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ABSTRACT

This report deals with two numerical methods for estimating the natural
modes used to characterize the response of a conducting body to an incident
electromagnetic pulse (EMP) wave. These are Prony's method and complex
demodulation. The two methods are compared for several simulated conditions
and complex demodulation is demonstrated on actual pin current realizations.

It is concluded that complex demodulation is a very flexible tool for analyzing
transient data.
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I. INTRODUCTION

1. BACKGROUND

An electromagnetic pulse (EMP) incident on an aircraft system induces
currents on the skin, which then couple through points of entry in the surface
to induce currents on the wires connected to electronic components inside the
aircraft. The currents are of short duration, typically 2 to 5 pus, and are
typically sampled at intervals of 1 to 20 ns. For any meaningful analysis,
the data have to be converted into physical parameters. The singularity
expansion method (SEM) provides a reasonable way to parameterize the system
response.

The SEM introduced by Baum (Ref. 1) provides a physically meaningful way
to characterize a conducting body's response to EMP. The response of a con-
ducting body to an incident EMP wave is expressed as a sum of complex exponen?
tials using parameters related to the natural modes of the conducting body.
This parameterization not only reduces the amount of data required to charac-
terize a sample realization, but also reduces it to terms that are physically
useful. Ideally, the parameters can be predicted from models of the aircraft
surface. However, the complexity of an aircraft surface makes it difficult to
formulate and solve the scattering problem for an exact aircraft model.
Therefore, simplified models, which preserve the ‘global features of the air-
craft, are used to obtain mathematically tractable solutions. This makes it
important to have numerical methods of estimating the natural modes from data.

This report deals with two numerical methods for estimating the natural
modes from data. The first, Prony's method, is not new but has been widely
used 1in this and other similar applications. The second method, complex
demodulation, is also not new; however, its application to modal analysis is
new. The two methods .are compared for several simulated conditions, and
complex demodulation is demonstrated on actual pin curfent realizations.

2. PRONY'S METHOD

Consider a metallic object excited by a plane wave field incident at an
angle of incidence (¢,6). Using the SEM representation (Refs. 1 and 2), the
induced current at a point x on the surface of the aircraft can be written in

the form




s.t’

I(x,t) = c;(x,0,8) e T 9(x,4,0,t) | ‘('1)

He-1 =

i=1

where Sj are the natural complex frequencies or poles of the scatterer,'ci the
corresponding residues at Sis and g(t) the forced response. The arguments x,

¢, and 6 will be suppressed in this paper, The responses due to the systems
natural modes can be expressed as

M sit
vp = 1l cye (2)

Since this response is a real function of time, the Sj must either be real or

occur in complex conjugate pairs. Let y(k) be the natural response sampled at
equal time intervals with a total of N points, then

M sikAT
y(k) = ¥ c;e -
i=1
k= 0,1,2,...,8-1 | (3)

where AT is the sampling interval. Equation 3 can be rewritten as

M k
ylk) = 1 ¢, Z;
i=1
k = 0,1,2,...,N-1 (4)
with
S.At

With this set of equations, the problem is to solve for both the M values
of z; and the M values of Cj. It is assumed that the value of N, the amount
of data collected, is at least 2M, the number of parameters to be estimated.
The solution to this set of equations'is nontrivial, since they are nonlinear
in Z;.

Let Zis2Z25.44,2Zy be the roots of the algebraic equation




In order to determine the coefficients éi’°'°’aM’ Equations 4 and 5 can be

used to show (Ref. 2) that the data y(k) satisfy the difference equation

y(i) =

Aoy y(§-1)
j

ez

1

Jo= MELME2, . N (6)

It should be pointed out that the notation in Equation 5 differs from that
of Reference 2 in which the coefficients {ai} have the opposite sign.

In general, it is possible to use the first M equations to solve for the
linear coefficients A1 seeesdpys

1) (7)

) a

(
+1) aEM)

in Equation 6. Then a root solving routine can be used to obtain the roots to

Equation 5,‘21,...,2M where the z; are representatives of y(k) in Equation
4. WHith the Zj obtained, the first M values of y(k) can be used with Equation
"4 to obtain the residues c.:. Also, the roots S§ in Equation 3 can be obtained

;
from Equation 4, i.e.,

s, = i (8)

In practice, however, it is not so easy. One serious problem is that the
data values are typically noise corrupted. A second problem is that the data
values observed are not the natural responses y(k), but rather I(t), which
have the force functions g(kAT) added. The obvious solution to both problems

is to use all N-M equations in a least-squares solution to estimate Aiseeesdy,.

That is,
y(M+1) yM) .o y(1) e(M+1)
= : sl |
v | o= fymen oLeymey [ | e[ ecem (9)
. . : a(M) :
y(N) y(N-1) o y(N-m) L e(N)




where "e(k) represents noise and the forced function. Representing Equation 9
in matrix notation,

Y =Ha +e (10)

then the least-squares estimator of the vector a is the solution to the normal
equations

HTH a = HTy : : , (11)

Two difficulties arise in this approach. The first comes from modeling
the driven response as noise, since in early time the response has very large
magnitude and least squares is khigh]y sensitive to non-homogeneous noise
(i.e., when the variance of e(t) is not constant in time). Second, the true
regression model is

M .
I(kat) = -21 a; y(k=1) + e(k) (12)
L |

where the regressor variable y(t) is unobserved. This latter problem will be
returned to in Section 1.4, but in this paper the first problem will be shown
to be a very significant problem. In particular, when the signal-to-noise
ratio is large, the damped exponential model is not apprbpriate; and when the

damped exponential model finally becomes appropriate, the signal-to-noise
ratio has diminished.

