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Abstract

This note addresses the numerical problem of performing a
pole residue expansion on noisyiqata. A method of combining dissimilar
data sets to achieve an effective increase in signal-to-noise ratio is
tested on computer generated data simulating scatfering from a sphere
and from a thin wire. The data is corrupted with white Gaussian
noise and the algorithm is tested for signal-to-noise ratios ranging
from -10 dB to 60 dB. An iterative version of the algorithm is also
tested. Finally, the problem of filtering noise from relatively quiet

data is discussed and a novel filtering algorithm is presented.




I. Introduction - | ; | <:)
This note addresses the numerical problem of performing a pole
residue expansion on noisy data1_ Prev1ous investigations [1,2] have
shown that even relatively low noise Tevels severely diminish the
accuracy of the pole re#idue expansion. In a recent paper by Ksienski
[2], a method of combining dissimilar data sets to achieve an effective
increase in s1gna]-tofno1se'rat1o.was presented and shown to be
effective for sphere data at relatively Tow noise levels. In the
present report the method is tested on sphere data.at much higher noise
levels as we]] as-on data associated with scatter1ng from a thin wire.
An iterative techn1que suggested in Ksmensk1 [2] is also tested. |
Finally, the,préb]em of filtering noise:f?om relatively quiet data is

also discussed and a novel filtering algorithm is presented.

I1. Mu]tiple Data Sets ' | ' (:) g
2.1 Formulation. Before presenting the numerical results

associated with comb1n1ng dissimilar data sets, a brief summary of

the theoretical foundat1on is presented. A more detailed presentation

is given by Ksienski [2]. The data will be represented ugﬁng the

standard pole residue expansion
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where k is an index to the various measurements and Nk(jw) represents

hoise and clutter. The representation in terms of conjugate pole pairs
is used to explicitly show that Fk(jw) is an even function of the

circular frequency w and is associated with a real function of time.




We wish to combine K such data sets in a maﬁner so as to have’a maximum
signa]-to-noise ratio in the composite data set, where the ndise'is
assumed to have zero mean and be independently and identically
distributed. Assuming a linear comb1nat1on with arb1trary complex
weighting coeff1c1ents the composite data set is

K
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and by interchanging the ordek'of summatiohvand noting the invariance

of the poles Sm with measurement number k,
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In general, it will only be pOssib1e to maximize-one"bm orc.ata

time. This is because for different choices of m the an Will not
vary in unison with k. Thus, the increased signal-to-noise ratio,
and hence increased accuracy, will only be obtained for the pole S
or §m. However, since the spec1f1cat1on of the pole is arb1trary,
several poles may be obtained through successively emphasizing




different bm or ¢ For the present, we restrict ourselves to
obtaining an improved estimate of 51’ which necessitates maximizing

| |b1]?. From (4), we may write '
b2 = wlaj2 (s

,,..;aKllT, Without loss
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in generality, the weighting vector may be constrained'to satisfy

WTw = 1. Then, noting the dot broduct formylation of (6), the

where w = [w ,w.,...,wK]T and a = [a ,a
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and for this optimal choice of the weighting vector, [bll2 = |]a]]2. To
- evaluate the energy associated with the noise N(jw), we take the

expectation of the noise squared -

E|N(Ju)[2 = E |2
k=1
K .
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k=1

and assuming the variance of the noise is equal to o2 in each of

the measurements Fk(jm)
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Thus the energy associated with %he noise will not increase with w
normalized as in (7). If K déta’sets are combined each containing
an approximately equal excitation of the mode associated with the desired'
pole, the signa]-toehoise ratio will increase by about a factor of K.
For any set of residues, the resu]ting weighting coefficients will
produce the maximum possible increase in signal-te-noise'ratio..‘
However this is dependent upon an accuréte knowledge of the kesidues
which is genera]]y not ava1]ab1e. Two solutions to this problem have
been dev1sed and both focus upon increasing the accuracy of the
weighting vector w. First, the error due to variation in the estimate
of the real part of fhe pole (which often constitutes a majority of
the error) may be reduced by modifying (7). Assuming that the primary
effect of a pole and' its associated residue is in the immediate vicinity
of the pole, it is possible to get‘a~first estimate of the residue which
would have resulted had the pole been constrained to have a different
rea] part. Since forka fixed residue the component of the signal at
a p01nt on the jw axis closest to the pole is inversely proportional to
the real part of the pole, an improved weighting vector may be obtalned
by normalizing each element of the weighting vector (i.e., the residue) )
by the real part of the pole associated with each residue. Thus (7)

is used with a redefined as

T
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where Si1 réfers to the estimate of the pole s1 obtained from the ith
data set. The second method of improving w requires additional
computation. Since the application of the algorithm shou]d result

in improved residues (using the techn1que described below) these
improved residues may be-used to construct a new and presumably more
accurate weighting vector. Thus, improvements may be made through

the iterative application of the algorithm. The results of the
application of the original a]gorlthm as well as the 1terat1ve version
are presented in the next sect1on

