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ABSTRACT

When 'using the singularity expansion methbd‘ on mez-lsured data, the
accuracy of the results is often severely limited by the noise and clutter present
in the measurement. Ap effective method of reducing these contaminations is
repeating and averaging the measurements. The effectiveness of this method is
related to the number of Mmeasurements which are combined. The present paper
develops a method which increases the set of measurements which may be
combined‘ from the set of identical measurements to all measurements made on
the target. The measurements are combined using an optimal weighting scheme
to provide a superior estimate for a specified pole. Ap algorithm is described
which increases the accuracy of pole locations and accurately refers the residues
to these new pole locations. The algorithm is used to extract a single pole and

residue, and additional poles and residues may be obtained through iterative

application of the algorithm.




1. INTRODUCTION

The singularity expansion method as applied to electromagnetic scattermv is
a method of characterizing the response of a target in terms of transfer function
parameters such as poles and residues. To this end, the poles are assumed to be
invariant, while the residues vary with the particular measuremer‘ut‘ performed

and the type (including direction and polarization) of illumination. At least in

theory, the accurate location of a few poles could assist in determining the

identity of the target, but in practice the supposedly invariant poles tend to

move about with changes in the target's orientation and illumination. If the

noise and clutter are nondeterministic, and if it is feasible to repeat the

measurement, both the noise and clutter can be reduced by repeating t’he
measurement several times énd averaging the associated signals. If the usual
assumptions about the noise and clutter (such as distributions which have zero
mean and are'independently. and identically distributed) are satisfied, combining

K measurements will result in an increase in the signal to noise ratio by a factor

of K. By taking K sufficiently large, the data may be quieted enough to

guarantee accurate pole and residue extraction. Of course, in practice, obtaining

a large number, K, of measurements, may be somewhat expensive, or in some
situations, impossible. For example, if measurements are made of a moving
target such as an alrplane the requirement that the measurefnent be repeatable
can be satisfied approx1mately at best, and then only for a hmlted amount of
time. Comersely, if the measurement of a stationary object is repeated any

stray reflections from other stationary objects (or, in the case of near-field



O ‘

measurements, probe-target interaction) will be repeated exactly. Under these
circumstances, the clutter is deterministic and the energy associated with the
clutter cannot be reduced by repéating and averaging the measurements, On the
other hand, if the noise and clutter are nondeterministic, the signal to noise ratio
, .
will increase as additional data sets are incorporated into the composite data set.
It is therefore desirable to include not only simiiar measurements, which may be
combined using strict waveform averaging, but also those associated with

different illuminations of the target.

This paper presents an extension of measurement averaging that elirhinates
the requirement of identical measurements and thus permits further increases in
signal to noise ratio by lncreasmg the number of data sets which may be properly
combmed The mcreased signal to noise ratio is obtained for the portion of the

original signals associated with a specified pole.

2. FORMULATION

Usmg the standard pole residue expansion, the data as a function of the

circular frequency w may be represented as
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where £ is an index to the various measurements and N (jw) represents noise and
clutter. We wish to combine K such data sets In a manner so as to have a
maximum signal to noise ratio in the composite data set. Assuming a linear

combination with arbitrary complex weighting coefficients, the composite data




set is
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and by interchanging the order of summation and noting the invariance of the

poles s, with measurement number k,
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In general, it will only be possible to maximize one b, ata time. ‘lexis is because
for different choices of m tﬁe 8 Will not vary in unison with k. Thus, the
increased signal to noise ratio, and hence increased accuracy, will only be
obtained for the pole 3 - However, since the specification of the pole is
arbitrary, several poles may be obtained through successively’ emphasizing
diffcrent b, . For the present, we restrict ourselves to obtaining an impréved

estimate of s,, which necessitates maximizing |6 ,]°>. From (4), we may write
184 = |wTa? (5)
where w = [w,, wy, ..., wi]T and a = [a11, @2y, ..., ag,)T. Without loss

in generality, the weighting vector may be constrained to Wliw = 1. Then,

noting the dot product formulation of (5), the maximum &, will occur for




and for this optimal choice of the weighting vector, |b,]? = llall®. To evaluate

the energy associated with the noise Njw), we take the expectation of the hoise

squared
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and ‘assuming the variance of the noise is equal to 0~ in each of the original

measurements,
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Thus the cnergy associaied with the noise will not increase with w normalized as’
in (6). If K data sets are combined each containing an approximately equal
excitation of the mode‘associated with the desired pole, the signal to noise ratio
will increase by about a factor of K. For any set of residues, the resulting
weighting coefficients will produce the maximum possible increase vin signal to

noise ratio.