3. TIME SERIES MODEL

There 1is a’re1ationship between the Prony method and a method found in
time series literature. A model of the form

M
Y, = Z a. Y .+ € g : ) (13)

where {et} is a white noise process, is referred to as an autoregressive
process, since the process is regressed on its own past. The autoregressive
model can be viewed as a Tinear filter, with a linear impluse response func-
tion characterized by the {ai} and white noise input. ;

There is no formal difference between the autoreg#essive npde] given in
Equation 13 and the linear regression solution to the:Pjony method in Equation




9 if the res1dua1s are assuned to be uncorre]ated hom&beneous random var1-
ables. There are differences in fact, however, because thp problem at hand is:

one of analyzing a deterministic trans1ent response W 11e the time series

literature deals with weakly stationary series. This difference is the prob-'
lem noted after Equation 12. The estimation methods, hbMéVer, are simi]ar;

The parameters of an autoregress1ve process are typ1ca11y estimated by the
Yule-Walker equat1ons,

k =1,2,... o . Lo (14)

where the R(k) is the autocovariance function
R(k) = E[LY(t) - ECY(t)IH{Y(t + k) - ECY(t)}] (15)

Using the first M equations,

(R(1)] R(0) R(L) . . . r(-1) ] [a()]
| R(2) R(1) R(0) R(M-2) | la(2) |

. = . . . . (16)
i) [R(M-1)  R(M-2) .. . R(D) | |a(m)_

one can easily obtain estimates of the a(k). In practice, however, the covar-
iance function is unknown. In this case, the estimated covariance function
L Nk -

r(k) = N—'[‘ Y(i) Y(i+k) (17)
is used. Asymptotically, the Yule-Walker equations (Eq. 16) with the esti-
mated covariance function (Eq. 17), and the normal equations (Eq. 11) are the
same. - Several algorithms for solving the Yule-Walker equations utilize this

fact and solve the equivalent linear regression problem.

A condition for an autoregressive process to be weakly stationary is that
the roots of the characteristic equation (Eq. 5) be inside the unit circle.




Further, it is known that as the roots approach the unit circle, the estimates
of the parameters of the autoregressive process become severely biased. Also,
the Yule-Walker equat1ons themselves become ill-conditioned making the numeri-
cal solution difficult. By the relationship in Equation 4 hetween the roots
z; and the natural frequencies, it follows that

-a, AT dw AT :
z =e ko a K : (18)

where

S -, + imk

is the kth natural frequency. As akAT becomes small, the magnitude of Z,
approaches 1. A small value of a will make a root approach the unit circle,
but also a small sampling interval (small AT) makes all of the roots approach
the unit circle.

An interesting concept from time series literature is that of partial
correlation. A rough definition of the kth partial correlation is that it is
the. correlation between Yt and Yy, when the information in the intervening
variables, Yt+1"‘°’Yt+k-1’ has been accounted for., It is used widely in time
series to decide when to stop adding terms to the autoregression (i.e.,
selecting the number of roots). A sufficient condition for the ‘time series to
be weakly stationary and the roots of the characteristic equat1on to be inside

the unit circle is that all the partial correlations be less than unity in
magnitude (Ref. 3).

4. AUTOREGRESSION PLUS NOISE

The problem of observing the total current and not the natura1 response
(Eq. 12) has received considerable attention in the Prony literature. Since

I(kaT) = y(k) + e(k) is observed, it is possible to substitute in Equation 12

and obtain

a; I[(k - i)aT] + e(k) -

I(kaT) = ] a
1 i

e
ne-1xz

a, e(k - i) ‘ (19)

i i

Numerous papers exist in the time series literature on estimation of an auto-
regressive process plus noise (Refs. 4 and 5). A very simple notion is to
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note that the colored noise has no effect on the covariance for lags greater
than M, that is, the Yule-Walker equations

M o
R(k) = 2 a. R(k - 1) | , ‘ . (20)

still hold for
ko= MEL,M+2,. ..

By shifting to the next M Yule-Walker equations, the @dded noise is not a
factor. A more stable solution is outlined in Reference 5

Another solution to this problem, found in the Prony literature, is the
iterative premultiply method (Ref. 2). The method s1mp1y involves iteratively
solving the problem as weighted regression, using the autbregress1ve structure
to compute the covariance of the noise process in Equation 19. While this
improves the performance of Prony (Ref. 2), there is/ still a difficulty

because of the transient nature of the driven response. The covariance func-
tion used is. correct if the e(t) process is white noise. Unfortunately, as

discussed before, the e(t) process is largely composed of the driven response
which is temporally correlated.

As a generalization of Equation 19, it can be assumed that the noise
process e(t) is not white, but rather is a weakly stationary process. 1In this

case, the model becomes

M E

I(kaT) =} a; I[(k - 1)aT] + § by e(k - 1) (21)
= i=0

where now {e(t)} is assumed to be white noise, but the input process to the
linear filter {ai} is a colored process. Equation 21 is called an auto-
regressive-moving-average process (ARMA) (Ref. 7). In this case, the spectral
density is given by

2

where A(z) and B(z) are polynomials and

eZTH'f

11




In Reference 6 the method of fitting A(z) and B(z) directly from the spec-
tral density is discussed. Numerous methods for fitting ARMA processes exist
in time series literature (Ref. 7). They are more stable than the method
discussed in Reference 6. Again, none of the methods discussed here are
appropriate for the driven response problem because the driven response is a
transient that cannot be modeled as a weakly stationary process either.