After the compos1te data set is formed, it must be subJected

to a pole and residue extract1on procedure. The algorithm due to Levy '

£3] and Sanathanan and Koerner [4] assumes that the poles and’residues
exhibit conjugate Symmetry. This is generally appropriéte as it is
equivalent to requiring ﬁhe frequency data to correspond tb a real
function of time. Unfortunate]y; Fcomp(jm) does not have conjuqapé
symmetry. This may be Seen from (3), (4), and (5), where for an
arbitrary complex we1ght1ng coeff1c1ent W the resulting b and c
will not be equal. This prob1em may be c1rcumvented by using the
algorithm derived in Ksienski [21, wh1ch does not force the residues
to occur in conjugate pairs. The 1mp1ementatxon of this a]gorithm
requires negative frequency information which is obtafned from the
daté sets Fk(jw) by employing conjugate.symmetfy.i After the accuracy
of the pole 1océtion is improved, the next step is to compute the
residues relative to the new pole estimate. Constraining a pole to a
particular 1ocat16n is not‘an easy‘taSk [17, but the algorithm
presented in Ksienski [2], by constfaining the poles tovoccur in

conjugate pairs without similarly restricting the residues, ‘provides




a simpleﬁalternative S1nce the data set Fk(Jw) corresponds to
a real funct1on of t1me, 1ts negat1ve frequency values are given by
k(Jw)-— Fk(-Jw) A second set*of data, ca]l it I(juw), is constructed‘
50 that I(Jm)'-'-l(-Jw) and thus corresponds to an imaginary funct1on
of time. I(jw) may then be . added to Fk(Jw) and the sum expanded
as.a ser1es of po]es wh1ch are then constra1ned to - occur in conJugate
pairs.  Noting that Fk(Jw) has an even’ rea] part and an odd 1mag1nary
part while I(ju) has an odd rea] part and an even imaginary part the
pole residue expans1on of Fcomp(aw) is immediately separable 1nto
components due to Fk(Jw) -and. I(Jw) . 5pec1f1ca11y, the pole res1due

,expans1on of Fk(Jw) may be wr1tten as
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while the pole residue expansion of I(ju) is
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Thus, ‘the second data ‘set may be used to constra1n the poles of Fk(Jw)
without corrupt1ng the res1dues

N 2. 2 Results The procedure was tested on two obJects,

sphere and a thin wire w1th length- to-d1ameter rat1o of 50 to 1.  For
the case of the wire, po]es were extracted from computer generated
data associated with current measurement on the surface of a wire.
The wire was divided a]ong its length 1nto 50 sections to fac111tate
analysis by the NEC program [5]. The wire was illuminated with a

plane wave e]ectromagnet1c f1e]d w1th the ax1s of the wire paral]el




to the direction of the electric field. The frequency of the

illumination was stepped from (wL/cw) = 0.2 to 4.0'in steps of 0.1.

- The computer simulated current measurements of the 5th, 10th, 15th,
20th, and 25th sections weré thea individually subjected to a pole
residue expansion. A pole common to all five data sets was 16cated
at (ol/cn) = -0.087 + 10.8855. The estimate of the pole as obtained
from the five data sets agreed to this value to within 0.2 percent.
This value is also in relative'agfeement wifhvthat obtained by Tesche‘
[6].. For the sphere, the pole residue.expan§ion was performed on
computer generated data corresponding to current probe méaSUrEmehts
at 6 = 0, 10, 20, and 30 degrees, with &a/c = 0.2’to‘4'by 0.1. The
lTocation of the primary pole for the sphere may be determined

‘analytically [1], and Ties at ca/c = -0.5 + 1.866.

