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CHAPTER I

INTRODUCTION

1.1 Exponential Analysis as a Special Case

of Systems Identification

Exponential analysis attempts to characterize a waveform with a
sum of complex exponentials, that is, a sum of damped sinusoidal com-
ponents. Consider the class Qf linear processes whose impulse re-
sponses are representable as a sum of exponential components. If the
impulse response, possibly noise contamined, is given for a process in
this class, the transfer function of that process can be estimated by
applying a body of theory known as systems identification [1,2,3,4].
The impulse response can be expressed as the inverse transform (either
the inverse Laplace transform or the inverse z-transform) of the
partial-fraction expansion of this estimated transfer function. If
the waveform to be analyzed is assumed to be the impulse response
of a process of this class, then the systems identification technique
plus the process of partial-fraction expansion can be viewed as an
exponential analysis method. Hence, exponeﬁtial analysis methods can
be equated to systems identification methods for the case of impulse
input to the process. The poles of the transfer function are the
damped resonances that characterize the waveform. The imaginary
parts of the poles are the angular ffequencies of the sinusoidal com-

ponents and the real parts are the corresponding damping constants.




1.2 Motivation for Exponential Analysis and

a Surveyv of the Literature

Systems identification theory and exponential analysis find appli-
cations in such diverse fields as industrial controls, ecohomic model-
ing and in the analysis of biological systems. Recently, these iden-
tification methods have found application in the extraction of the
singularity expansion method (SEM) description of a transient scatterer
from its time domain response as was first suggested by Mittra and Van
Blaricum [5]. SEM was developed by Baum [6, 7] from the insight that
the transient response of a scatterer resembles a sum of exponentially
damped sinusoids.  The least-squares Prony's method was proposed by
Van Blaricum and Mittra [8, 9] as a means of obtaining the SEM descrip-
tion from the transient response of 'a scatterer. Pearson and Roberson
[10] have since developed and documented a method of obtaining the com-
plete SEM description of a scatterer from - transient response data.
Dudley [11] related Prony's method to a parametric system model and
proceeded to demonstrate a bias in the estimates of the system poles
inherent in least-squares Prony's method.

The parametric model employved by Dudley is a modified version of
the generalized model described by Eykhoff [1, 2], Astrom and Eykhoff
[3], and on pages 209-220 of Evkhoff [4]. The origin of the general-~
ized model can be traced o Kalman in 1958 [12] who assumes noise-free
input and output records of the process to be identified. This is the
assumption from which the generalized model derives its validity. With
noise, this model is no longer valid, and the resulting transfer fume-

tion estimate is slightly erroneous.




Steiglitz and McBride [13] introduced a so-called actual model
that differs from the Kalman or generalized model by using the model
output in place of the noise corrupted process output for the feedback
inherent in the model. The validity of the .actual model does not break
down when noise is present in the process output. However, the estima-
tion of the parameters of the actual model is a highly nonlinear prob-
lem. One major reason for the generalized model's popularity is lin-
earity in the parameters allowing one-shot estimation. In contrast, an
iterative éstimation procedure is required by the actual model.

Another related method is the pencil-of-functions method advocated
by Sarkar [14, 15]. The method was originally proposed by Jain and
Gupta [16] and elaborated on by Jain [17, 18, 19]. In [15] Sarkar
indicates connections between Prony's method, the Wiener filter, and
the pencil-of-functions method.

One important property of the actual model is that when it is
used for exponential analysis, it produces a ''best fit" to the wave-
form under analysis in the mean-square sense, that is, it minimizes
the mean-square error. Some other methods that have this property are
found in references [13,20,21,22,23].

1.3 The Contribution of the Present Work

The original intent of this work was to develop a noise tolerant,
efficient method for exponential analysis. The method was to find
direct application in extraction of the SEM description of a scatterer
from measured surface currents. A new noise tolerant method is presen-
ted in this document. Unfortunately, the method is ‘laborious, and
hence, only partial success can be claimed with regard to the original

intent.
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Perhaps the real contribution of the present work is the conceptu-
al groundwork which is a prerequisite for further improvements on ex~
ponential analysis methods. This groundwork is laid by defining a
general scheme that incorporates most, if not all, exponential analysis
methods and by defining the soufces of difficulties for such methods.
This groundwork is establiéhed through a new formulation of an extended
generalized model and an extended actual model after Steiglitz and
lfcBride [13]. The extension is to adnit any set of liﬁear filter
functions to form generalized filter sections in the respective models.
Emphasis is‘placed on concept development rather than strict mathe-~
maﬁiCal rigor whicﬁ would étifle such devélopment.

In Chapter II one major source of difficulty with exponential
analysis methdds’is defined. This difficulty is the parameter bias
that Dudley [11] brought to light. Anuattempt is made to relate the
source of this so—called bias to the distinétion made by Steiglitz
and McBride [13] between the true error model and the linear regres-—
sion model. Also presented in Chapter II ié the géneral identifica-
tion scheme that is used through the rest of this work.

Chapter III relates Prony's method and the pencil-of~functions
method to the general scheme of Chapter II. The various problems asso-
ciated with the pencil-of-functions method are discussed, and simple
remedies to those problems are proposed.

Chapter IV introduces a new method, called the adaptive method,
which is highly tolerant of the presence of noise in the waveform
under analysis.

Chapter V presents conclusions and indicates directions in which

future research may be fruitful.




1.4 Notational Conventioﬁs

The following conventions of notétion are oBéérvédﬁ
1. The symbol "s" denotes the Lapiace—trénéfbfm Véfiéble;'llf the

S

transfer function of a procesé is a fﬁnéfioﬁkéf”;, tﬁe proéess is
assumed to be a continuous-time process.

2. The symbol "z" denotes the z-transform variable. if the ﬁransfer
function of a process is a function of z; the process is égsumed
to bé a discrete-time, sampled-data process.

3. 1If a symbol for é transfer function appears alone, without the
appropriate variable enclosed in parenthesis, Ehe symbol denotes
a "generalized" transfer function whose functional dependence is
not reétricted in any way. To illustrate, a process can be given a
continuous-time representation in which case the tfansfer function
could be a function of s, or the process can be given a discrete-
time representation, then the transfer function is a function of z.
If only tﬁe essence of the process is to be conveyed, without re-
gard to its particular répresentation, then the transfer function
is written without indicating its functional dependence.