5. SCOPE OF THIS, PAPER

A different time series method, complex demodulation, will be discussed in
Section II. Complex demodulation is specifically useful for analyzing tran-
sient responses. In Section III, the Prony method and complex demodu]at1on
will be compared for a wide range of simulated data responses, including white
noise corrupted data and a variety of driven responses. In Section Iv, several
extensions to the use of complex demodulation will be d19cussed In partic-
u]ar complex demodulation can be used to analyze several sensors, e.g., at
several locations on the skin of an aircraft or at several pin locations,
simultaneously. Finally, Section V contains the summary and conclusions of
this paper.

12
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IT. COMPLEX DEMODULATION

Complex demodulation is a very flexible method of analyzing time series
data (Ref. 8). The method can best be understood as a tfme-dependent harmonic
analysis. While the method is not as precise as harmonic analysis for analyz-
ing weakly stationary time series or pure harmonics, ﬁt is very useful in
harmonic analysis of transients. For a detailed discussion of complex demodu-
tation see Reference 9. '

Given a process Y(t), construct for some frequency f the new process
X(t,f) = e”@ 1t vy | (23)

The Fourier transform of the original process {Y} is given by the sample
average of the {X} process

y(f) =ﬁ£ X(kaT,f) (24)

Taking the sample average may be viewed as the most restrictive low pass
filter possible. (A1lowing only DC to pass, y(f) is a constant with respect
to time.) If a less restrictive Tow pass filter were use¢ on the process
{X(t,f)}, a smooth but time-dependent function {x(t,f)}, which would corres-
pond to a time-dependent Fourier transform, would be obtajned. The process
{x(t,f)} is called the complex demodulate of {Y(t)}. |

To understand the flexibility and generality of complex demodulation,
first suppose that the process contains a perturbed periodic component

Y(t) = R(t) cos[2myt + o(t)] (25)

\
where R(t) s a slowly changing amplitude and ¢(t) a slowly varying phase.
The aim of complex demodulation is to estimate R(t) and &(t). For any fre-

quency f, form

1]

X(t,f)

R(t) cosl2myt + ¢(t)] e~2mift

13




= R(f) %[eZWthﬂ"b(t) + e—21r1'yt—1'¢(t)] e'2171'f‘t

- Lty [efri(r-Ntvole) | o2 (Y+f)t-1o(t), (26)

If the frequency vy is near to f, then the (v - ) term will represent a low
frequency, while (y + f) will represent a high frequency. If X(t,f) then is
passed through a low pass filter, which allows frequencies near zero to pass
while filtering out higher frequencies, the resulting complex demodulate will
he '

x(£,F) = 5 R(t) o211 (¥-Flt+ie(t) (27)

To obtain this estimate then, it is only necessary to have an initial estimate
f such that (f - y) is within the bandwidth of the filter.

[t is immediately clear the R(t) is estimated by the magnitude of the -
complex demodulate and the phase ¢(t) can be estimated by its argument

arg x(t,f) = 2n(y - f)t + ¢(t) (28)

If v is sufficiently close to f, an estimate of ¢(t) is obtained. If ¢ is
known to be constant in some time interval, or even known to have a zero
trend, then linear regression can be used on the phase function, arg x(t,f) to
estimate 2n(y - f) and correct the estimate of Y.

The generalization to more than one frequency

R, (t) cos[ZnYi + ¢i(t)]' | (29)

ey = 1 i

i

e~

is straightforward. As long as the frequencies Y, are spread further apart
than the bandwidth of the filter, each may be considered a separate problem.
This is identical to harmonic analysis where the component of each harmonic is
analyzed separately. Here it is seen that harmonic analysis is more precise
than complex demodulation because low pass filters of bandwidth «/N are
obtainable. What is gained is the fact that the complex demodulation analysis
is time dependent.

14




Consider next the SEM case, a damped sinusoid

Y(t) = c e cos(2nyt + o)

-at . . . .
_ ce [e2n1Yt+1¢ + e-2n1yt-1¢]
i¢ _ . -i¢ b D
- cg o at+riyt + ce o at-2riyt (30)

This is the same model as Equation 3 only with M = 2 andjthe two roots being a
complex conjugate pair. Then the residue satisfies

2
cos(¢) + i %—sin(¢) (31)

No ol

and the complex frequency satisfies

In this case, the magnitude of the complex demodulate satisfies

In(|x(t,F)]) = 1n(c/2) - at (33)

Simple linear regression can then be used to estimate ¢ and a. Also, the

phase is defined by

arctan( Imagl[x(t,f)]/Reallx(t,f])

arg x(t,f)

i

2n(y - f)t + ¢ (34)

which can also be used in a simple linear regression to estimate Y and ¢.

15




It should be emphasized that it is not necessary to know Y in advance, but
only to be close relative to the bandwidth of the Tow pass filter, The inj-
tial estimates of y can come from theoretical investigations or from spectral
peaks since the spectral density will have a peak of

fo =/ 1% - o4 (35)

0

It is also important to note that the complex demodulation in no wéy |
requires the data to conform exactly to the natural response as in Equation
3. It will be seen in the analysis of various noise corrupted and driven
responses in the next section that the fit or lack of fit of the simple
straight lines in the magnitude and phase functions is a superb diagnostic for
the model. It is easy to determine the time interval when the driven response
(g(t)) has diminished and it is possible to estimate the natural (SEM)
response directly. However, it is also possible to estimate the parameters of
the natural response during the early (driven) part of the data realization by
computing the effect of the driving function on R(t) and ¢(t). As will be
seen, a great advantage of complex demodulation over using Prony's method is
that it allows analysis of the data during early time before all transients
have decreased. It will also be seen that the low pass filter in complex
demodulation succeeds in removing a significant part of the noise and greatly
improving its sensitivity to noise. Also, it succeeds in removing driven
responses that are not in the immediate frequency range being analyzed.