Since the benefit of the algorithm may be attributable to
increasing the signaT-tofnoise ratio, the amount of improVément which
might bevreasonably-expeCted can be~determinedibykfirst eXamining the
increase in accuracy which'ogcurskwhen the.$1gna1—to-noise ratio is
.directly varied. The data was corrupted wifh computer generated white,
‘Gaussian noise at levels necessary to producé‘sfgnal-to—noise ratios
of ~10 dB t0 60 dB in steps of 2.0 dB. The signal-to-noise ratio is
defined as the fota] énergy in the original uncorfuptéd;data sets,
Fk(jm), divided by the tota]’éxpected noise enérgy contained inlthése
data sets. The range of errors associated with the‘po1é a5~extracted.
from the F, (jo) is shéwn in Fig. 1 for each noise level as fa]]ﬁng
between the two horizon£a1 marks. The fact that the pole for the wire
is much more resonant than ﬁhe bcie’for thé~5phere permitted the SEM

to be performed at much hfgher noise 1évels For,the,wire than
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Fig. 1: Vertical bars de]fmit range of errors for poles extracted from

Fk(jw); X indicates error for pole extracted from F, (Ju) with

greatest S/N; triangle 1nd1cates error for pole extracted from
f1rst compos1te data set circle indicates error for po]e

extracted from second comp051te data set.



for the sphere. The errors plotted in F1g 1 for signal-to- no1se ratios
less than 15 dB are those assoc1ated with the wire data, wh11e those
for signal-to-noise ratios greater than 10 dB are assoc1ated with the
sphere data. For each noise level a compos1te data set F (Jm) was
created using the above procedure, and . the spec1f1c case of wire data
with signa]—to-noiée ratio of 0 dB is shown in ng. 2 as the dashed
line. The po]e was extracted from F p(Jw) and the error e530c1ated |
with this po]e is marked with a tr1ang]e A second composite data set
was created using the estimates of the poles and residues as obtained
via the first Fcomp(jw) and.the error,assdciated‘hith the pole
extracted from thie second Fcomp(Jm) is marked with a circle. -Finally,
the error associated w1th the po]e as. extracted from the or1g1na1
data set Fk( w), w1th the strongest exc1tat1on of the dom1nant mode
(the 25th section for the wire and the 6 = 0 case for the sphere)
is marked with an. X. |

There are severa] important features”which are. exhibited in
Fig. 1. The most not1ceab1e is the apparent effect of the pole resonance
on the accuracy of extraction of the desired pole; the expansion
performed on the wire data with signal-to-noise ratio of 10 dB
produced more accurate resu1ts'than”sphere data with signa]-to noise
ratio of 50 dB. Add1¢1ona11y, the rate of improvement 1n accuracy of
po]e extraction with increasing signal-to-noise ratio is certa1n1y not
a smooth function. For the wire, there is large Jump at -2 dB and
for the sphere there is a 15 dB: reg1on centered at 40 dB where
increasing the signal-to-noise ratio has a negligible effect upon
the accuracy of the pole extraction.v Given'these peculiarities, the

improvement resulting from extracting the pole from Fcomp(jw) produces
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dashed Tine - composite data set.
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fairly reasonab]e reSu]ts.‘ In regions where the slope is steeb

the improvement resulting from extracting the pole from the composite Ci)
data set produces very nice hesu]ts'(remembering that the percent

error is graphed on a_lagarithmie scale), while in regions where the

slope is effectively zero, the improvement is negligible. Taken as

a whd]e, the pole extracted from the composite data set is almost

always better than that obtained from the data set with the greatest

excitation df the desired‘mode, and quite often is better thanvany of

the original estimates. This is with thekeXception of the region

where all of the initial estimates of the pole are in error by greater

than 50 percent, as. th1s genera]]y makes ‘the associated res1dues

effectively mean1ng]ess However, when at 1east some of the est1mates

of the pole are accurate good resu]ts are st111 obta1ned 'For

example, at 0 dB the wire data has an est1mate of the pole which

is accurate to 7 percent and another estimate which has a greater than (:)
80 percent error. Not on1y does the a]gor1thm work in th1s case, but ‘ f
the iterative application of the a]gor1thm is ab]e to use the improved

estimate of the res1dues to obta1n an ‘even better est1mate for the

desired pole.