4. An asterisk indicates the complex conjugate of the expression pre-
ceding it.

5. The symbol "T" raised above the expression it follows indicates the
transpose of the matrix or vector preceding it.

6. A prime indicates the transpose conjugate of the matrix or vector
preceding it.

Other symbols used in this work are defined when they are introduced

in the text.
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CHAPTER II

ESTIMATION OF THE PROCESS TRANSFER FUNCTION

2.1 Introduction

The problem under consideration is the characterization of a sam-

pled, noise contaminated waveform, y(k), as a weighted sum of complex

exponentials of the form

y (k) = ZA 25, k=0, cees M-1 (D)
=Y

where zj = exp(sz) and T is the time duration between successive
samples. The objective is)to choose the Aj and zj that best character-
ize the waveform. Usually the best characterization is assumed to be
the one that minimizes fhe mean-squared error between the waveform and
the characterization.
It is assumed that y(k) is the noise contamlnated impulse re-
sponse of the linear process with a nth ofder transfer function given by
F .+ +++ + b F
H = bl 1 bn n (2)

+aF, + -+ +
ao al 1 anFn

The Fi are predefined functions of the transform variable. For example,
the Fi could be polynomials in the transform variable. Later the Fi
~are related to filtering operations, and for this reason, they are re-
ferred to as "filter transfer functions." With appropriate choices of
the ai, bi’ and Fi’ any transfer function can be represented in this
form. The reason this form is used is because the general parametric
model introduced in the next section also has a transfer function of
this form. The Fi are the transfer functions (which are not specified

explicitly in order to remain completely general) of the filters that

make up the model.
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The problem can be restated as the estimation of (2). By expand-
ing the estimated transfer function in partial fractions and performing
an inverse transform, the desired characterization is obtained. The z,
or s; can be interpreted as the poles of (2) and the Ai are the corres-

ponding residues of (2). The z, and s, are related by 2z, = exp(siT).

2.2 Two Parametric Models

Steiglitz and McBride describe two parametric models in terms of
which they interpret their identification procedure. A straightfor-
ward extension of these parametric models provides a framework that is
broader in its applicability. They are specialized herein to describe
the Prony procedure [24], the so-called least squares Prony procedure
[9], and the pencil-of-functions method of Jain [19]. The models are
used further to provide a new iterative identification procedure that
appears to be substantially more tolerant to noise-corruption in data

than existing schemes. The first, the actual or true model, is shown

in Figure 1 and has the transfer function

B,F. + «++ + B F
H = 1°1 nn (3)
m o +aF. + < + g F

o) 11 nn

The second model is called the approximate model and is shown in

Figure 2. The approximate model is derived from the actual model by
approximating the model output with the noisy process output as the
source of feedback in the model. It should be noted that (3) is not
the transfer function of the approximate model. In fact, a transfer
function that serves as a useful approximation to the process transfer
function cannot be defined for the approximate model. These models
reduce to those of [13] if the Fi's are chosen in the form of rational

polynomials in the z-transform variable that have a zero at z = 0.

12
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Figure 1.

The actual model is shown in the dashed box labeled "model." The parameters, a, and B,,

scale the output, y . and u,, of filters, F,. The scaled outputs are summed to form

the model output, ym, which is compared with the process output, y, to form the error, e.
The identification procedure chooses the model parameter values that minimize the error.
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Figure 2.

+
The approximate model is shown in the dashed box labeled "model." The parameters,
a, and B , scale the outputs, y, and u,, of filters, F,. The scaled outputs are

stmmed td form the model output), yy, which is compared with the process output, y,

to form the error, e. The identification procedure chooses the model parameter
values that minimize the error.
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An estimate of the process transfer function is found by using those
minimizing parameters along with filter transfer functions, Fi’ in
(3). Routinely, the parameters that minimize the error norm in the
approximate model are used in (3) even though it is the transfer func-
tion of a different model. The result is an estimate of the process
transfer function whose error depends upon the strength of the noise

m AR}
drocess 'n

Why bother with the approximate model if better estimates can be
had using the actual model? This question is quickly answered when
cne attempts to estimate the parameters of the actual model. Because
the model output and the parameters are'interdependent, the parameter
estimation problem is highly nonlinear, and must be solved by itera-
tive methods, In the approximate model, the parameter-invariant pro-
cess output replaces the model output, thereby making the problem

linear. Hence, the approximate model is widely preferred.

2.3 Estimation of the Model Parameters

An estimator is a rule for choosing the model parameter values in
a way that tends to minimize the error between the process output and
the model output. Two types of estimators are distinguished: discrete-
time and continuous-time.

The discrete estimator operates on sampled data and produces an
estimate of the pulse transfer function of the process. The discrete
mean-square error is defined as E = e”e where e = [e(0) ... e(M-—l)]T
is a column vector consisting of the sampled sequence.

Likewise, the model output sequence and filter output sequences

15




are dencted as M-length vectors y and y;, u

1 tor i=1,...,n, respec-

tively. The output of the approximate model can be expressed as

- i=1 o 0
where
— -
yI(O) .. yn(O) ul(O) ce un(O)
G = ) . . - ,
y;(M—l) y;l(M—l) u;(M—l)... w Q1)

and 8 is the vector of model parameters

- [ B T
g = [Otl... ansl ...Bn] .

The process output is denoted by an M-length vector y. The errecr can

then be written as

8
i 4
o =z

&y

It can be shown that the partial derivatives of E with respect to the

real parts of the parameters are

5 E = 2 Ref—e’y,],
3 Rea , — =
] o3
Q
and 3 E = 2 Rele -
3ReR, L_-Ej]’
] oL
8]
for j=1,...,n. A necessary condition that a set of parameters must

satisfy in order to minimize E is that the partial derivatives listed
above vanish. This leads to the set of normal equations

e’y. =0,
— ]

— =]

16



for j=1,..., n which can be written in matrix form as

or Q’[a: -yl =0
o

Solving this equation for 6 produces the discrete least-squares

estimatof: ‘
8=1[22]" 2ty | W

The columﬁs of @ consist of the sampled filter outputs of the approxi-
mate model indicated in Figure 2. The filtér output éequences can be
computed with a set of difference ecuations that characterize the dis-
crete filters, Fi'

If M=2n, (4) reduces to
e=sr1aol_, . (5)
If M<2n, Q°Q is singular because insufficient data are
available to estimate 2n parameters.

