ] - Re[s ]])
:Er the case of closely approaching poles due to the product of g(s) and ?(s).
is allows even some sl = s cases without the r-norm blowing up. Note,

however, that this does not al]ow Sl =s,o0n the jw axis.

0
: i Note that this case of closely approaching poles due to a product is
qp1te different from a case of say two Sh in a sum such as represents f(t) in
(P appearing close together. In such a case the residues of the two poles
miy be quite independently choosable. However the product as in (9.22) inher-

ently brings the si and Sh 1nto the effective compound residue or res1dues.

Comb1nat1on of results

Then in (9.22) let us exclude cases in which s2 is near Sh and replace

Pls - s, | by 2/(e[-Re[51] - Rels 1]). Note that nearness 1s defined by

(b 27) i.e. |s -5 ‘ << |s +s | which for both 51 and s in the second
qpadrant of the comp]ex s p1ane is approximately achieved. Note for such a
cﬂose approach in the second quadrant there is also another close approach of

the conjugate poles in the third quadrant.

With this modification then G(p) in (9.11) can be used to better bound
the r-norm of a convolution, especially for the case of closely approaching
oles. In (9.16) we can use these results to replace 2/A as above to remove
cases of closely approaching poles so that G(O) is bounded in (9.15).
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*ﬁﬁ%‘ Xe Summary

This note has developed somé.of.the norm properties of time-domain
waveforms and convolution operators. This is done in the context of the usual
p-norm and a new norm which we call the residue norm or r-norm.

The r-norm has been related to the p-norm, being defined basically as
the «-norm on a termwise (singularifty by singularity in the s plane) basis.
For use in bounding time-domain wavéforms and operators, the r-norm has sig-
nificant potential as it can be apiph’ed in the context of the singularity
expansion method (SEM). ' ‘
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Appendix A: The Holder Inequality

1
N 1l
| = PP
||(xn)||p {nzl [x,[F}F for 1<p <o
' (A1)
651 = o [,
‘ l1<nxgN
1e Holder inequality is
1 1
N N PP N PP
) = ) =] L oxaval < L Il 730 T vl ) (A2)
[(x) « (v )] < I|(><n)||p1||(yn)||p2
S S
T

th equality if 2 conditions are met

p p
ol Iyl

Py P
1IN TATIS;

XY has the same sign (all + or, all =)

for all 1<n <N
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For this paper there is an important inequality known as the Holder <:)
inequality. This is discussed in various texts such as [10, 11]. For vector
-norms we have '

p1 >1 , p2 > 1 k:D‘
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A special case is that for the =-norm and l-norm

< foex [xy[H T 1y, )

= oo

[« )| < [T gl

(A4)

Another case concerns the 2-norm which is also known as the Schwarz inequality

N 2‘% N 27
[CORNAIRERATAC IR AL

1

) = )| < Hixgd ) Ty

(A5)

In terms of functions the vectoﬁ_b-norm is generalized (for real t) as

1

. : 1 |
||f(t)|’p = {f |f(t)|Pat}? for 1<p <=
a

()] = sup [f(t)]

a<tgb

(A6)

Here the supremum technically can exclude isolated values of f(t) by consider-

ing limits from both sides of values of t of concern. The Holder inequality

is -

b

a

b Py
I fi(8) £,o(8) dt] < (J |£,(8) dt)

o(t)

1 i

P, b p p
RIACIIE T
a

(A7)
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est

has

th equality if 2 conditions are met

P P
L AT

Py P,
f.(t) f,(t) A8
| 1 Ilpl [ 2 ,"pz , (A8)

fl(t) fz(t) has the same sign (all + or all -)

"almost everywhere"

A special case is that for the =-norm and l-norm
. b b
|£ f(t) fo(t) dt| < g [£,(6)] [F,(t)] dt
b
< {suplf () HY [fp(0)] at)
a

= Ilfl(t)llel|fz(t)|!1

b | (A9)
|£ f(t) f,(t) dt| < ||f1(t)||¢||f2(t)||1
ax<b
The special case of the 2-norm is also known as the Schwarz inequality as
1 1
b b 5 b
|/ fl(t) fo(t) dt| < {f |f1(t)|2dt}2{f ifz(t)lzdtf?
a a . a ) (A10)

b
'/ FL(E) fo(t) dt] < }]fl(t)|12]|f2(t)|]2
a

In this paper in dealing with time-domain waveforms the case of inter-

(Al1)




so that we are dealing with integrals over all times (of interest). In gen-
eral such times, while cf course finite, are much longer than times for which
the waveforms of concern are significant so that -« < t < » is a resonable
approximation. ‘
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