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ABSTRACT

This paper presents a new technique for detecting a small pole in
the presence of a nearby strong pole. By simultaneously applying the
chirp z-transform (CZT) and a recently developed window, the new tech-
nique is shown to be able to detect and resolve a small pole.

The CZT is efficient since it employs the Fast Fourier Transform
(FFT) to evaluate a convolution. But unlike the FFT which is 1imited
to the evaluation of the spectrum on the Jw asix, the CZT can evaluate
the z-transform on the whole complex plane. And with the use of the new
window, which is designed to have a near-sidelobe tevel of any specified
value, the CZT is shown to be able to resolve two closely spaced poles
with a large difference in amplitudes.

Unlike the Prony's method, the new technique does not require pre-
determining the system ordék. No matrix inversion or solution of
polynomial roots is required. Further, the new technique is a linear
operation, thus even under noisy environments it yields accurate,
stable results for extraction of poles from transient response data.

I. Introduction

In target identification one often illuminates the target by a
wideband pulse. One then characterizes the target by the complex

natural resonances extracted from the electromatnetic response. This
paper presents a new technique for detecting a small pole in the presence
of a nearby strong pole.

In recent years the singularity expansion method has been app]ied'to
express the electromagnetic response in an expansion of complex
resonances of the target [1]. It has been shown that the dominant

complex natural resonances of a target are a minimal set of parameters




that define the overall physical properties of the target [2]. To
éxtract the complex resonances the Prony's method has been applied
successfully for noiseless data [3]. Recently, the pencil-of-function
method has been shown to be effective in dealing with noisy data for
extraction of the poles [4]. These techniques essentially involve
nonlinear data processing, requiring the solution of polynomial roots

and matrix inversion. The key problem is the determination of the system
order [5], which is complicated due to the presence of noise in data.

To circumvent the complexity of these methods, an alternative
technique for extracting the complex poles is investigated. By taking
advantage of the simplicity and efficiency of the FFT algorithm, one
can modify the FFT so that it can be employed to evaluate the z-transform
of the time sequence along a general contour on the complex plane.

The modified FFT or the chirp z-transform (CZT) therefore plays the
role in a discrete system, played by the Lapalce Transform in continuous
systems. [6]. Because the time sequence is finite, the CZT has the
leakage effect. To suppress the leakage effect, a recently developed
window [7], which is designed to have a low near-sidelobe Tevel, is
simultaneously applied with the CZT. Two examples are given to
illustrate the technique, which is shown to be able to detect and
resolve a small pole in the presence of a nearby strong pole. The new
technique doe§ not require pre-determining the order of the system.

No matrix inversion or solution of polynomial roots is required.
Furthermore, since the CZT is a linear opeiation, it yields stable

results even under noisy environments.




I1 The Chirp z-Transform

Consider a M-pole system which is represented by the impulse response

M -
x(t) = 1 ames t . (1)
m=1 _ :
here {E&} are complex poles and {am} the corresponding residues. The
ystem transfer function is then obtained by taking the Laplace

ransform of x(t), which yields

R(s) = 1 o - (2)
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f x(t) is uniformly sampled at tn=nT, n=0,1,...,N-1, then, instead of
he Laplace Transform, the z-transform is applied:

S |
X(z) = ZO X2 (3)
n=

st

here xn=x(tn) and z=e”", The z-transform of {xn} is representative of

he Laplace transform of x(t). From Eq. (2) it is seen that X(s) has
ingularity at the pb]es {Eh} . Similarly, the z-transform X(z) tends to
ave peak values at z, = egﬁT. Thus by evaluating X(z) along a contour
ear the poles one can estimate the pole locations. if X(z) is

valuated at the set of equally spaced points around the unit circle,

K = e-jan/N’ k=0, 1, 2, ..., N-1, it results in a discrete Fourier

ransform (DFT):

N1 52mk/N

X(zk) = I Xe k=0, 1, ..., N-1 (4)
A n
’ n—o ' . B .. )

y employing the FFT algorithm, X(zk) can be computed efficiently. To
chieve this efficiency, N is required to be a highly composite number.
f one is to employ a power-of-2 FFT algorithm, this can be accomplished
y augmenting the N-point sequences {xn} with a sufficient number of

eros so that their total length is a power of 2.




The DFT is effective in locating the poles only if the poles are
on or near the jw axis. In order to locate a pole which is away from
the jw axis, one would need to compute the z-transform along a general
contour. There are two general approaches to this problem: (a) the
contour is a circle that is concentric with the unit circle, and (b) the
contour is a spiral. The former is called modified FFT and the latter -
is called chirp z-transform (CzT)
(A) Modified FFT -
A concentric circle on the z-plane is equivalent to a straight line
on the s-plane. The correspondence is shown in Figure 1. Let {sk} and
{zk} be the corresponding points on the s-plane and z-plane, respectively.
Let fs = 1/T be the samp]ihg frequency. Then S = °b+jwk » wWhere
wk=2nka/N. The {zk} are then given by
= e%7 ej2nk/N

z, k=0, 1, 2, ..., N-1. (5)
where ]zkl = egoT is the radius of the circle. Eq. (4) can now be written as
N-1 -no, Ty -32mnk/N
X(z,) = Zo(x e Ye (6)
n:

Eq. (6) shows that, to evaluate X(z) along the contour |z| = %" on

the z-plane or along the straight vertical line 0=0, on the s-plane,
one can multiply the sequence {xn} by {e” nGoT} and then take the FFT.