The continuous estimator operates on continuous data. The

filters within the model are continuous in this case. The continuous

mean-square error is defined as

E = e, =f2e*(t) e(t)dt

t1
where tl‘and t2 define the interval omn which the waveform exists. The

continuous least-square estimator has the form:

8=G, a1 ' (6a)

where

|
i
1
Q

1'..6 n 1 v Bn] ) : (6b)




r= [<Y,Y]> <y,$7r> <y,u]> <y,un> )T s (6¢)
<yljy> e Gar)y (o e vy

Givd .
Gred o .

and G2n ‘(6d)

_;<y1:ux> Coo <un’ué>

The inner product is defined as

. ‘
<X1’X2> = f zxi (t) Xz(t) dt . (6e)
1

The continuous estimator results from the minimization of the

error in much the same way the discrete estimator does, and therefore,
the deriviation for the continuous. estimator will not be presented.

The parameters of the actual model can be estimated by an iter-—
ative procedure using a modification of the estimators described above.
This procedure involves replacing the process output with the model
output as the feedback source within the model. Specifically, if

L L
o o and i
Ymi replaces Vi @y replaces i Bi replaces Bi in (4) and (6),
for i = 1,..., n, a technique of iterative improvement results. The
th .. . L L «
parameters of the L~ iteration, a; and Bi’ are estimated in terms of
L-1 . .
the most recent model output, Ym - An initial estimate of the process
is required to start this procedure. The approximate model can be used

to provide this estimate. Nothing is known about the convergence

characteristics of this procedure. However, Steiglitz and McBride [13]

18
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do mention that, in general, this procedure fails to converge if the

initial parameters are far from the optimum values.
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CHAPTER III

EXISTING METHODS

3.1 Introduction

By necessity the models described in the previous chapter are
quite general since they must serve as a common ground for the two
existing methods that are examined in this chapter. Prony's method
and the pencil-of-functions method are shown to be special cases of
the estimation method for the approximate model. Each method corres-
ponds to a particular choice of filters within the model.

3.2 Prony's Method

In 1795 a method for exponential analysis was invented by
R. Prony [24]. The method was implemented by hand calculations.
Prony's method has since found numerous applications and has sometimes
been published without reference to its inventor. Van Blaricum [25]
has compiled a large though abridged bibliography of Prony's method.
Van Blaricum and Mittra [8,9] conducted a well documented investiga-
tion of Prony's method and proposed some useful extensions of the
technique. Lager, et al. [26] have suggested a "sliding-window Prony"
procedure as a means of reducing the noise sensitivity of the method.

Although Prony's method is computationally efficient, Dudley [11]
demonstrated that the least-squares version [9] can produce biased pole
values that differ significantly from the "best''pole values unless the
noise component of the waveform is small. The '"best" pole values are
those that best fit the waveform. Prony's method results from the
approximate model. It follows that the bias is nothing more than the

slight error that is incurred by the use of the approximate model.

20




’ Prony's method results from the approximate model under the
follow1ng assumptions:

1. o =1,

[a]
]
]

,Fi(z) =
3. The model input is an impulse‘at k = 0,

4. M = 2,
The assumptlon of a —1 1mp11es that the parameters are normallzed rel-
n.

atlve to an whlch is a distinguishing characterlstlc of Prony s method.
The other methods examined in this work are normalized relative to

a s that 1s, ao-l is assumed. Slnce M = Zn, (5) may be used to

‘ estlmate the parameters. In this case,

_QE [-a e .y

1

n-1 =1 Bl ...‘Bn] o

t

¥ = 0300) - y(a-D)T,

pr—

y(1) e y(n)
. . 0

|
|
|
_ I
y(@) »e» y(20-1) |
I
1
)
|

He

and @
y(nt+l) «e«- y(2n)
L] L] 0

y(2n) se- Y(3n-l)

- The rank of Q. is, at most, n. Henece, with some rearranging the

following equation results:

y(0) ...y(n-1) o y(n)

o

(7)

yin—l) ....y(2n;2) lea- ‘ ‘yi2n—l)

21




System (7) is equivalent to Prony's method for estimating the poles of
a waveform. The poles of the process may be determined from the ai.
The Bi must be determined by other means. See, for instance, reference
[11]. A straightforward way of determining the Ai of (1) is to use
the poles to form exponential basis functions which are‘uéed in linear
combination to form é least-squares fit to the data. The Ai are the
coefficients of this linear combination. The Ai may also be found
from the o, and Bi’ once these parameters are known, as simply the
residues of Hm.

Examples of the performance of Prony's method under a variety of
conditions are found in sufficient detail elsewhere [8, 11] and, for

this reason, will not be given here.

3.3 The Pencil-of-Functions Method

The pencil-of-functions method was originally proposed by Jain
and Gupta [16] before Prony's Method became well known. In this
section the pencil-of-functions method is derived as a special case
of the approximate model presented in Chapter II in contrast to its
usual derivation ffom the so-called pencil-of-functions concept [19].
Additional material on the pencil-of-functions method is contained
in references [14, 15, 17]. A discrete version of the method is

described in reference [18].

The pencil-of-functions method results from the approximate model
under the following assumptions:

1. o = 1.
o

" i
2. Fi = Fi(s) = (1/s)".

3. The matrix G defined in what follows, is singular.

2n+1’ ,
Note that the approximate model reduces to the generalized model [1,3,

22
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4] under‘the first assumption; thus, it follows that the pencil of-
functions method may be derived from the generallzed model. The esti-
métor embodied in eduatlon (6) may be used to estunate the transfer
fungtionpof the procgss, and the poles of the process may be esti-
mgted as thengeros of»the dgnominator”of (3), viz., 4

(L), .. 1\ _
1+ oy (S)+ +oa ( ) = O_

or 1"+ o e i p g 2L R (8)
L n N
The a, may be found usihg the estimator of (6). By applying Cramer's

rule to system (6), it caﬁ‘be‘shbwn that
) , . S
oy A / 00 | B | | ( €))
where A - denotes the cofactor formed by deleting row p*tl and column
qtl of the matrlx,
\y y> < 3y1> . <Y,Y> <Y,ul> PP <y,u
v ;

G

Cont1 = »'<?n’i>'ﬂ o v f N ,‘ ,'él :  T ?v | .(10)

Gy

In this case G2 ntl has only pure ‘real elements. If G 2 +1 is also’

r31ngular, the following relation holds among the cofactors:

A A
2oy o 4D
PP

This relation is proved in the Appendix. The pencil-of-functions method
assumes that G2n+l is singular and makes use of (8), (9), and (11) to

- 23




form the following characteristic equation for the process:
A A

R A
-A—Q—Q- sn+ K_J,-i Snl+”.+v—2£ =0 . (12)
00 1 o0 500
It may be shown that, in general, G2n+1 is nonsingular because y cannot

be expressed as a linear combination of the y:,L and u, under the follow-
ing conditions of imperfect mcdelihg:

1. y has a random noise component,

2. The model order, n, is less’than the order of

the process or wavefdrm being modeléd. |

3. Both 1 and 2.
If any of the above conditions apply the set of fﬁnctions,

s = {y, yl’ e yn’ L un} ,
is linearly independent, and dﬁe to this fact, the Gram ﬁatrix [27],
G2n+l’ formed from those funcﬁions of S is nohsingﬁlat. Otherwise,
for conditions of perfect modeling, the functions of S are linearly

dependent, G is singular, and (11) holds.