Finally, it should be noted that complex demodulation estimates the
natural frequencies directly. A problem with the Prony method is that estima-
tion errors for 8 can produce even larger errors in the estimation of Cx when
solving for the roots of Equation 5. This propagation of errors frequently
produces non-physical estimates, roots in the right half plane in particu-
lar. The direct estimate of the complex frequency in complex demodulation
avoids this problem,

16




IIT. COMPARISON OF PRONY AND COMPLEX DEMODULATION

1. SIMPLE MODELS

In this section, the pure damped sinusoid (Eq. 30) W11] be analyzed with:
Prony and with complex demodulation. Then the examp]e!of a damped sinusoid
plus white noise will give a more important comparison of the two methods.

The first model studied was a simple damped sinusoid with frequency 3 MHz
and damping constant 0.5 x 100, The data are displayed in Figure 1. The
Prony analysis of these data, which is very accurate, is $hown in Table 1.

TABLE 1. PRONY ANALYSIS FOR DAMPED SINUSOID

Partial - Autoregressive

Coefficient Correlation ~ Parameter (a;)
0 1.000000 ! 1.000000
1 .995578 -1.986152
2 -.995012 - .995012

Complex Roots

Natural Frequency Frequency
Number Root (z;) (s3) (MHz)
1 (0.9931, 0.9387e-01) (-0.5000, 18.85) 3.0000
2 (0.9931, -0.9387e-01) (-0.5000, -18.85) -3.0000

Table 1 contains some terminology common to time series analysis. The partial
correlation is the correlation of Y¢ with Y., when Yt+1,.b., Yt+k-1 have been
accounted for. This is a valuable term for estimating M. The autoregressive
parameter is {aj}. Figure 2 is the spectral density of the data, which, of
course, peaks very close to 3 MHz. To demonstrate the use of Equation 34 in
refining the frequency, a very wide miss of 3.25 MHz waé used in a complex
demodulation. Shown in Figure 3 is the phase plot from which a slope of -1.57

x 10% is obtained. Using Equation 34 and setting the slope equal to:

-1.57 x 10% = 2n(y - 3.25 MHz) (36)

17
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Figure 1. Damped sinusoid, 3 MHz.
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18




n/2

Phase

-n/2

-
0 0.5 1.0 2.0 2.5

1.5
Time (ps)

Phase plot of complex demodulation at 3.25 MHz.

Figure 3.

n/e

Phase
o

-/

| | | ! ; ]

Time (us)

Figure 4. Phase plot of complex demodulation at 3 MHz.
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yields 3 MHz as the best estimate of y. Figure 4 is the phase plot for the
analysis at 3 MHz; the slope of the phase is zero. The intercept of the data
in Figure 4 was estimated to be -1.5710, which is close to -n/2, the differ-
ence between the sine used and the cosine in the definition of complex demodu-
lation (Eq. 25). Finally, F1gure 5 is the magnitude of the complex demodu-
late, which has an estimated residue of 1.0036 (the true value is 1.00) and a
slope (damping factor) of -0.5001 x 106,

The next experiment was to add Gaussian white noise to the damped sinusoid
data used in the above paragraph. The damped sinusoid has a residue of 1. 00,
and the Gaussian noise with standard deviations from 0.001 to 0.1 was added.
Table 2 compares the Prony and complex demodulation estimates. As a rough
estimate of signal-to-noise (S/N) ratios, let the standard deviation of the
signal be 0.5 (the residue of 1.0 is taken as two standard deviations). Then
Prony began having d1ff1gylty at an S/N of 200, and failed to estimate physi-

cally .meaningful parameters ~after an S/N of 50. At an S$/N of 5, complex—

demodulation was still estimating reasonably well.

0

-1

In (Amplitude)

-3

-4

L | |
2
Time (us)

Figure 5. Magnitude plot of complex demodulation at 3 MHz.




TABLE 2. PRONY AND COMPLEX DEMODULATION DAMPED‘SINUSOID PLUS WHITE NOISE
Prony Complex Demodulation

Deviation Damping Dampind '
Noise Factor Frequency Factor Frequency

Standard (x 10%) (MHZz) (x 108) (MHZ)
0.0 - .5000 3.0000 -.5001 3.0000
0.001 -.8833 3.0015 -.5003 3.0000
0.0025 -2.746 . 2.9905 -.5008 3.0000
0.005 -8.129 - 72,7939 -.5012 3.0003
0.01 REAL ROOTS -.5004 3.0000
0.05 REAL ROOTS -.4954 3.0000
0.10 REAL ROOTS -=.5114 3.0028

Figure 6 is the damped sinusoid plus noise with a noise standard deviation
of 0.10 (the last row of Table 2). Figure 7 is the spettha] density of the
data. Figure 8 is the phase plot of the complex demodulate at 3.0000. The
slight slope in Figure 8, which is hardly visible, resulted in an estimate of
3.0028 MHz.

shown 1in Figure 9.

