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ABSTRACT

This paper deals with the pole-zero identification
of a linear system from a measured input-output record. One
objective is to show that the pencil-of-function method mini-

‘mizes a weighted version of the Kalman equation error. It

follows that the pencil-of-function method is capable of yield-
ing robust estimates for poles located in a given region of
the complex s-plane. The second objective of this paper is

to illustrate that identical sets of equations arise in three
supposedly different analytical techniques for obtaining the
impulse response of a system. The techniques investigated
are: 1) the least squares technique based on the discrete
Wiener-Hopf equation, 2) Pisarenko's eigenvalue method, and

3) Jain's pencil-of-function method. The proof of equivalence
is valid only for the noise-free case when the system order

is known. 1Instead of using the conventional differential-
equation formulation, equivalencé is shown with the integral
form utilized in the pencil-of-function method.

This work has been supported by the Office of Naval Research
under ' Contract N00014~79-C-0598



1. INTRODUCTION

In linear system identification, one is often interested in ob-
taining a pole-zero model of an unknown system from measured records
of the input and output. If x(t) and y(t) are the respective time domain
input and output to the system, then we are interested in characterizing

the impulse response h(t) by a sum of complex exponentials, i.e.

o .
h(t) = } A exp(sit). (1)
i=1

Here n is referred to as the order of the system, sy and Ai are the
poles and the residues at the poles, respectively. In the Laplace domain,
the problem is to model the transfer function H(s) (which is the Laplace

transform of h(t) by a ratio of two rational functions as

m
Y(s) _ H(s) = bo + bls + ...+ bms A B(s)

n  A(s) (2)

+ + ... + s
aO als an

where Y(s) and X(é) are the Laplace transforms of the input and output,
respectively. Equaliﬁy in (2) is attained when y(t) and x(t) are noise
free and the system order n is exactly chosen.

Three basic approaches to solving the identification problem are:
(A) Least Squares approach (based on the Wiener-Hopf technique) [1-3]
(B) Eigenvalue method (based on Koopman's results [13] which were later

applied by Levine [12] and Pisarenko [4-5]
(c) Pencil-of-function method (based on the linear dependence/independence

of a sét of functions) [6-8].

In this paper, we show that the three techniques yield analytically
equivalent equations when there is no noise in the measured waveforms x(t)
and y(t) and the system order n is correctly chosen. However, in the

presence of noise, performance differs from one technique to another.




2. THE CONCEPT OF ERROR IN THE VARIOUS TECHNIQUES

Given a specified input x(t), one would like to minimize the mean
squared error between the actual'output y(t) and the predicted output
from the system model. In the Laplace domain, this is mathematically

equivalent to minimization of IEl(s)I2 where

lgy = _ B(s) _ Y{(s)A(s) - B(s)X(s) A E(s)
S NE -Gy e - AG) SO TS

and the unknowns ay and bj appear in A and B [as defined in (2)].
However, even though minimization of |El(s)|2 with réspect to bj
is a linear problem, the minimization of the squared error with respect
to a; is a nonlinear problem [9]. Hence, we tend to minimize IE(s)l2
(where E(s) is popularly known as the equation error, after Kalman [10])
rather than lEl(s)|2. This is because minimization of IE(S)I2 with
respect to a; and bj is a linear problem. In fact, beginning with
Kalman [10] in‘1958, almost all pole-zero modelling techniques utilize

this error criterion. The first two techniques -~ the least squares and

the eigenvalue methods -- as implemented by present researchers, utilize

the minimization of |E(s)|2. On the other hand, the third technique --

the pencil-of-function method ~-- minimizes a weighted lE(s)lz. This
weighting is particularly useful when one is interested in very accurate
locations of poles and zeros in a'specified region of the.complex s-plane.
The obvious ﬁuestion now raised is, "What guarantee does one have
of obtaining a 'good' solution if lE(s)I2 is minimized?" We show that
when the data is noise free and the system order n is correctly chosen,

coe - 1 2
minimization of IE(S)I2 is equivalent to minimization of |E (s)|°. We




observe that if the value of s does not coincide with a zero of A(s)
(i.e. A(s) # 0), then minimization of |E(s)| is indeed equivalent to
minimization of !El(s)l. However, it is not obvious that the same
conclusion holds for g = si, where A(si) = 0. Since at s = g ’

minimization of El(s) results in the indeterminate form 0/0, we‘apply

L'Hospitals rule to obtain

d

. fa; [E(S)]}s=si

E (si) =— =0 (4)
fas @1

where use has been made of the fact that g; {E(s)} is zero independent

of s = Sy. Hence, when there is no noise in the data and the system order

is eXéctly chosen, minimization of ]E(s)l2 is indeed equivalent to mini-

mization of IEl(s)lz.