2n+l
Thus, if the process can be modeled perfectly, ﬁhét is, with no

error, then (12) is equivalent to (8). Howevef, if the process cannot
be modeled perfectly, (11) no longer holds and (12) becomes less
accuraﬁe than (8) for estimating the parameters of the approximate
model. Since the parameter values of the approximate model are trans-
planted into the true model, it is not clear if the o, or the fK;;7KZ;
more accurately portray the process after this tramsplant. 1In the

next section numerical evidepce is presented that indicates that the oy
provide better estimates. However, since the o4y and the /K;ITK;; are

computed in extremely different ways, the results may not indicate the

true situation due to inaccuracies in computation.
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Aside from the problem mentioned above the pencil-of-functions
method has two other difficulties of which only one has a simple
remedy.

The difficulty that has a simple remedy is related to the use of
integrators for the filters within the system model. The continuous-
time integrators cannot be implemented exactly by any algorithm. When
approximate integrators are cascaded as they are in the pencil~of-
functions method, large errors accumulate quickly and the intended
result destroyed after a number of integrations.® This difficulty can
be resolved by cascading discrete integrators to obtain filters with

pulse transfer functions given by

= (== \t o ()
Fi = F(@ = (z—l) B (z)

which can be implemented on a digital computer with no error by using

the difference equations:

yi(R) =y (k=1) +y, ) (k)

and ui(k) ui(k-l) + uy_ (k) .

1

The variable Z is defined as

and z is the z-transform variable. When discrete integrators are used
the discrete pencil-of-functions method results. The poles of the pulse

transfer function of the process may be estimated as

*This feature of the pencil-of-functions method has been consistently
observed in numerical implementations. This encroachment of systematic
error is inconsistent with generally accepted interpretation of numeri-
cal integration processes and has not been explained analytically, to
date.
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where Zi is the ith zero of

n n-1
4 vee 4 =
1z + oy 2 + @ 0 (13)

and the o, are found by use of equation (4).

If the continuous inner product (6e) is replaced with the discrete

inner product,

xl,x> = xf (k) X, (k) . (14)
k=0

It can be shown that EP = Q% and ng =Q°Q where Gg

with the discrete inner product (14) in the same way that G

n and EP are formed

and r are

2n
formed with the continuous inner product (6e). Then,
D
P01 |
a; = =5 (15)
A
00

D ,
where qu denotes the cofactor formed by deleting row p+l and column

D , : ‘
§;+l’ and 02n+1 is the Gram matrix formed with the discrete

q+l of G
inner product in the same way G2n+l is formed with the continuous
inner product. Equation (15) follows from Cramer's rule in the same

way equation (9) does. As before the relation,

D D

fﬂﬂ fﬂﬂ
= _ (16)

AP A D

PP pp

holds if G;;+l is singular. Combining (13), (15), and (16) yields the

characteristic equation of the system:

A I Y - S B (L7)
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Equation (17) is the equivalent of (12) for the discrete method. The
choice of positive radicals in (17) follows from arguments counterpart

to those put forth by Jain [19] for the continuous case.

Estimates of the poles of the Laplace transfer function of the pro-
cess, s, are related to the zeros of (13) and (17) b5+

2n(l~Zi)
i T

In the next section the discrete version of the pencil-of-functions
method is tested on noisy dafa and the performance of equation (13) is
compared to that of (17) in order to demonstrate the superiority of (13)
in estimating the system poles.

Now attention is turned to the second difficulty with the method
that does not have a simple remedy. This difficulty is related to
the attenuation of the higher frequency modes of the process output by
the repeated integrations applied to the output waveform. It can be
verified that an integrator is simply a first order filter whose
Laplace transfer function has a pole at the origin in the s-plane.
Such a filter tends to suppress the higher frequencies present at its
input. The higher frequency suppression phenomenon is illustrated in
Figure 3. Normally, when an exponential function is integrated re-
peatedly, components consisting of powers of time exist in the higher
integrals as well as the original exponential function components.
In Figure 3 the“components of powers of time have been subtracted from
the integrated waveforms in order to make the attenuation of the higher
modes more evident. The first waveform is a hypothetical waveform pro-
vided for analysis. The waveforms that follow are the integrals of

increasing order of the first waveform and display the increasing

dominance of the fundamental mode or the mode of lowest frequency.
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Figure 3. Successive integrals of a hypothetical waveform.
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Further integrations yield nearly identical waveforms. The integrated
waveforms tend to become linearly dependent at higher model orders.
The Gram matrix, GZn or G;i, then tends to singularity and the method
becomes unstable. The suppression phenomenon occurs in both the
discrete and continuous methods. In fact, even for very modest model

orders, the method can become numerically ill-conditioned to a degree

that special care must be taken to assure accurate inversion of G. or

2n
G;l. The examples of the next section illustrate the increasing i11-
condition with increasing model order by computing the condition number
D
of G2n'

3.4 Numerical Examples of the Pencil-of-Functions Method

In the first example, impulse input to the system is assumed and
the discrete method is applied in the analysis of a waveform consisting

of 50 samples defined by:

4
y(k) = :E: AjesjkT + n(k) k = 0,1,-+,49
j=1
where Al = 1, s1 = -1 + jlo0,
A, =1, s, = -1 - jlo0,
Ay =1, sy = -1.5 + 330,
A4 =1, 54 = -1.5 - j30,

n(k) is a Gaussian distributed white noise sequence of 50 samples, and
T = 1/49. The signal-to-noise ratio is 30 dB, where signal-to-noise
ratio (SNR) is defined by:

)
SNR (dB) = 20 loglo P (18)
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4
and & =,m?x N :E: A_esjkT (maximum magnitude of
K / i uncorrupted waveform)
0 = standard deviation of noise.