Finally, the magnitude of the complex demo@u]ation»at 3 MHz is

The performance of complex demodulation in the above experiment was not
surprising. The low pass filter used in complex demodulation actually removes
most of the white noise and allows the analysis to experience signal-to-noise
ratios greatly in excess of what is present over all frequencies. In fairness
to the Prony method, the modifications discussed in Section 1.4 would have
performed much better than Prony itself. This has not been followed as the
real point is still that the driven response in Equation 1 is neither white
nor stationary, but rather a trahsient. The point to be made here is the

natural insensitivity of the complex demodulation method to noise.
2. DRIVEN MODELS

To study the response of the Prony method and complex demodulation to more

realistic problems, several experiments are conducted to study driven

responses. A very simple system of a simple LRC circuit is used to get the’

response of a damped harmonic. The response is then givenlby the solution to
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t
I(t) = [ F(t - u) e™¥ sin(2nryu) du | o (37)

o :
for any forcing function F(t).
The first experiment was to drive the LRC circuit with a damped sinu-

soid. A well known ré]atiOnship for the Laplace transform of the solution in
this particular case is that

“1 wa
X(s) = ; -
(s + @) +ul (s +8)7 + a2
A
- s +?B . Cs +20 , (38)
(s +a)” + w] (s + B)C + w5 .

That is, the solution to the damped harmonic oscillator, driven by a damped
sinusoid, can be represented as the sum of two damped sinusoids with the same
complex frequencies.

The LRC circuit was taken to have a resonance at 3 MHz with a damping
factor of -0.5 x 106, and the driving function was taken to be a damped sinu-
soid with a resonance of 4 MHz and a damping factor of -1.5 x 106, The data
are displayed in Figure 10, and the spectral density of the data is displayed
in Figure 11. The spectral density shows the two peaks at 3 MHz and 4 MHz.
It is interesting to note that the output peak (3 MHz) is greater than the
input peak (4 MHz). Table 3 is the result of the Prony method, which, as
expected, is very accurate.

The complex demodulation analysis of this case is very illustrative of the
method. Figures 12 and 13 are the phase plots at 3 and 4 MHz, respectively.
Figure 12, which is at the resonant frequency of the Eircuit, illustrates the
presence of beating frequencies for the driving frequency (the wave in the
phase b]ot is at 1 MHz). The damped beating frequency has a slope of zero, $o
the non-zero phase, as in Equation 28, can still be used to adjust the fre-
quency. Figure 13, however, shows a very different aspect. The driving
function quickly subsides (a = -1.5 x 106, or Q = 8.4 as compared to Q = 18.9
for the driven circuit). This is seen by the beating in the first cycle, as
expected, followed by information to shift the analysis down 1 MHz to 3 MHz.
The magnitudes of the beating in Figures 12 and 13 reflect the magnitudes of

24
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Figure 11. Spectral density, 4 MHz resonant device driven at 3 MHz.
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TABLE 3. PRONY ANALYSIS FOR DAMPED SINUSOID DRIVING FUNCTION

: Partial Autoregressive
Coefficient Correlation Parameter (a;)
0 1.000000 1.000000
1 0.995056 ~-3.955555
2 -.999677 5.891659
3 0.992414 -3.916162
4 -.980198 0.980198
Complex Roots
Natural Frequency Frequency
Number Root (z5) (s3) (MHz)
1 (0.9847, 0.1244) (-1.500, 25.13) 4,0000
2 (0.9847, -0.1244) (-1.500, -25.13) -4.0000
3 (0.9931, 0.9387e-01) (-0.5000, 18.85) 3.0000
4 (0.9931, -0.9387e-01) (-0.5000, -18.85) -3.0000

the spectral peaks in Figure 11. Figure 14 displays the‘magnitude plot for
the complex demodulation at 3 MHz. Again, the In R(t) is not a simple
straight line, as 1is the case in Equation 30. However, the superimposed
damped sinusoid at the beating frequency (1 MHz) has zero slope, and so the
damping coefficient can still be estimated from the slope of the magnitude.
As will be discussed later in this paper, the complex demodulation method
Tends itself well with a total systems approach to analyzing the data in that
knowledge of the theoretical models can help understand the skin currents and
information about the skin currents in turn can be utilized in understanding
the pin currents.

The simple relationship given by Equation 38 for a damped oscilliator
driven by a damped sinusoid does not hold when the driving function is
altered. To illustrate this, data were first generated for a damped oscil-
lator driven by a double exponential function, This result would be somewhat
typical of the response of the skin of an aircraft to an actual EMP event,
The response to the first oscillator (the skin) was then used to drive a
second damped oscillator. The result is representative of the effect of an
actual electronic component driven by the skin response.
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Figure 14. Magnitude plot for complex demodulation at 3 MHz.

~The first part of the ekperiment was to simulate the skin response, The

skin was taken to have a resonance of 3 MHz with a damp1ng coefficient of

-1.5 x 106 The double exponent1a] driving function,

-B8.t -8, t
F(t) =e LA e 2 (39)

with Bl =4 x 106 and 82 = 4,76 x 108 was used as input. The response is

displayed in Figure 15 and its spectral density in Figure 16. The overshoot

phenomena in Figure 15 creates a very low frequency response as the system
settles back to oscillating about the origin. This is seen by the low. fre-
quency peak in Figure 16 that makes the data appear to have a real root to the
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Prony method. This real root is not a physically real aspect of the skin, but
rather this is a good example of how the driven response of Equation 1 gener-
atéé,ﬁbhphysica1 phenomena in Prony analyses. The results of the Prony analy-
sis are shown in Tahle 4, o