II1. Fi]tering of Data ‘ ‘ ‘ ' |

3.1 Background. Wh11e exper1ment1ng with the method of Levy, S |
Sanathanan, and Koerner‘[4],l[5] (LSK algorithm) on sphere data, |
sparsely sampled data sets (39 points) and densely sampled data sets
(189 points) with identical signa1—to-noise ratios were found to yjeld
poles and residues of comparable accuracies. This observation is
somewhat disconcerting since the dénser data set has almost five times

the information of the sparse one and yet the LSK algorithm can

12




- not extract any better results. -This fact haSiehcouraged'research

~into the possibilities of filtering ‘the data before using it to find

poles and~residues. Unfortunately the use of f11ter1ng to 1mprove

‘the accuracy of the poles found by the LSK algorithm is somewhat more

difficult than f1rst expected Indeed several d1fferent factors’tend
to make 1t S0. | v

First, even if a. fi]ter is successful in improving the s1gna1-
to -noise rat1o by, for examp]e what would otherw1se be a respectab]e
]0 dB, there is no assurance that the ]ocat1ons of the poles will.
improve. The authors found that sphere data with stgna] ~to-noise
rat1os of 20 dB 30 dB and 40 dB all had comparab]e errors in the '

1ocat1on of the po]es Only when the s1gna1 to- no1se rat1o 1ncreased

to 50 dB and 60 dB d1d the Tocations of the poles tend to 1mprove

Another problem 1s that for sphere data very Tittle noise 1s
acceptable, as stated before the noise must be some 50 dB or 60 dB

down from the signal for good results. Th1s means that what ever

_ f1]ter1ng scheme is used it must work on the noise w1thout corrupt1ng

the 51gna1 Idea]]y the filter shou]d ‘not alter the data at all 1n

“the l1imit as the noxse tends to zero

‘This places severa] Timitations on-the choice of the nature
of the filter. For example, filters which exnibit a “"phase shift"
cannot be used since they will move the Tocation dt the resonant peaks
in the data thus shifting the imaginary part of the pole. Also

standard zero phase Tow pass filters cannot be used since they round

" out peaks in the data thus changing the real part of the pole to be

less resonant. Additiona]1y various types of transform filters
which suffer from aliasing problems are unacceptable since they also

corrupt the signal.
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Desbite thesevdffficulties fhe~authors have deveioped~a fiTtering
scheme which -has had some success in improving the location of the . (:)
po]es for sphere data. ' This scheme is a type of finite w1ndow-
moving aperture filter. However; whereas the standard linear moving
aperture filter [7] has affixeu weighting function, thisiSCheme is a
nonlinear filter where the weighting funct1on 1s a110wed to change
from data point to data po1nt | ‘ | |

The filtering process beg1ns with d1screte frequency domain
data, H(k), consisting of signal p]us noise, S(k) and N(k) The real
part and - imaginary part of the data will be filtered separate]y S0
‘that the analysis will concern only real quantities. A we1ght1ng
function, W(k) where 1nteger k ranges from -M to M, 1s used to generate

filtered data, H(k) as follows:

Hm) = :E: w (K)H(m + k)
k=AM
where M 1s the order of the f11ter The f1]tered data 1s then used
w1th the LSK algor1thm to find poles and res1dues The fol]ow1ng

sect1on 1s a der1vat1on of the we1ght1ng funct1on w (k).

3 2 Filter Der1vat1on The assumpt1ons about the no?ée that

will be,made‘are as fo]]ows:v

EINK)T = 0 e M » 1
EINGONG)T = 0 if k7§ o (2) S
EDNG(K)] = o2 . | (3)

1 | o




Further, the following restrictions will apply to the weighting

function
M )
wm(k) =] (4)
k=-M
wm(k) = w (-K) (5)

v The ‘weighting function will be an even funct1on so that the peaks
in the data will not shift in position.. |

, It is also assumed that the signal is vary1ng slow]y enough
compared to the w1dth of the window so that it can be accurate]y

represented by a quadratic expansion, that is:

S(m+ k) = agtak+akl 5 for-M<k<M. (6)

Of course the values of 3,5 A, and a will depend on the choice
1 2 , '
of m.