If one is interested in obtaining frequency samples equally spaced over

a sma]] portion of the unit c1rc]e one may augment the or1g1na1 sequence

w1th zeros, take the FFT, and reta1n the frequency samples of interest.
For example, if, instead of the frequency spacing F = 1/NT, one desires

to have a smaller spacing F' = 1/LT, one has to augment L-N zeros to
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The correspondence of a z-plane contour to an s-plane contour
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Xq Namely, let

~ X n=0, 1, ..., N-1

- n
*n = 0 n=N, N+1, ..., L-1 (7)

and then evaluate the following equations by the FFT.

L-1 . . i
Xz) = [ (x0 %"V o1, 2, L, L1 (8)
n=0
From the L frequency samples one then retains only the desired spectral
points. n
(B) czT

To evaluate Eq. (3) along the contour as shown in Fig. 2, let
S = sd+kAs k=0, 1, ..., J-1 (9)
where As = Ao+jAWw, Ao is the increment along o-axis and Aw is the

increment along the jw-axis. In the z-plane, thé contour is a spiral

given by
z, = €%k k=0, 1, ..., 0n1 (10)
which has a radius of ]zkl = e(c’oﬂ(‘m)T and a uniform angle of increment

A6 = TAw. Eq. (3) can now be written as

N-1 |
X(z,) = 20 x e "SoTe™TAS g1, 1Ll 0el (1)
n= .

By using the Bluestein's identity

nk = L[n?+k%-(k-n)?] (12)

one can write Eq. (11) as
' | » N-1

nZO gnhk-n (13)

2
~nsoTe-n TAs/?2

5

X(zk) = e"k TAS/
where g =x e (14)
and

2
hn = e"n TAs/2 (]5)

Eq. {13) sﬁows that the CZT can be evaluated by high-speed convelution

With the use of the FFT altorithm.
. 7.
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III The Tseng Window

Since the data sequence is finite, both the modified FFT and CZT
suffer from the leakage effects. The main impediment of the leakage
effects is the high near-sidelobes of the spectral window. 1In
detecting.a small pole in the presence of nearby strong poles on the
Jw axis, the Tseng window has been shown to be effective [7]. Thus a
special Tseng window designed to have low near-sidelobes will be
employed to improve the detectability of the CZT.

Consider a data window specified by a set of 2K weights

{wo, wl, wz, cees “2&-1}‘ The spectral window is related to the data

window by the Fourier Transform:

2K-1 . :
W(F) = 1w e I2TTkT (16)
k=0
By assuming that the data window is real and even, Eq. (16) can be
written as
. K-1
u(f) = 2e” DT (212 (17)
k=1 x=costfT

where {yk} are the zeros of the polynomial. By controlling the locations
‘of the zeros one can form a spectral window with a desired sidelobe

structure. To suppress near-sidelobes the zeros {Yk} can be chosen as

follows:

Y, = cos (2{— Zk) k=1, 2, ..., K-1 (18)
where |

z =k fork >k (19)
and

Zyp = ety for 1<k <k (20)




with o
A, =1- Asin[(f—o—-—k—) 1’-} (21)
k k-1 2| O :
In Eqs. {20) and (21), Ak is the increment of {zk}, ko is the number '
of the near-sidelobes to be suppressed, and A is a parameter to control
the near-sidelobe level (A<1). The design principle is based on the
observation that to suppress the first k0 sidelobes the zeros {yk}
should have small spacings, which is achieved by'making the increments
{Ak} small. The smallest increment occurs at k=1 and is given by
A1 =1-A. By increasing A and/or k0 the near-sidelobe level can be
reduced to any desired value.
A Tseng window is designed to suppress the near-sidelobes for -
128 uniformly sampled weightings. The chosen parameters are: k0=4
and A=0.7. Fig. 3 shows the rectangular and the Tseng windows. The
rectangular window is obtained by setting A=0. It is seen that as A is
increased from 0 to 0.7 the near-sidelobes are effectively reduced from (:)
-13dB to -47dB.