3. IMPLEMENTATION

The above formulation assumes initial estimates of residues in order to
compute the weighting coefficients. The algorithm is fairly insensitive to errors

in these estimates of the residues and, in fact, a single complex error factor




associated with all of the residues will not adversely affect the weighting vector.
- The effect of variations in the real part of the pole Is minimized by normahzm«

the residues by the real part of the associated poles, i.e., (6) is used with a »

redefined as
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where 8; refers to the estimate of the poie s, obtained from the ith da’ta‘ set.
After the composite data set is formed, it must ‘be subjected to a pole and residue
extraction proce‘dure. The algqrithm due to Levy [1959] and Sanathan’an and
Koerner [1963] assumes that the poles and resmues exhlbn conjugate symmetry.
This is o'enemlly appropnate as it is equivalent to requmnfr the frequency data to
correspond to a real function of time. Unfortunately, Feomp {jw) does not have
conjugate symmetry. Recently, Tao and Zunde (1981] extended the method of
Levy »[19691 fo distributions of poles and zeroes which have no syfnmetry
constraints. Although the algorithm of Tao and Zunde does accommodate the
above data set, it is somewhat more general than required. Specifically, it does
not require the poles to occur in conjugate pairs, but as may be seen'from (2},
F;omp (jw) does preserve the conjugate symmetry of the pole pairs. To more
closely match the known parameterization of the data, an algonthm was
produced whxch relaxes the conjugate symmetry constraint on the residues while

maintaining the conjugate symmetry constraint on the poles, and the derivation

is given in the Appendix.




| The implementation of the algorithm requires negative frequency |
information which is obtamed from the original data sets by employi Ing conjugate
symmetry. After the accuracy of the pole location is improved, the next step is
to refer thc residues to the new pole estimate. Constraining a pole to a particular
location is not an easy task [Pond and Senior, 1982], but the present algorithm
p.rovides a'simpie‘alternative Smce an originai data set corresponds to a real
function of time it is an even function of frequency. A second set of data which
is an odd function‘of frequency may be added to the original data and the sum
‘ekpanded as a serics of poles. Noting that the poles are constrained to occur in
conjugate pairs, the component of the summation associated with the original
data may be. obtained‘by ‘retaining the even part of thé residues. Both the
original data and the second set are constrained to have the same poles in the
expansion, and by appropriate placement of the poles associated with the second
set of data; it is possible to constrain the pole locatioi)s in the expansion of the
original data. The residues are then obtained relative to these new constrained
pole locations withou‘t“ any apparent adverse side effects. An additional
advantage is that the accuracy' of the location of the adjacent pole is als‘ov

improved.

4. TEST OF ALGORITHM

It is generaliy accepied (e.g., Van Blaricum and Mittra (1978]) that an
- increased signai to noise ratio wiil improve the accuracy of pole extraction. Ip

the preceding section it was shown that the present algorithm improves the signal
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to noise ratio for the signal associated with a specified pole and this is now
demonstrated using nonresonant sparse data and employing only 4 data sets
Both nonresonance and sparseness severe‘y limit the accuracy of extracted poles

and produce a WOrst case test of the algorithm. Additionally, using only 4 data

sets limits the amount of gain in the signai to noise ratio to less than a factoru o,f ‘

4 or approximately 6 dB.