TheZCOMp]ex demodulation method now really begins to show its merit, It
is abTEfto‘anaIyze data that do not follow the form of Equdtion 3 exactly, yet
Still get reasonable results. The double exponential driving function had
very little effect on complex demodulation because such a small part of its
energy“was in the frequency band about 3 MHz passed by the low pass filter,
Figube‘17 displays the phase plot, and Figure 18 disp]ays’the magnitude plot

for the complex demodulation at 3 MHz. The complex demodulation method esti-
mated the residue to be 0.2147, the damping factor « = 1.5002 X 106, the
frequency f = 3.0000 MHz, and the phase ¢ = 3.0522, |

TABLE 4. PRONY ANALYSIS OF SKIN RESPONSE

, : . Partial ‘AutoregreséiVe
Coefficient Correlation Parameter (ai)
0 1.000000 1.000000
1 0.997449 ‘ -2.965037
2 -0.997920 ' 2.939336
3 0.974167 ‘ —0.974167’
Complex Roots
Natural Frequency Frequency
Number Root (z;) (s4) , | (MHz)
1 (0.9899, 0.9413e-01) (-1.137, 18.96) 3.0179
2 (0.9899, -0.9413e-01). (-1.137, -18.96) : -3.0179
3 (0.9853, 0.0000e+00) (-2.961, 0.0000e+00) 0.0000

The next step was to use the simulated skin data (Fig. 15) as the forcing
function to a second harmonic oscillator. The second oscillator, representing
circuitry 1inside the aircraft, was taken to have a resonance of 4 MHz and a
damping factor of 0.5 x 106.'“The result of this experiment is displayed in
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gure 19. Since the data displayed

in Figure 15 better resemble a damped
nusoid than a double exponential

» it would be reasonable to expect the Prony
thod to perform better on the simulated pin data. As Table 5§ shows;bthe
ony method did still worse. i

The result of the complex demodulation analysis is very similar tqythe
evious driven response., The spectral density of the simulated pin déta.is
own in Figure 20. The phase plot of the complex demodulation at 4 MHz is
splayed in Figure 21 and the magnitude plot in Figure 22. The complex
modulation method estimated the residue to be 0.0046, the damping factor]qy=

5262 x 105, the frequency 4.0025 MHz, and the phase ¢ = -.2131. The 1 MHz
ating frequency is also visible in Figures 21 and 22.

The final driven response experiment was intended to simulate the effect
time delays and spatial phase shifts that Wou]d be created as the result of
e several points of entry in the aircraft skin located in different parts of
e aircraft. The data were generated to be the output of a damped oscillator
th a resonance of 4 MHz and a damping coefficient of -0.5 x 106. The forc-
g function was a damped sinusoid with a frequency of 3.9 MHz and a damping
efficient of -1,5 x 106, minus twice the same forcing function delayed

TABLE 5. PRONY ANALYSIS OF SIMULATED PIN DATA

Partial Autoregressive
Coefficient Correlation Parameter (a;)
0 1.000000 ~1.000000
1 0.994354 -3.977720
2 -0.999074 5.952666
3 0.996922 -3.971992
4 ~-0.997116 0.997116
Complex Roots
Natural(Frequency Frequency
Number Root (z;) - (s5) (MHZ)
1 (0.9925, 0.1205) (-0.3877e-01, 24.17) 3.8467
2 (0.9925, -0.1205) - (-0.3877e-01, -24.17) -3.8467
3 (0.9963, 0.6927e-01) (-0.2500, 13.88) 12,2095
4 (0.9963, -0.6927e-01) (-0.2500, -13.88) -2.2095
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20 ns,yp]us twice the same forc1ng funct1on delayed 40 ns, minus the same
forc1ng function delayed 60 ns. The data are d1sp1ayed in F1gure 23 and

except for the abrupt change of d1rect1on in the f1rst cyc]e, they appear

exactly as if they have ' been driven s1mp]y w1th one damped s1nuso1d at

3.9 MHz.

Aga1n 1t seems that the Prony method shou]d work as well as it d1d in
Table 3, - In fact, however, the Prony method Pperformed very poorly. Knowing
that there should be two pairs of roots' Tab]e 6 gives the results of the
Prony analysis, The presence of the partial corre1at1on greater than one in
magnitude is evidence of the fact that all partial correlations having magni-
tude less than one is a suff1c1ent but not a necessary, condition for all
roots to be inside the unit circle. As a result of the part1al corre]at1on,
the usual method ' of deciding where to stop adding roots selects two roots.

This analysis, presented in Tab]e 7, does in fact have a root in the right
half p1ane. : ' ;

T 0,50

Current (A)
) E—
I
[
D

= T

20.50 ‘ 1 | ‘1 . I | - |

2
— Rk » ., Time (\JS)

Figure 23. ’Responseeto delayed drives.
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| TABLE 6. PRONY ANALYSIS WITH FOUR ROOTS

R : Partial Autoregressive
Coefficient Correlation - Parameter (a;)
0 1.000000 1.000000
-1 0.992281 ~-3.894798
2 -1.000038 5.720057 :
3 0.990046 -3.754031
-4 -=0.929063 0.929063
Complex Roots
. : ~ Natural Frequency Frequency
Nuymbe’r‘ Root (21) (S.i) L E (MHZ)
1 (0.9557, 0.1292) (-7.247, 26.87) 4.2767
2 - (0.9557, -0.1292) (-7.247, -26.87) =4,2767
3 ~ o (0.9917, 0.1244) (-0.1112, 24.95) - 3.9714
4. 'V,(0;9917,,50;1244) (-0.1112, -24.95) -3.9714
TABLE 7. PRONY ANALYSIS WITH TWO ROOTSi
: Partial " Autoregressive
Coefficient Correlation - Parameter (ai)’
0 1.000000 ~1.000000
1 - 0.992281 -1.984511
3 -1.000038 1.000038
Complex Roots
: Natural Frequency Frequency
Number Root (z;) (si)j_ e - (MHz)
1 ’(0.9923; 0.1244) (0.3771e-02, 24.94) 3.9689
2 (0.9923, -0.1244) - (0.3771e-02, -24.94)
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The complex demodulation method continued to respond well.