IV. Enhancement of Poles

The chirp z-transform algorithm and the Tseng window are now applied
to a four-pole system. Attention is focused on the resolvability of
two closely spaced poles which have large amplitude differences.. The
impulse response of the four-pole system is represented by Eq. (1) with
the following parameters:

a1=0.1, ~oi=-250Hz, f1=1OOOHZ

a2=1.0, 02=-300Hz, f2=1250Hz
a3=1.0, o3=-150Hz, f3=2000Hz
a4=0.1, .a4=-200Hz, f =2250Hz

4
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The sampling frequency is chosen as 10kHz. There are 128 samples.
These samples are weighted by 128 weightings of the Tseng data window.
The chirp z-transform of these samples was then evaluated along eight
contours, which are shown in Fig. 4 along with the s-plane pole location.
The first contour is on the jw axis; this is the regular FFT. The rest
of the contours are parallel to the Jw axis with co=-50, -100, —150,
-200, -250, -300 and -350 Hz, respectively. These are called modified
FFT and are special cases of CZT. The Spectra of the four-pole system
along these contours are presented in Figs.5 through 12. Both the
spectra using the rectangular and the Tseng windows, respectively, are
shown for comparison. Fig. 5 (for oo=0) shows that the FFT can detect
the frequencies at fz (1250 Hz) and f3 (2000 Hz) only. Both windows

fail to detect the two small poles at f1 (1000 Hz) and f

4
As the contour moves to co=-50 Hz Fig. 6 indicates that, even though

(2250 Hz).

the Tseng window shows sharper resolution, both windows still could not
detect the two small poles. As the contour is moved further to the left
at c°=-100 Hz, Fg. 7 shows a deep valley between f2 (1250 Hz) and

f3 (2000 Hz). The Tseng window shows a small peak at f, (2250 Hz) but

the rectangular window still could not detect the two small poles. Now

as the contour is moved to oo=-150 Hz, which passes right through the

pole at f3 (2000 Hz), the Tseng window can now clearly detect and resolve
the pole at f4 (04=-200 Hz and f4=2250 Hz), as shown in Fig. 8. In order
to detect the small pole at'f1 = 1000 Hz the contour 'is moved further to
the left at co=-200 Hz. The Tseng window now starts indicating the pole
at f1 (cl=-250 Hz) (see Fig. 9). By further moving the contour to the left
at co=-250 Hz, which passes through the pole at fl’ the results in Fig. 10

indicate that the Tseng window can detect all the poles while the

12
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rectangular window still can not detect the two small poles. As the
contours are pushed further to the left, co=-300 Hz and oo=-350 Hz in
Fig. 11 and 12 respectively, the resolution at each pole becomes
sharper, the peaks at fl’ f2 and f4, however, suffer from splitting.
This is due to the computation noise as seen from Eq. (6) where X is
multiplied by e nooT which can become very large when -no, becomes
large. From these spectra it appears that the best contour is the one
at oo=-250 Hz, which 1ies closest to the smallest pole at fl. In all
these examples the rectangular window never detected the two small poles,
while by properly choosing the contour the Tseng window is capable of
detecting the two small poles.

In the next example, instead of the modified FFT, the regular CZT
is applied to the samples along four tilted contours. Fig 13 shows
the s-plane pole locations and the four contours on the s-plane. For
each contour the rectangular and the Tseng windows are app11ed <:)
separately. The results are presented in Figs. 14 through 17. Fig. 14
shows the spectra along the contour As=1. It is seen that the Tseng
window shows sharper resolution. Both windows could detect the 1ar§er
poles at f2 (1250 Hz) and f3 (2000 Hz) but.both failed to detect the
small poles. As the contour is tilted more to Ao=2, which passes
between the poles at f3 and f4, the CZT results show that the Tseng window
has better resolution (see Fig. 15): The pole at f4 is clearly resolved.
But the rectangular window again fails to'detect the two small poles.
In order to detect the small pole at f1 (1000 Hz) the contour is further
tilted to Ao=3. The results are presented in Fig. 16. The resolution
of the Tseng window is now very sharp at f3 and f4 (2250 Hz) but failed

to detect the small pole at fl' Instead, the high frequency noise starts

O
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distorting the spectrum peak at f4. FIf the contour is now further
ti]téd to Ac=4, the high frequency noise becomes worse and the small
pole at fl still is not resolved (see Fig. 17). 1In all four contours
evaluated the rectangular window never detected the two small poles.
The two examples demonstrated the effectiveness of the CZT and the
Tseng window in detecting and resolving a small pole located far away
from the jw axis. The examples also illustrated the iﬁportance of
choosing an appropriate contour. The main limitation of the new
technique is the high frequency computational noise. How to cope with
this problem is currently being studied. Further research along this
line will be reported in the future.
V. Conclusion
A new téchnique for detecting a small pole in the presence of a nearby
strong pole is presented in this paper. By simultaneously applying
the CZT and Tseng window, the new technique is shown to be able to
detect and resolve a small pole. Numerous spectra are plotted for
a four-pole system along various contours. These examples demonstrated
the effectiveness of the Tseng window as compared to the rectangular
vwindow in detecting and resolving a small pole located far away from
the jw axis. These examples also illustrated the importance of

choosing an appropriate contour in detecting the poles.
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