However, if y(t) is contaminated with noise, such that the noise

contaminated output YN(s) is

Yy (s) = Y(s) + N(s), (5)

then minimization of the error results in

El(s,) = N(s,). (6)
Thus, the\output noise plays a crucial role in computation of the system
poles by‘minimizing [E(s)lz. This is a well observed fact for Prony's
method [3], which is similar to the least squares technique [3].
However, if one utilizes a noise correction scheme, then minimi-
zation of the equation error is quite meaningful and, as is shown later,

may‘yield an efficient estimate of the true solution.




Ihe pencil-of-function method utilizes the concept of linear
dependence of a set of functions. Following the notations of Gantmacher
[11], Jain has defined [6] a mathematical entity £, by coﬁbining two
given functions defined on a common interval [a,b] together with a
scalar parameter as

£(t,2) = yg(t) + h(t). )]
We call f a pencil of functions g(t) and h(f) parameterized by y.
In this paper we consider séts of pencils

Ygl(t)+h1(t); Ygz(t)+h2(t); an(t)+hn(t)

wherein the functions gi(t) and hi(t) for i=1,2, ... n span separately

a common n-dimensional Hilbert space L2 with the usual inner product

b
<f,g> = j f(t)g*(t)dt (8)
a

where * denotes complex conjugate.

For a fixed éet of values of parameters Yy, the pencils‘ébviously
reduce to a set of functions, and the particular values of Y chosen
determine properties such as the linear dependence or independence of
the set. The main result concerning the linear dependence of pencil
sets is derived in [g] and can be expressed as follows;

Theorem: Given that the pencil set is linearly dependent, the

pafameter Y must satisfy the polynomial equation

n n-1
Y V6lg,,8,s--458 1+ Y "LVG[g., se..3h .3...,8. 1+ ...
1’72 n iy hkl i1

]+ /G[hl,hz,...,hn] = 0. (9)

+ YZG“’k.l’ ces ;gil; Cae ,hk_

n-1




In every sum term here, the i's and k's form a complete complementary

set of indices over the integers 1,2, ..., n; furthermore, the notation
G[fl, ceey fn] stands for the determinant of the n-dimensional Gram matrix
of the functions fl’ vesy fn' Lastly, we remark that the sign of each

sum term is to be determined as indicated in [8].

Translated to our problem, we then must look for the linear depen-

dence of the pencil of set determined by [7]

y0+}‘y1, y1+Ay29 --.,yn_l+ Xyn, Xl, Xz, coey Xn

where Vi1 and X;41 are reverse time integrals of the functions Y; and
x, as defined in the next section. It is also shown there that by

checking for linear dependence, we are actually minimizing a weighted

version of IE(s)lz.

3. THE MATHEMATICAL DEVELOPMENT FOR THE NOISE FREE CASE

The fact different formulations yield the same poles for the noise
free case is not widely appreciated. One of the objectives of this paper
is to show that different formulations based on different assumptions

result in an identical set of analysis equations.

(A) The least Squares Approach

In the Laplace domain the equation error is given by
E(s) = Y(s)A(s) - X(s)B(s)

m k )
I b sK(s). (10)

n
) skY(s) -
k=0 ék k=0

In the conventional approaches, we generally deal with (10) and therefore

work with the various higher-order derivatives of the functions y(t) and




x(t). Since it is difficult to obtain the derivatives numerically, we
deal with the various successive integrals of y(t) and x(t) as is done
in the pencil-of-function method. We also show that dealing with the
integrals of y(t) and x(t) leads to a minimization of a weighted

2
version of |E(s)|“. We divide (10) by s" (it is assumed n>m). Then

=~ E(s) (s " Y(s) T ‘X(s)
E(s) & = ) a - ) b - 11)
8" k=0 K"K pmp K gk
We next define the functions yi(t) and xi(t) where
Yolt) = y(t) .
(12)
xo(t) = x(t)
t
t ty -1
Jdtl I dt2 cee yo(tj’dtj for t >0
(w 2] MJ
EEESE
Yj(t) = j times
\9 for t <0 (13)
and (t t1 t'-l
fdtlf dt, ... T xo(.tj)dtj for t >0
Vf____fi__\,—————-ﬁﬂJ
xj(t) =< j times
Lo ' for t <0 (14)