The spectra]
density is displayed in Figure 24.

The phase plot and magnitude plot for the
complex demodulation analysis at 4 MHz are displayed in Figures 25 and 26,

The key to Prony's problem is revealed in these plots. After the delayed

s1gna15 with alternating s1gns stopped arriving, the response was libérated
and d1d actually increase in magnitude briefly. Using the entire data record
in Figure 26 to estimate the residue and the damping would underestimate both
(although the slope of the data in Figure 26 would still be negative giving
roots in the left half of the plane). However, using that portion of the data
where the;phase (Fig. 25) has stabilized, Figure 26 gives an estimate of 1.1

for the residue and o = -0.5 x 106 for the damping coefficient.
3. ANALYSIS OF PIN CURRENTS FOR TRESTLE TESTS OF AN AIRCRAFT SYSTEM

The Prony method has been applied to skin currents with some success.
However, the Prony method has not been very successful in analyzing pin cur-
rents. The experiments discussed in III.1 and I11.2 provided ample evidence
for the Prony method not being appropriate for analyzing pin responses. Pin
data from a Trestle test, which was analyzed using complex demodulation, is

now discussed in detail. This exercise demonstrates the ability of complex
. .
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demodulation to analyze very difficult data. The data collected at the same
pin for four other shots were also analyzed using comb]ex demodulation. This
analysis of the pin currents was used in Reference 10 to compare the energy
predicted by a single damped sinusoid, using f = 1 MHZ, Q = 24, and the resi-
due equal to the peak current, with a more comprehensive analysis of the
data. The results of this analysis are summarized in Table 8.

These analyses are in a sense blind since no information is available on
field or skin'response. The complex demodulation method is most convincing

when used in a total systems approach where the information from the previous

level of analysis is used to implement any new analysis. While such an

approach is desirable and possible with complex demodulation, this analysis
demonstrates that it is not necessary.

TABLE 8. DAMPED SINUSOID ANALYSIS OF TRESTLE SAMPLE AIRCRAFT DATA

Shot No. Frequency (MHz) Amplitude (A) Damping (x 10'6)

Ty leil ‘ %

-0.65
-1.73
-1.1
-1.6

-0.89
-0.89
-1.1

-0.88

-0.82

-0.93

-1.2
0.83

-0.66
-1.6
-1.3
-1.3

-0.61
-1.6
-1.2

. . . .
L[] . L3 L]
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Figure 27 is a plot of the current observed at the example pin. It dis-
plays many features similar to the examples of the last two subsections.
Figure 28 is a plot of the spectral density of the data. The complex demodu-

lation analyses of the peaks at 2, 4, and 5.4 MHz are presented. As will be

immediately obvious from the numerous driven examples in I11.2, the small peak
Jjust below 4 MHz looks familiar.,

Figures 29 to 32 are phase and magnitude plots for the analyses at 2 and
5.4 MHz., The plots are as expected with the only surprise being the phase
shifts due to the practice of time-tying the data. The method estimated a
residue ofk0.27, a damping coefficient of « = -0.65 x 106, and a phase of ¢ =
0.21 at 1.95 MHz. It also estimated a residue of 0.63, a damping coefficient
of @ = -1.1 x 108, and a phase of ¢ = 1.73 at 5.5 MHz,

As suspected from Figure 28, the ‘analysis around 4 MHz was more interest-
ing. The method settled on the small peak at 3.65 MHz. The phase plot and
magnitude plot for the complex demodulation at 3.65 MHz are shown in Figures
33 and 34, respectively. The ‘beating frequency of 0.33 MHz, apparent in
Figures 33 and 34, implies a driving function in the neighborhood of 3.98 MHz
(the large peak in Figure 28). There is a spectral peak between 3.85 and
4 MHz in a large number of pin currents from the aircraft Trestle test, and it
is a logical guess that there will be a fundamental mode in this neighborhood
for the aircraft. Analysis of skin currents to confirm this would be produc-
tive. For comparison, the data were band-pass filtered with a filter centered
at 3.65 MHz and a 0.75 MHz bandwidth. These data are presented in Figure 35;
its similarities to Figures 10 and 19'are noteworthy.
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IV. EXTENSIONS TO COMPLEX DEMODULATION

1. LINEAR MODELS

The use of Teast Squares regression with straight lines, and even with
polynomials, is commonly understood. The method of linear least squares is in
fact much more general. This section contains a discussion of linear models
that are useful for analyzing complex demodulation outputi

A genera1 linear model is defined to be any question of the form
b

where Y is the observed output variable, the {Xi} are p independent variables
which are known beforehand (not random variables, but input constants), and

€ is the random error. The parameters {Bi} are the linear coefficients to be
estimated.