Four poles are requested. Thirty Monte Carlo runs are made where each
run uses a different noise sequence. Figure 4 shows the resulting
s-plane pole estimates for all Monte Carlo runs overlaid onto a common
plot. In Figure 4(a), the poles are estimated with the roots of equa-
tion (17), and in Figure 4(b), the poles are estimated with the roots
of:equation (13). The reader is reminded that the residues of both
poles are of unit amplitude thus leading to the conclusion that the
apparent deterioration of pole accuracy with increasing frequency is an
artifice of the process.

In the second example the same analysis is carried out for a

higher model order. The waveform is given by:

6
v = 35 4% 40, k=0,1,000 49
j=1

where A5 =1, s

A

5 = -2+ 350,

6 - L 6

-2 - j50,

and all other details remain unchanged from the first example. Six poles
are requested. Figure 5 shows the resulting S-plane pole estimates. In
Figure 5(a) the poles are estimated with the roots of (17), and in Fig-

ure 5(b) the poles are estimated with the roots of (13).

The condition number of G;L is averaged over the thirty Monte Carlo

runs and displayed in Figures 4 and 5. The condition number is defined

by [28]:
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condition number = 6.6 X 106

s-plane } s—-plane L

jw jw

(a) (b)

Figure 4. Overlay plot of pole estimates of a fourtheorder system.
(a) estimates using roots of (17),
(b) estimates using roots of (13).
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condition number = 2 ¥ 1013
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Figure 5. Overlay plot of pole estimates of sixth-order system.

(a) estimates using roots of (17),
(b) estimates using roots of (13).




' -1
Condition number = IIGJ;II [[[G;i] |

where [] '[I denotes the Chebyshev matrix norm defined by:
max al
1Al = 355 3, 1oy

and aij is the element of the ith row and jth column of the N-dimensional

matrix A. The larger the condition number, the more ill-conditioned the
matrix A.

The results of these examples demons;rate that better pole estif
mates are obtained by using (13) instead of (17)7 The increasing con-
dition number ffom the first to the second example indicate that the
method is becoming rapidly ill—conditiongd as the order of the method is
increased. The results of a third example for which an eighth order
method‘ was used to analyze a noise corrupted waveform composed of eight
exponential components are not presented because the method became so
ill-conditioned that the intended result was completely destroyed.

It was found that the pencil—of—functions method becomes ill-
conditioned for the analysis of waveforms containing many poles. Even
though the results of these examples do not apply to the continuous
version of the method directly, it is known that in the limit as T
approaches zero the discrete method approaches the continuous method,
and hence, there is a measure of similarity in the two methods. This
measure of similarity is felt to be sufficient to claim that the con-

tinuous version of the method becomes ill-conditioned at higher order.
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Chapter IV

Il

THE ADAPTIVE METHOD

4.1 Introduction

The adaptive method is an iterative method which is quite tolerant
of noise in the waveform undergoing exponential analysis. The original
idea for this method was inspired by the pencil-of-functions cdncept
due to Jain [17]. In this chapter, the adaptive method is derived, not
ffom the pencil—of—functions cdncept as it was originally, but rather
from the parametric models of Chapter II. Formulating the method in
tﬁis way is not only simpler but yields greater insight into the
method's nature.

4.2 An Adaptive Filtering Scheme

The adaptivekmethod results from the identification scheme of
Chapter II under the following assumptions:
1. o =1.

2. F, = —%—
N 1 =z,
1

3. The model input is a unit sample at k = 0 (discrete

impulse).
The unique feature of the method is that the filter poles, z,, may be
adjusted to any value in the z-plane. An adaptive technique for ad-

justing the filters consists of first initializing the filters to
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arbitrary values in the z—plané and repeating thebfollowing sfeps:

1. Find an estimate of the process transfer function
using the current filters in the model.

2. Set each filter pole to one pole of the estimated
transfer function.

This process is repeated until the ay approach zero,
It is shown in the next section that the poles of the process
can be estimated during the course of iteration by

'z

% = TFaT ' - a9
s i

removing the need for finding the roots of a polynomial. The filter
poles are updated to ;i on each itération.‘ When the oy approach zero,
the pole updating ceases and the method converges. At each itefation,
the a, are found by using equation (4. At convergence the s-plane
poles, si, can be obtained from the filter polesAby

n z

(20)

and the A, = B,.
i i

4.3 Estimation of Process Poles from Transfer Function Paramgters

As usual, the poles of the process transfer function can be
estimated as the poles of (3). However, to estimate the poles, a
polynomial in z is needed. To find this polynomial the numerator and

denominator of (3) are multiplied by the product of all filter denomi-
n

I (z-z,).
=1 *
nominator of the expression that results after the multiplications

nators, that is, by The required polynomial is the de-
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indicated above are carried out and terms of equal degree have been
combined in the denominator. Although it can be done, the formulation
of the polynomial coefficients on a digital computer requires some
small computational burden. But another method exists for estimating
the poles that bypasses this complication as well as the necessity for
finding the roots of a polynomial. For the sake of discussion, assume
that the filter poles have been adjusted to nearly coincide with the
process poles and examine the behavior of the (i+l)th term of the de-
nominator of (3) when the variable z approaches the value of the ith
process pole, It is observed that the (i+l)th term can become arbitrar-
ily large if the ith filter pole is arbitrarily close to the ith process
pole. It is then possible to write a simplified expression for the
denomiﬁator of (3) which is.approximately equivalent when z is equal

to the ith process pole, viz.,

a,Z
1

1+ , (21)
Z—Zi

. th . .
where all other terms other than the (i+l) term in the denominator

of (3) are negligibly small. If

=0 (22)

where %i is the value of z for which the equality holds, then 21 is a
reasonable estimate of the ith process pole. Equation (19) is obtained
by solving (22) for ;i' The approximations of (21) and (22) follow
from observing that near convergence of the z, all of the a. except e s
which is fixed as unity, vanish. Therefore, the e term dominates

along with the (i+l)th term as argued above.
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4.4 Numerical Examples of the Adaptive Method

The first example of the adaptive method uses a simplé first-order
model to analyze a sequence consisting of three samples. Because
of the example's simplicity, hand calculafions and concréte numbers
can be displayed.
The séquence to be analyzed is
{y(k), k=0,1,2} = {2,1,2} .
It can be shown that

ym(k) ='§ (a constant sequence)

minimizes the mean-squared error between y and Y if the problem is
restricted to a first-order solution. Therefore, the expected results
of this analysis after the adaptive method converges are: A1 = % and
zl = 1. Let the initial filter pole, zl,‘be set to one. One might
expect that the method would be convergent immediately in this case.:
However, the method, in fact, will not converge at this value of z

due to the error introduced by the use of the approximate model.