Observe that the integrals in (13) and (14) are from ® to t rather than
from O to t. This is done because numerically stable results are ob-
tained for the Gram matrix in (9) if one integrates from ® to t [71.
By taking two sided Laplace transforms, we have
Yo(s) = Y(s)

and Xo(s) = X(s) (15)




Moreover, using integration by parts,

-st Yk(S) Y(s)
Y1 = f e dt[ Y (DdT = ——= D)
and ' © t :
(s)
- -st - xk - _X(s)
Xk+1(S) [ e dtj xk(T)dr S s(k+l)‘

Substitution of (15), (16) and (17) in (11) yields

~ n n
E(s) = ] aY .(s) - ) bX
k=0 F n-k k=0 k"n-k(s)

By taking the inverse Laplace transform, we get

n m
&ty = | ay () - ] bex (6.

k=0 k=0
In matrix form (19) can be written as

‘é(t) = [yn(t)’ Yn_l(t),---,yo(t):‘xn(t), —xn_l(t)s"',—xn_m(t)].

The integral squared error can be expressed as

oo

) .| 1 - [a]
ERR=J e (t)dt=1{[A)] [B]}"- .
! ~[xY] [XX] [B]
{A]
2 tray 31}% [p3 -
[8]
8

(16)

(17)

(18)

(19)

. (20) O

(21)




where the above matrices are defined as

T -
[A]" = [ao a ... anllx(n+1) . (22)
T :
[B]” = [bo b1 ces bmllx(m+l) (23)
_hm (-] (-} -‘

jyn(t)yn(t)dt Iyn(.t)ynnl(,t)dt [yn(t),yo(t)dt
0 . 0 . o - .

yyj = . ® : o . (24)
fyo(t)yn(f)dt J Yo(B)y,_,(t)de ... Iyo(t)yo(t)dt
0 0 0

— -

fyn(t)xn(t)dt f Yo (e)x _ (t)de ... 'Iyn(t)xn_m(t)dt

xp = 0 0 : 0 : (25)
Iyo(t)xn(t)dt j Yo(tdx _,(t)de ... Iyo(t)xn_m(t)dt)
0 0 0
fxn(t)xn(t)dt [ x (Ox _,(B)de ... an(t)xn_l(t)dt

=19 0 0 (26)
[xn_m(t)xn(t)dtIxn_m(t)xn_l(t)... an_m(t)xn_m(t)dt
0 0 0

[vx] = [xv]’ (27)

and T denotes the transpose of a matrix. Observe that the matrix [P]
is a symmetric positive semidefinite matrix. Also, note that the squared
integral of e(t) is being minimized rather than that of e(t). The basic
difference between €(t) and e(t) is that &(t) is the nth integral of

e(t) [equation (11)] - in other words e(t) is passed through n integrators

N



in cascéde to get e(t). In the Laplace domain this i; equivalent to
minimizing ]Eﬁsllz instead of IE(s)Iz. Thus, a weighted least squares
error is beinz minimized. The error E(s) is weighted by the function
1/s® to yvield E(s). This implies that with respect to error E(s), the
low frequency poles are weighted mdre heavily than the high frequency
poles. Hence, iﬁ is expected that minimization of E(s) yields a stable
result when the noise is modelled by a high frequency phenomenon. .This

épproach improves the solution for low frequency poles. This was ob-

served when analyzing transient data in [7].

It is important to point out that instead of using successive inte-

grations in (13) and (14) where the functions»yi+1 and X,,, are defined,

+1
one could have utilized a series of band-pass filters instead. This
would have amounted to reducing the integrated squared error of e(t)
where e(t) is obtained by passing e(t) through n band-pass filters, with
properly adjﬁsted cut-off frequencies. It is conjectured that‘such a
technique would yield very robust estimates for poles in a certain pre-
determined region of the complex s-plane, ’

The next step is to minimize the error ERR given by (21) with
respect to a; and bj' This is equiﬁalent to.taking the derivative of

the functional ERR with respect to a, and bj and setting the first

i

derivative equal to zero. This leads to the set of equations

[A] '
(p) - = 0. | (28)
(8]

Observe ‘that one solution of this equation is the trivial solution.
Hence, we fix a; = 1 and minimize the functional ERR with this constraint.

As pointed out by Koopmans [13] and Levine [12], the minimization process

10




1
J

’ (:> leads to the set of equations

-
N =

(PRl (n+m+l) x (nbmb2) | =0 (29)

T eee PO M coe d
— O3

=]

(n+m+2)x1

J
L

which is identical to the discrete Wiéner—Hopf equations. Here the
matrix [PlR] is the same as the matrix [P] with the first row deleted.