The data was computer generated and corresponds to a probe measurement
of the current on the surface of a perfectiy conducting sphere. The actual
function used was the T,(f) function as defined in Bowman ei. al. ’[1969]." bata
was obtained for wa/c = .2 tc; 4in .1 increments, where ¢ is the speed of light
and a is the radius of the sphere. The 4 data sets correspénd-\to current
measurements at § = 0, 10, ‘2'0, and 30 degrees.. Gaussian noise was added to the
data, with the variance of the noise being stépped from 1072 to 16‘7 in 10702
multiplicative increments. The pole which was enhanced was the dominant péle,
located at -0.5+j0.866. The error associated with extracting this pole from the
§ = 0 data sets is shown in Figure 1. The errér is displayed versus Np, where
N, = 10 X log (variance of noise), so as to provide a dB scale. As can be seen,
although there is improvement in the accuracy of the pole location with
increasing signal to noise ratio, an increase in signal to noise ratio by even as
much as 10 dB does not always produce an increase in the accuracy of the pole
location, for example in the region Np = -20 to -30. Interestingly, this is about
the mavmtude ‘of the noise encountered in a iaboratory m*asurement and

certamly lllustrates the difficulty of extracting poles and residues from
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experimentally measured sphere data. As stated above, this is a worst case test
and consxderably better results are obtainable from dense data whxch is
prefxltered the latter effectively resulting in an increased signal to noxse ratlo
More resonant targets also offer much better resuits. However, for the data at
hand, the region in the middle of the graph is the only area where a 6 dB
improvement will be easily observable. Of course, by working with several runs
and noting the average change in pole location, the 6 dB improvement would
produce more accurate ‘pole extractions am“here on the graph, but it waé
desired to affect improvements which would be apparent from a single run. Thus,
4 data sets were combined, corresponding to 6 = 0, 10, 20, and 30 dcfrreesb and

this was performed for 20 diiferent noise ievels associated with N, being stepped

from -40 to -38 in increments of 2. The weighting coefficients were obtained

from preliminary pole-residue extractions from.!;he noisy data using (6) apd (7).
The improvement in the accuré.cy of pole location is shown in Table 1. The
improvement is calculated relative to the average error of the extracted pole
location obtained from the original 4 data sets. The irregularity of the
improvement is fairly consistent with the trend seen in Figu'r’e 1. For
comparison, the reduction in error accruing from the use of the consensus pole

technique suggested by Pearson and Roberson [1978] is also listed. This

technique involves averaging the poie location estimates produced from the initial

runs, and though it always produces an improvement, the amount of
improvement is seen, at least in the region tested, to be much less than that

resulting from processing a composite data set. The limitation of the consensus
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Percent reduction in error in the first pole

Using Composiie Using Consensus
N, | Data Set Pole
-40 18.13 7.78
-42 7.33 2.61
| =44 31.87 3.47
-46 26.67 ' 2.86
-48 70.24 2.81
=50 | 65.34 1.95
-52 54.98 0.73
-c;)-t 73.34 | 3.25

-56 70.73 3647
-58 51.98 3.25

‘Table 1. Improvement in the pole "Iocation ‘as extracted from the composite

data set and as obtained from the consensus pole technique.
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pole technique is largely a result 6f the bias which seems to afflict most least-
squares cm.'ve'fitting pole extraction al‘goritbms. Since a bias is not reduced by
averaging, the consensus pole suffers from the same bias as the initial estimates
of the pole. The improvement of the composite poie over the consensus pole as
well as the poles extracted from the original data sets is shown graphically in

Figure 2 for the case of Np = -50.

Finally, it was desired to refer the residues to the new pole iocations in cases
where a substantial improvement in pole jocation was obtained. The greatest
improvement in pole location occurfed in the region of N, = -48 to -58, and for
these cases the residues were referred to the new pole locations. The attendant
improvement in the accuracy of the residue is shown in Table 2. In addition, as
a result of constraining the primary pole to a more accurate location, the

accuracy of the extracted nearby pole is also improved as shown in Table 2.

5. DISCUSSION

The éombination of dissimilar measurements of the same target makes it
possible to reduce the energy associated with clutter and noise. An optimum
method of combining the measurements has been developed and tested under
worst case conditions and appears to be an effective. method of vincre.asing the
accuracy of the extracted poles and residues. The method has been compared to
the consensus pole technique of Pearson and Roberson [1978] and found superior
over the range of ;10ise levels tested. Additional improvements are presumed to

be obtainable by using a more dense sampling rate, perhaps coupled with a
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Percent reduction in error