The convergent value of zq should be slightly perturbed from the

expected value.

The estimator of equation (4) is applied to obtain estimates of

a, and B.. In this case,

1 1
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and the system that must be solved is

38 10 —a, |l |17
10 3 sl s

The estimates are al=-l/14=-.07l43 andta=20/14:l.429. The estimate of

the process pole is

z
s .1 14
17 TR, T T/ T 13 L7

The estimates above constitute the results of the first iteration.
For the second iteration the filter pole is updated to 1.077 and the
same procedure is repeated for iterations two through five. The
results for all iterations are displayed in Table 1.

Next, the iterative scheme for the actual model set forth in
Chapter ‘II is simultaneously combined with the adaptive filtering
scheme and is applied to correct the biased value just obtained with
the approximate model. An initial estimate of the process transfer
function is required to start this estimation procedure. The para-
meters obtained with the approximate model at convergence are used
to form this initial estimate. The initial pole is 1.077. The
most recent model output sequence is computed for the nth order case

by using the following difference equations in the order indicated:

ui(k) = u(k) + ziui(k-l),
n
Z(siui(k>-aiziymi(k-l))
() = 1=1
ym a ’
1+zZ a,
i=1 *
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Table 1 Estimates using the ‘approximate model.

Iiﬁi&;ﬁ?n | ~* By %1
1 7.143 x 1072 1.429 1.077
2 2.711 x 1072 1.539 1.077
3 2.279 x 107° 1.539 1.077
4 ~4.245 x 10/ 1.539 1.077
5 2.954 x 107/ 1.539 1.077

Table 2 Sequences on the first iteration of
for the actual model.

k ul(k) ym(k) ‘ yml(k)
0 1 1.539 . 1.539

1.077 - © 1.658 3.316
2 1.160 1.785 5.356
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ymi(k) = ym(k) + ziymi(k-l).

These equations are valid for the nth order model. For the first
order (n=1, i=1) model that is considered here, the equations are
ul(k)= u(k) + zlul(k—l),

fu (0 - ayzy L (k-1)

1+ al

b

Y, &) =

T (0 = 7,00 + 2.y (k-1),

and are used to compute the results shown in Table 2. From the results

of Table 2,

1.539 1.000
Q =1 3.316 1.077 ,
5.356 - 1.160

and the system which must be solved is

42.051 11.323 —a. ) _|17.106
11.323 3.506 81 5.397

The estimates are al 2 +5.973x10~2 and 81 * 1.732. The estimate of

the process pole is

. 1077
17 1T+a T+ 05973

z 1.017.

The estimates just found constitute the results of the first itera-
tion using the estimation scheme for the actual model. The filter
pole is updated to 1.017 and the same procedure is repeated several
more times to obtain the results shown in Table 3.

The results in Table 3 indicate that the estimation procedure for

the actual model has indeed converged to the expected parameter values
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Table 3 Estimates using the actual model.
iteration
number e Bl Z1

1 =5.973 1072 1.732 1.017‘
2 ~2.053 x 1072 1.705 996
3 1.163 x 1073 1.669 .997
4 2,349 x 1073 1.663 1.000
B 5.878 x 1074 1.665 1.000
6 -5.633 x 10 ° 1.667 1.000
7 ;7.576 1075 1.667 1.000
8 ~1.697 x 107° 1.667 1.000
9 2,032 x 107° 1.667 1.000
10 2.346 x 107° 1.667 'i.ooo'
1 9.632 x 1077 1.667 1.000
12 -2.289 x 107/ 1.667 1.000
13 441.717 1077 1.667 1.000
14 1078 ' 1.000

2.861
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whereas the results in Table 1 clearly show that the procedure for the
approximate model does not. However, the magnitude of the error that
the use of the approximate model introduces in the estimated polev

value is relatively small.

The results of the next example provide‘further evidence that,
indeed, the error in the parameter estimates are small when adaptive
filters are used in the approximate model.

To illustrate the pérformance of the adaptive method on measured
data, the method was applied in the extraction of the natural resonance
of the electrical transient response of a thin cylinder in free space.
Figure 6 shows the responses of the cylinder at five points along its
length which were measured by techniques described in reference [29].
The cylinder was excited bf a 500 picosecond burst of radiation that is
normally iﬁcident to its axis. The cylinder of 60 centimeters long and
approximately 1 centimeter in diameter. The waveform consists of 512
samples and has a time step of -9775x10 -1l seconds. The first 109 sam-
ples are ignored since the forcing wavefront impinging on the cylinder
corrupts this portion of the natural responsé. The preprocessing incre-
ment is 10 samples. This means that every 10 adjacent samples are
averaged to form one sample of the preprocessed waveform beginning at
sample 110. The preprocessed waveform then has the integer portion of
(512-109)/10 or 40 samples with a time step of (10) -(.0775x10-ll) =
.9775x10710 seconds. The estimation procedures for both the approx-

imate model and the actual model were applied to the preprocessed
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waveforms and the results for each case is shown in Figure 7. The
extracted poles from all responses are shown overlaid in Figure 7.
Although the data appear to be free of noise, the signal to noise
ratio is estimated to be between 15 dB and 20 dB by observing the
model error. The noise is thought to érise from such phenomenon
as reflections on the transient range and in the probe cabling al-
though no tests were made to confirm this. It should be pointed
out that the polgsjbbﬁained\ﬁith the actual model actually minimize
the mean—sqﬁaréd error, and therefore provide the best least-squares
fit to the preprocessed responses. If better parameter estimates are
to be found, more must be known about the noise that corrupts the
waveforms. It is intéreéting to note that the results obtained with
the approximate model and thqse obtained with the actual model are
almost identical. One has td strain to see the difference. Man&
other cases have been studied whose reéults have confirmgd'the trend
of nearly identical pole esﬁimates; ’In‘mapy practical céses, one may
choose to use the results from the approﬁima;é'model‘without;bothering
to refine those estimates fufther by using the estimation procedure
for the actual model. This may bg‘anwisé“éhbiée, particularly in view
of the fact that the adaptive estimatioﬁ,pfocedure for the actual
model does not converge in many éaSés where the‘adaptive procedure
for the approximate model does cbnvérge.

In}th; next several examples, the analysis of numerically generated
transient“data'is examined. The transient data were obtained using
the time domain computefvcoaekTWTD [30]. Théystructure'mddeled by

IWID was a thin cylindrical scatterer. This structure was chosen
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Figure 6

Transient responses measured at five points along the 60 centimeter cylinder.
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because of the availability of comparative results obtained by Tesche

[31]. The true pole values for the first six odd harmonic modes (:)
of the cylinder obtained by Tesche with an integral equation technique

are listed in Table 4. These values are the theéretical values which

are used for comparison in the examples that follow.