The solution of (29) can be written in the compact form

poe o -

a1 85784

a, 8137845
[wl = |® = | B1en)/P11 | - (30)
O b0 A mt2)/P11

b A1(n+3)/A11

b 1 A A

L U (k1) xg | 1 (w2 11 |

where Aij is the ijth cofactor of the matrix [P] defined by (21), i.e.
Aij is tﬁe determinant of the matrix remaining after the ith row and
jth column are deleted from [P].

The solutions given by (30) yield the global minimum for’the
functional ERR under the constraint ay = 1. However, a major objec-
tion to this technique is that there is no compelling reasoﬁ for

choosing a, = 1 as opposed to selecting any ai or bj to be unity.
When there is no noise and the system order is correctly chosen, the
|

11




solutions obtained, as different coefficients are set equal to unity,
are identical except for a scalar multiplier. However, when the data

are contaminated by noise, each of the choices may lead to a completely

different result [3].

[B] The Eigenvector Method

Instead of constraining one of the coefficients to be unity, we

may require

n m [A]
] a2+ ] bj2 = {[a] B} - - 1. (31)
i=0 j=0 ‘ [B]

Observe that minimization of the functional ERR in (21) is now equivalent
to finding the minimum eigenvalue of the matrix [P]. By using (21) and

(31), it follows that we need to find

min. of [ERR = {[A] [B]}"- [P]. {Eg%}l . (32)

The solution {[A] [B]}T is given by the normalized eigenvector corre-

sponding to the minimum eigenvalue of [P].

[C] The Pencil-of-Function Method

In this case, we also minimize the weighted version of the equa-
tion error [E(s)[z given by [E(s)]z. This is equivalent to checking
for linear dependence among the following pencil-of-functions:

Yo () ¥y, (05 Ya-1(8) + 2y _,(0)5 ... 37,(8) + Ay (t); (33

xn(t) HAx (05 x () + Ax _4(8)5 ... ‘;xnml(t)+>\xn_m(t)

As shown in [7] the values of A for which (33) becomes linearly dependent

12
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are the roots of the polynomial equation

An+m+2 a. + antml a, + ...+ Ab +b =0,
0 1 m-1 m

The solutions for the coefficients of the polynomial equation are

given by [ ) B ]

a, /All
a; | “AZZ
an - /An+l,n+1

' b0 /hn+2,n+2
bl “An+3,n+3
b VA

i T. (nmt2) x4 B nﬁnﬂ%,nﬁnﬂf-

where Aii is the ith diagonal cofactor of the matrix [P].

4. PROOF OF EQUIVALENCE AMONG THE THREE TECHNIQUES

To show that the three techniques yield equivalent solutions
for the noise free case and when the system order is correctly chosen,
we perform the following arithmetic manipulations.

If u, represents the ith element of the column matrix [u] given

by the least squares approach in (30), then

by, {det[r]} - [p-}_]_u
u ='Z—— =

T8 det[r]) - [P'll'11

(35)

where [P]Ii represents the element belonging to the ith row and the

ith column of [P]'—l and det[P] is the determinant of the matrix [P].

13




Since [P] is a symmetric matrix, we can expand [P] in terms of its

normalized eigenvectors as

[p1 = V1% [Al(v) (24

where

1 Vot o AT ] (37)
3,23, + (kD) § (n+m+2) x (némt+2)

?
aj = a column vector representing the normalized eigen-

vector corresponding to the Aq eigenvalue, and

-

[A) = (:) . = matrix of eigenvalues of [P]. (38)

] Therefore,

17t = T

r“z g {v, 17 - 5,1
= , J% @, (39)
oo Ak kj kj

 Substitution of (39) 4nto (35) yields

n+mrtl n+§+l 1 (0 T - },
I oA - 5 v . 17°[v, .1}]
j=0 3 =R
YT T n-!-xiﬂ-l P . (40)
(G | S U B v, .17 [V, .11
j=0 3 k=0 % K k3T
. - When no noise is contained in both the input and output and the order of

the system is correctly chosen, the minimum value for the functional

14




ERR must be zero. This implies that the smallest eigenvalue of [P]

must be zero. In that case, we have from (40)