Various assumptions can be made for the error, €. These result in differ-
ent properties of the Teast squares estimator. The only assumption needed for
least squares to be sensible is that the expected value of € be zero,

Ele]l=0 : ‘ - (41)

This assumption is adequate to make the least squares estimators unbiased. In
[.3, it was mentioned that the estimators for Prony, using least squares, and
for the autoregressive parameters can be biased. The use of previous values
of ¥ for X values is a deviation from the above assumption about the indepen-
dent variables, {Xi}’ and the unbiased property of least squares estimators
does not apply. The assumption of homogeneity, that the variance of e exists
and is cbnstant throughout the data set, is important from a pracatical point
of view because least squares regression is known for its extreme sensitivity
to large values of the residual.

Polynomial models are an important example of the model in Equation 40.
That is, let

v

Y =8, +8,t + B3t2 te. .t Bptp'l te (42)
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The independent Variab]es in Equation 40 are simply powers of the independent
variable t. '

,'Another important class of independent variables consists of the sb-ca]]ed
deSign, or dummy, variables. Assume, in the EMP case, that sensors are
located at s locations on the surface of the aircraft. For a single mode, tne
cnmpTex frequency should be the same at each sensor, but the residue and phase
will ‘change from sensor to sensor. A linear model that would allow analyzing
all of the data from the § sensor to estimate the common frequency from the
phase data of the complex demodulation of the data sets would be

y =
i

ne~1n

! Bixi + 2“(Y = f)t t e 7. (43)

where

1 if from sensor i

0 otherwise

and y is the phase data from the complex dehodulation. Using this mode,
By to‘B2 will be the phase of each sensor, while B+l is the frequency correc-
tion. Another model simmilar to Equation 43 would use sensor 1 as a reference

and estimate the phase shift of every other sensor relative to sensor 1. This
model would be given by

s .
y = Bl + Z BiXi + ZH(Y - f)t + e L‘ (44)
i=1
Corresponding to the analysis of phase in Equations 43 and 44, the magnitude
information can be used to estimate the residue for each sensor while estimat-_
ing one damping coefficient common to all sensors. Analagous to Equation 43,
this model would be given by ‘

S
y = ].Zl Biki * Byt + e (45)

~where now y is the magnitude information from the complex demodulations and

“Bg41 = @ the common damping coefficient.
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The above linear models can be repeated with pin data collected at several
pins.  This analysis will allow investigation of frequencies that seem to
pervade the interior of the aircraft by appearing at many pins,

The ‘concept where cbmp]éx; demodulation seems most powerful is the ‘one
using the above models in a total systems analysis of the aircraft, A study
of pin currents using models like those in Equations 43 to 45 can allow a
thorough knowledge of the skin;response to the EMP wave. Analysis at the next
layer, say the pin level interior to the aircraft, could use Equation 44 for
the phase information of a complex demodulation at one of the exterior sensor
lTocations to a given Pin.  This information could be extremely useful in
identifying POE locations. A similar analysis using Equation 45 can be used
to assess the transfer attenuation or POE degradation.

2. AUTOMATED ANALYSIS

The process for analyzing transient data described up to this point has

been very analyst intensive. This is not really necessary since the devia-
tions from the nominal damped sinusoid model are not. extreme. A very simple
method of having a program identify the spectral peaks and perform-complex
demodulation ana]ySesksimp1y\by fitting straight line models for the data from

2 to 4 us has been used. This was done for the data collected at the same pin
from five different shots during 1980 and 1982 Trestle tests. The analyses’

for one of the five shots displayed in Figures 29 to 34, were a part of that
analysis,

It is possible to implement numerous adaptive algorithms that will produce

a computer code capable of rather sophisticated analysis. Recent statistical

Titerature 1is replete with robust regression algorithms that 'iteratively
reweight the data according to its validity with the model. There»are‘a1so L1

codes that minimize the median deviation rather than the squared deviations as

least squares does. These codes could make excellent seed codes for initjat-
ing a sophisticated analysis.

An important aspect of any codes devised to analyze the complex demodula-
tion data is the ability to pass uneventful data, and know when (and how) to
handle data that do not conform to expectations. For example, hard copies of
plots of phase and magnitude can be archived for those realization/frequency
combinations where the straight line fit is bad. Also, standard deviations
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for the straight line fits could be saved with the SEM parameters in a data
base so that the remote user could get immediate indication of the value of
the fit.

Perhaps the most dangerous aspect of the Prony method is the ability to
obtain an answer whether or nqt the answer is appropriate. Roots in the right
half plane are the only indication of difficu]ty.
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V. SUMMARY AND CONCLUSIONS

Complex demodulation is a very flexible tool for analyzing transient
data. It is particularly useful in estimating the paraméters of an SEM analy-
sis. The method is applicable during the early (driven) part of the response
where it can give useful diagnostic information on the nature of the driven
response. The method is very stable in the presence of noise, and the method
is applicable for a wide range of possible models so that data which do not
follow a damped sinusoid model can still be analyzed reliably. It also can
analyze data collected simultaneously from several sensors, constraining the
common complex frequency parameters to be consistent. The method also esti-

mates the SEM parameters directly, removing the circumstances where the Prony
method gives nonphysical estimates.

Complex demodulation can make very valuable contributions to the Systeﬁ'
Level Evaluation of Electromagnetic Tests (SLEET) data base. First, as input
to the data base it can be used as a reliable and trusﬂworthy tool for com-
pacting the data realizations. It has been proven on pin data which tends to
be very noisy and difficult to analyze. Second, complex demodulation would
allow sophisticated analysis of system level data which SLEET makes available,
but which other analysis tools cannot effectively utilize.

The complex demodulation method can be used to integrate theoretical
results and actual data in ways that have not been done previcus]y. The
method is capable of analyzing the data with no prior information about the

structure of the data, but it js a]so‘very amenable to prior information, such
as theoretical predictions.
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