The first three examples with the TWTD data illustrate the results
that can be‘obtained with the adaptive method at three different
signal-to-noise ratios (SNR) : QZS dB, 20 dB, and 15 dB. Figure 8
illustrates a noise contaminated TWID waveform consisting of 256 samples
with a 15 dB SNR where SNR is defined in the spirit of équation (8).

The time step is 0.68020 xth-lO seconds. The waveform is that of the
current versus time history at the center of a one-meter cylinder which
is excited by a voltage source offset approximately 15 centimeters from
the center. The voltage source has a Gaussian-pulse time history where
pulse width referred to the 1l/e level of the function is approximately .6 <:)
nanoseconds. Although the cylinder has an infinite number of modes,
only the first four low frequency modes dominate the response since

the excitation is band limited. Figure 9 shows the results of the
estimation procedures for both the actugl model and the approximate
model for five Monte Carlo runs where each run uses a different

noise sequence. The noise is Gaussian disfributed and uncorrelated.
The first 60 samples are ignored to exclude the influence of the driv-
ing voltage. The waveforms are preprocessed Before being analyzed

with a preprocessing increment of § samples beginning at sample 70.
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Table 4

Cylinder pole values predicted by Tesche [31]

sL/c

Real Imag -
-0.082 - 0.926
-0.147 2.874
-0.188 4.835
-0.220 6.800
-0.247 8.767
-0.270 10.733
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Figures 10 and 11 show the pole estimates for the same data with SNR's

of 20 and 25 dB, respectively. Tables 5 and 6 tabulate the pole
values corresponding to Figure 9; Tables 7 and 8 correspond to Figure
10; and Tables 9 and 10 correspond to Figure 11.

Several things should be pointed out about these results. First,
even though there are four dominate modes in the data only three pole
pairs are requested for the 15 and 20 dB cases. Only three pole pairs
are requested because the eighth order method often diverges. 1In
several of the Monte Carlo runs not all of the poles are in conjugate
pairs. However, most of the unmatched poles had values close to those
reported by Tesche., The runs which did not convergé are so labeled.
Nonconvergent runs usually produce pole estimates that differ dras-
tically from Tesche's results. Hence, a reasonable procedure to
handle the case where the method converges but yields unmatched poles
might be to simply assume that each unmatched pole possesses a con-
jugate companion pole. 1In fact, a promising procedure to eliminate
this problem would be to increase the model order once for each un-
matched pole at convergence, introduce the appropriate conjugate pole,
and continue the iteration until, hopefully, convergence is achieved
with all poles occurring in conjugate pairs.

For the 25 dB case four pole pairs are requested and four con-
jugate pole pairs converged in each case except one which diverged.

The results for the offset-driven data indicate that the adaptive
method is able to provide useful results e&en in noise levels of
around 15 dB and even if the convergent poles are not in conjugate

pairs.
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In the next two'examples the adaptive method is applied in the
analysis of the noise contaminated TWTD data, the current at the center
of a one-meter cylinder. The exciting voltage generator has a Gaussian
time history with a pulse width at the 1/e level of approximately .3
nanoseconds. Hence, the center~driven waveform contains components
which are higher in frequency than the offset—driven waveform. Figure
12 displays the noise-contaminated center—-driven waveform with a 20 dB

SNR. The noise is Gaussian distributed and uncorrelated. The first 69

samples are ignored to exclude the influence of the driving voltage.

The waveforms are preproceséed before being analyzed with a preprocess-—
ing increment of 5 sampleé, beginning at sample 70. Figures 13 and 14
show the pole estimates for the center-driven TWTD data with SNR's of
20 and 25 dB, respectively. Tables 11 and 12 tabulate the pole values
corresponding to Figure 13; aﬁd Iables 13 and 14 correspond to Figure
14.

The results for the center-driven data display the sensitivity
of the higher frequency modes to noise. This sensitivity is probably
due to a lower relative degree‘of coupling to the higher frequency

modes for the center-driven case. That is, the higher frequency modes

~are relatively weak for the center-driven case and are more easily

corrupted by the noise. For the data with a 25 dB SNR five pole pairs

are extracted with success. As usual, a few Monte Carlo runs diverged.
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Figure 8 Noise-contaminated offset-driven TWTD wéveform, SNR=15 dB.
waveform is plotted under the noisy waveform for comparison.

O

The uncontaminated




18

APPROXIMATE MODEL ACTUAL MODLL

~

o +3 fe+-8

T R
s i
1
B

JoL juL
+4 Cn 44 Cn

+2 2

L= 1 meter

s’
+
*L‘
—

T o oL [ °

_9 0 oo -2 0

Figure 9 Poles for the offset—-driven TWTD data, SNR = 15 dB. The large
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Table 5 Poles for the offset-driven TWTD data, SNR = 15 dB.

Results are for the approximate model.

Monte Carlo run: 1

Real Imag
-.7949E-01 -4.770
-.1060E-01 2.997
-.2507 6.690
-.1414 4.777
-.9305E-01 -.8867
-.8887E-01 .9001

4

Real Imag
-.9386E-01 ~-.8939
-.1513 4.799

.2405 9.330
-.1171 6.919
-.1641 -4.817
-.9407E-01 .8930

(non convergent)

2
Real Imag
-.1064 -4.726
-.8118E-01 -~.9302
-.8140E-01 .9224
-.6230E-01 7.031
-.1093 4.702
~-.5272E-01 -2.884
5
Real Imag
-.7123E-01 -4.804
~.9346E-01 .9212
-.5738E~01 6.761
-.1233E-01 4.845
-.9821E-01 -.9178
-.1402E-01 2.904

3
Real Imag
-.2067 -=4.750
~.1052 -2.929
-.1052 +2.929
-.2067 4.750
-.7976E-01 .9072
-.7976E-01 +.9072
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Table 6 Poles for the offset-driven TWID data, SNR = 15 dB.

Results are for the actual model.