[~
]
FJ<
s

(41)

e
'_h<

1

where V,, is the ith element of the eigenvector V

i i1

corresponding to the eigenvalue Aj’ which is zero. Observe that the

[as defined in (37)]

result given by (41) is the normalized eigenvector corresponding to the

zero eigenvalue of matrix [P] where the elements of the eigenvector

‘haye been normalized with respect to the first element. Thus, we have

shown that the least squares solution of (35) can be expressed_in terms
of the normalized eigenvector given by (41).
To establish the equivalence between the least squares technique

and the pencil-of-function method, we utilize the cofactor identity

8=,

1j i1 " Ajj when det[P] = 0. : (42)

Substitution of (42) into (35) yields

e G G TR

1 A11 A11

(43)

;

By comparing (34) and (43) we find that (43) is identical to (34) except

that the solution given by (34),

-’

[w] =

T O o
- O

T e

15




has been scaled by the quantity a;-
In conclusion, all three techniques yield equivalent results
when the data are noise free and the order of the system has been cor-
rectly chosen. However, when noise is present in the data, one of the
techniques may have superior performance. 1In general, which technique
performs best depends on the type of data and the assumed order of

approximation. The performance of each of these techniques can be

improved for noisy data if noise correction is applied to the signal

matrix.

5. NOISE CORRECTION FOR THE THREE TECHNIQUES

If it is now assumed that both the input and the output contain
some noise in the data,‘then the expected value of the Gram matrix [P]
yields

E[P] = [S] + o?[2] (44)

where [S] is the noise free signal matrix and [Z2] is the unit noise
vector covariance matrii and 02 is the scale factor. It is assumed
signal and noise are uncorrelated and the noise is zero mean. The
noise covariance matrix not only contains information about the auto-
correlation matrix of the input and output noise, but also about the
cross—co}relation.between the input noise and the output noise com-
ponents,

The crux of implementing a noise correction procedure is to have
a good estimate of [Z]. The scale factor 02 for a particular problem
can be obtained‘from the mathematics of -the problem.

For the least squares method, the noise correction takes the

form of the Markov estimates [12]. For a general case, it is

16




extremely difficult to incorporate the information of the [Z] matrix
in this formulation. However, in certain special cases, particularly
when the noise is white, certain simplifications are possible.

The problem of noise correction is much alleviated for the
eigenvalue method. It has been shown gy Koopmans [13] that to obtain
a minimum variance unbiased estimate for the parameters a s bi one

solves the generalized eigenvalue problem instead of (32), i.e.

| [A]
{1p] - o[2]} - = 0. | (45)
[B]

One has to find 02 first and then obtain the eigenvector, corresponding
to the zero eigenvalue of the matrix {[P] - GZIZJ}. If the noise is
Gaussian, in addition to the parameters being unbiased, the Cramera
Rao inequality holds with the equal sign, i.e. the parameters esti~-
mates are efficient [12]. Even though iterative methods exist for
the solution of the generalized eigenvalue problem, the computation
becomes quite time consuming.

Jain [8] has developed a numerically efficient method for‘noise
corrections in thg pencil-of-function method provided 02 is small,
Since, in the pencil of function method; det [S] is required to be

zero, Jain asserts that,

det {[P] - cz[z]} = 0. (46)
when 02 is small, Jain expands (39) utilizing the concept of determinant

expansion for a sum of two matrices. He obtains

det {[P] - oz[z]} = det [P] - o2 ) det{[PIZi]}
. : i

+0% )] det {Iplz, z. M+ .o o GD)

17




When 02 is small, we have

2 det [P]

T T dec 1(p]Z,17 | (48)
i

where the symbol [PIZi] represents the matrix [P] for which the ith

colum of [P] has been replaced by the ith column of [2]. Mathemati-

cally, (48) is equivalent to

o2 - 1 A 1

E1eE ]t
J

i3 ij

where the symbol () represents a matrix kronecker product. Since the
matrix [Z] and [P] are known and det [P] # 0, this procedure for the

2, . ‘
solution of ¢~ is quite straightforward, Computationally, this has been

found to yield good results [8].

6. CONCLUSION

It has been shown that all the three techniques (least squares
method, eigenvalue method and pencil-of-function method) yield mathe-
matically equivalent results for the noise free case when the system
order is known. However, when noise is present in the data, the three
techniques may yield different solutions. The degree of difference
depends dn the amount of noise in the data and the choice of the éystem
order n. However, a noise correction technique can be implemented to
enhance the resolution of these three techniques. Finally, it is shown
that the pencil-of-function method is amenable to a computationally

efficient way of implementing noise correction to the signal matrix.
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