With this filter the estimate of S(m) will be

e
3 T DL (KISt + K) + N(m + k)] Y
k=-M :

and so0 an error measure can be defined as:
M

o | N 2
e = (ag -3 - {ao - Z W (K)S(m + k) + N(m + k)]} (@)

k=-M

Now under the previously stated assumptions the expected value

of the error measure can be found
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E(e) = a2 2a 2 W (m+ k) [Z Wm(K)S(m + k{’ + g2 Z W'%(k
=M - L k

2
E(e) [Z k2W ] +‘o ZMW%

K=M
. -
[Z i, ( :} 4242 Z W2 (k) + GZE _2
. k=l

By the proper choiteldf the W (k) values’ 1t is desirable to m1n1m1ze

I

the expected value of the error measure. Therefore the valués of the

we1ght1ng funct1on must sat1sfy

; M o y
3E(e) . , . i
3Wm(»k). = 8k<“32 z k Wm(k).+b4c Wm(k) - 4q | 1- 2 Z w (k)
k=1 k=1
, o M. | . B
= Aot (k) - 17+ Z (K (82 + Bk2a2k2] = g
& |

for k = 1,2,...,M . (10)
This Teads to M Tinear equations which can be solved for the M

unknowns Nm(]),through wm(M). The values of wm(O),can be found

from relation (4). 'For‘éxample, when

16
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2a? + 2 - 34 a% + g2
(0) = —2— 0,(0) =
232 + 342 5(14 a2 + a?)
24 a2 + g2
2
wm(]) = . 0° wm(]) N 2
2a§ + 302 5(14 a2 + 42)
-6 aZ + o2
() =

Notice .that 1f.a2 =0, that is thé signal has no curvature, the
weighting function is uniforh so that thekmost npfée pqssib]e can

be e]iminated. Notice also if 62 = 0 then the éstimate of S{m) is
correct to the extent that the data can be represented by a quadratic
expansion.

Therefore, to find the optimum weighting function for a given
size window the variance of the noise and the;a2 coefficient for each
data pbint must be known. Usuélly the noise variance is at least
approximately known, hoWéver the a2 coefficjents require some know]edge
of the signal without noise. Hence the values of these‘a2 coefficients
can only be estimated from the signal plus noise data. For this
reason the filter will only work on data with a relatively high signal-
to-hoise ratio (> = 20 dB).

The a coefficients are found by a best curve fitvwith the data
over the range of the window plus one poiht. The error between the

curve fit and data js defined as:

17



M+1

.,

[Hm + k) - (ao‘f alk +'a2k? + a3k3)] | (1)
k=-M-1 - * ’ '

The coefficients a, throughﬁa'3 are then chosen to minimize n. This-

" Teads to the following equgiion for the a coefficients
_ 2.

:Ejkz‘o EE}H(m + k) - :i: :ngz H(m + k)

a = - (12)

(292

U51ng this relation and know1ng the noise variance 2. we1ght1ng

- functions for each data point ¢an be generated and the data

f11tered

3.3 Results of F?lterﬁﬁg; ‘Thé figuke 3 shows noisy sphere
data (S/N = 40 dB), and the same data filtered with M = 1and M = 2
filters. The filter was'testéa on various éphere data with noise.
On sparsely sampled data«(39-points)vno improvement was made {n'fhe
location of the first dominént pole for any signal-to-noise ratib
On more densely sampled data (189 -points) 1mprovement was made when the
s1gna1 -to-noise rat1o was between 50 dB and 60 dB. W1th s1gna1 to ~noise
ratios greater than 60 dB the unfiltered data y1e1ded the correct result
to one percent accuracy anyway and fi]tering did not improve it.
However, with a 55 dB signal-to-noise ratio the average error of the
- first dominant pole was 7’pér¢ent. Aftér filtering with M = 1 this
average error fell to 3.5 percent and with M = 2 fell to 2.5 percent,
It should be noted thaf similar improvements can be obtained with

moreytraditibnal fiTtérs, such as a uniformly weighted moving

18
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aperture, for this data. However a uniform weighted filter actually
increases errors with other types of data sets, whereas our‘fi]ter ' : (:)
will not. For example, the unf11tered error of the 39 point data

set with 55 dB signal-to-noise rat1o averaged 7 percent, but after
filtering with a uniform aperture with M = 1 the error went to 8 percent
and with M = 2 climbed to 31 percent. OQur f1]ter however had an
average error of still 7 percent for both M = 1 and M 2 filters.

In conc]us1on the presented filter can improve the location of p01es
found with the LSK algor1thm if both the density of the samp]ed data

and the initial signal-to-noise ratio are sufficient. 1In addition'

this filter will not stat1st1ca]1y increase errors of the po]es and

residues where more trad1t1ona] filters may.
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