Residue of
NP First Pole | Second Pole
48 | 617 76.9
-50 39.1 62.4
=92 59.3 53.1
=34 74.6 55.0
56 | 75.4 56.6
-58 16.1 - 34.1
Table 2. Improvement in the residue of the first pole and the location of the

second pole resulting from constraining the location of the first

pole.
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prefiltering Schemc, as well a.§ by increasing the number of datd sets which are
combined into the composite data set. AJtnoun‘n only one pole was specificaily
extracted, the nearby pole was also obtained with increased accuracy, and it is
re:isonable to expect further improvements from iterative application of the
abovg algorithm. ‘Finally, it should be noted that the algorithm is ehtirely linear
and therefore could <also be extended to time domain singuidrity,expansion

methods.
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APPENDIX A

The following derivation parallels the reformulation of the work of Levy
(1959] and Sanathanan and Koerner [1963] contained in Zawrence [1979]. Let
X(jw) and L(jw) represent the measured data and the least- "Squazes curve fit to

the measured data respectively, where L{jw) is formulated as

(e + j4T)p(jw)
L —
) 1+ ATq(juw)

(A1)
with

a=laga,,... ,aN]T

15




7?[601 €1y, ’CN]T
p() =1, jo, (), . . ., (u)¥|T

ali) = fiw, G, (e, . . ., (MT
‘and a, ,8, and « are real. This rational function expression of L{jw) is necessary’
for the following derivation, howgver, L{jw) is equivalent to an M-pole expansion.
The inclusion of # eliminates the conjugate symmetry constraint on the residues |

while maintaining the ‘conjugate symmetry of the poles. The best fit cu'rve,

L{jw), is obtaine’d by minimizing HX{(jw)-L(jw)|j® = le(Gw)||>.

.. T 4+ ivNipijw) :
X(jw) = Lo * v lpiw) |0
1+ ATq(jw)

(A.2)

NGl + BTq(jeh) ~ (o + ja0)p(iw) = e(iw)(1 + ATq(jw)  (A.3)
To minimize e(jw) in the least-squares sense, first minimize J.

e(jwg )

J = -
PR TE

(1 + A(je, )2 (A4)

where K is the number of data points and d(jw, ) is for the moment set to unity -
but with succeeding iterations converges to (1 + ,19’1-q(j/.‘;,c ))- Thus the initiai
solution will be a least-squares solution weighted by (1 + ﬁTq(jwk )) and

successive solutions will converge to an unweighted least-squares solution.
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(@5 - j975 + pTqaTp - ATaj4Tp)
-X(aTp + j4Tp + AT3ap + FTgjTp)

+ (a"paF - aTpj4Tp 4+ i7'Pa™p + 4TpaTp)]

where the functional dependence on (jwy) has been Suppressed for notational

economy. To minimize J,

1 _ i oy <6
G T ol 9 = - (A5)

for‘ all ¢, which rcsulfs in a set of 2(N+1)+M Iinéar equations with an equal
number of unknowns. The simultaneous solutxon of these equations yields a
pole-zero parameterization of the Jeast Squares curve fit to the data, To express
these equations in the more compact form of a matrix equation, the scalar

equations are first grouped into vector equations.

0]

—— —
_

Oa i

tam

~ ﬁ; [- k(p +53%q) - X(p + pATg)

+pa"5 + 5aTp - jpaTh + ipypi =0
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— =) [—‘((-Jp -Jpﬂ q) - X(jp + jpp’
87 kz-l Id‘ q)

+ jpa’p - jap + pyTF + 51Tp] = 0

al K o= = Ty
37 = X = [-X(-Xq - XqpTq) - X(-Xq - Xq4Ts
25 Py ldl“[ (-Xq - Xqp'q) - X(-Xq - XqfTg)

a——

- XqaTp - XqaTp + iXq7Tp - jXq7Tp] = 0

These vector equations may then be combined into

”

aJ LS ~ <
21 _ + Tq) - 3 Ts
o ;&MF[\ +34T9) - Xu + Ty

+ua™p + @a"p - juy™p + jiyTp] =0 |

where u = [pT:jpT; Xq"|Tand v = [aT AT 87T, Rearranging terms vields

« .
\‘ L RefXu) = | &7 — Re(uu )
/T k=1 |

which is a matrix equation which may be solved for v. The initial solution of

this equation, with d set equal to 1, represents a weighted least squéres solution.
If the equation is iteratively solved with d set equal to 1+ 8Tq, the solution will

converge to an unweighted least squares solution.
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