Monte Carlo run: 1

Real Imag
~.1562 -4.724
-.2405 3.057
-.4036 6.619
-.1984 4.776

.9289E~-01 -.8775
.8522E-01 .9037

(non convergent)

4

Real Imag
-.9024E-01 -.8914
-.3003 4.823
.1161 8.785
-.2331 6.805
-.3548 -4.740

-.9013E-01  .8891
(non convergent)

2
Real Imag
-.1142 =4.733
-.8323E-01 -.9282
-.8049E-01 .9226
-.4474 6.677
-.1756 4.766
~.1450 -2.824
5
Real Imag
-9.844 4.313
-.6344E-01 .9139
-.8439E-01 6.761
~.5477E-01  4.928
-.7716E-01 -,8995
~.4314E-01  3.197

(non convergent)

Real Imag
-.4658 -4.585
-.1638 -2.924
-.1638 . 2.924
~-.4658 4.585

.8131E-01  .9069
.8131E-01 ~.9069
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Table 7

Poles for the offset-driven TWTD data, SNR = 20 dB.

Results are for the approximate model.

Monte Carlo run: 1

Real Imag
-.3007E-01 -6.730
-.2536 3.033
~-.2536 -3.033
-.3007E-01 6.730
~-.1076 .9085
-.1076 ~-.9085

4

Real Imag
~.1494 ~4.767
-.5572E-01 2.903
-.9923E-01 6.737
-.1076 4.828
-.9153E-01 -.9139
- .9213

.8884E-01

2
Real Imag
-.1360 -4.774
-.8348E~01 -.9141
-.2101 6.621
-.2483 4.684
-.1031 -2.955
-.8159E~01 .9114
5
Real Imag
-.2158 -4.630
~.9754E-01 .9246
-.1542 6.802
-.1599 4.727
-.9714E-01 -.9116
-.1265 2.941

3

Real Imag

.1425 -6.802
.1252E-03 2.917
.1536 6.824
.1811 4.794
.9304E-01 -.9009
.9082E-01 .9062
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Poles for the offset-driven TWTD data, SNR = 20 dB

Results are for the actual model.

Monte Carlo run: 1

Real Imag
-.5311E-01 -6.774
-.5317 2.959
-.5317 -2.959
-.5311E-01 6.774
-.1129 .9111
-.1129 -.9111

(non convergent)

2
Real Imag
-.1623 -4.754
-.7921E-01 -.9070
-1.099 5.954
-.5390 5.032
-.1151 -2.890

-.7271E-01 .9138
(non convergent)

4
Real Imag
-2.866 -4.010
-.1220 2.835

.9789E-01 6.723
.9667E-01 4.866
.6997E-01 -.9325
.8585E-01 .9013
(non convergent)

5

Real Imag

-1.069 -3.461
-.1056 .9129
-.1879 6.630
-.2239 4.721
-.9713E-01 -.9299
-.2636 2.846

(non convergent)

3

Real Imag
-.3033 -6.955
-.6217E-01 2.907
-.2997 6.738
~.2947 4.832
-.9164E-01 -.8941
-.8903E-01 . 9086
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Table 9 Poles for the offset-driven TWTD data, SNR = 25 dB.
Results are for the approximate model.

Monte Carlo run: 1

Real Imag
-.1898 -6.777
-.1560 2.841
-.1898 6.777
-.1560 -2.841
-.1785 -4.803
-.1785 4.803
-.8871E-01 -.9151
-.8871E-01 . 9151

4

Real Imag
-.1867 -4.848
~.1460 2.885
-.1813 -6.738
-.1867 4.848
-.1460 -2.885
-.1813 -~ 6.738
-.8258E-01 -.9178
-.8258E-01 .9178

2
Real Imag
-.1515 -2.892
-.1515 2.892
-.1534 -6.705
-.1579 4.902
-.1579 -4.902
-.9019E-01 -.9186
-.1534 6.705
-.9019E-01 .9186
5
Real Imag
-.1622 -4.861
-.8979E-01 -.9182
-.1789 6.744
-.1789 -6.744
-.1636 -2.857
-.1622 4.861
-.1636 2.857
-.8979E-01 .9182

O

3

Real ~ Imag

.2644 -6.643
.8274E-01  2.887
.2377 6.735
.1890 . 4.782
.2450 ~4.701
.8307E-01 -8.760
.8269E-01 -.9139
.8329E-01 .9157
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Table 10 Poles for the offset-driven

Monte Carlo run: 1

SNR = 25 dB.

Real Imag
-.2071 -6.749
-.1803 2,842
-.2071 6.749
-.1803 -2.842
-.1907 -4,804
-.1907 4. 804
—-.8928E-01 -.9152
-.8927E-01 .9152

4

Real Imag
-.2025 -4.,850
-.1613 2.886
-.2011 -6.734
~.2025 4,850
-.1613 -2.886
-.2011 6.734
-.8263E-01 -.9176
-.8263E-01 .9176

TWTD data,

2

Real Imag

-.1636 -2.881
-.1636 2.881
-.1699 -6.690
~.1798 4.896
-.1798 -4.896
-.9039E-01 -.9185
-.1699 6.690
-.9039E-01 .9185

5
Real Imag
-.1755 -4.859
-.9007E-01 -.9183
-.1966 6.726
-.1966 -6.726
-.1743 -2.850
-.1755 4.859
-.1743 2.850
-.9007E-01 .9183

3

Real Imag

. 3845 -6.791
.1059 2.860
.2659 6.747
. 2005 4.823
.2770 -4.799
.8069 -8.237

. 7948E-01 -.9122
.9127

.8204E-01

(non convergent)

Results are for the actual model.
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Table 11

Poles for the center-driven TWTD data,

Results are for the approximate model.

SNR = 20 dB.

Monte Carlo run: 1
Real Imag
-.1210 -4.861
-.1010 .9133
-.1458 7.516
-.1210 4.861
-.1634 -2.947
-.1010 -.9133
-.1634 2.947
-.1458 -7.516
4

Real Imag
.8662E-01 -6.593
.1720 8.959
-.2584E-01 2.897
-.3866E-01 5.586
-.2593E-01 -2.861
.2474E-03 -4.842
-.5955E-01. -.8989
-.6209E-01 .9237

(non convergent)

2
Real Imag
-.1342 -7.155
-.9868E-01 -.9369
-.7794E-01 5.217
-.1342 7.155
-.1602 2.933
-.1602 -2.933
-.9868E-01 .9369
~.7794E-01 -5.217
5
Real Imag
-.2142 -6.568
-.1762 -4.639
-.2142 6.568
-.1762 4.639
-.7761E-01 .9110
-.1053 -2.782
-.7761E-01 -.9110
-.1053 2.782

3
Real Imag
.5749E-01 -6.767
-.4548E-02  2.899
.2580E-01 9.595
.3627E-01 6.827
-.8543E-01 -4.707
-.1555 4.874
-.4192E-01 -.9497

-.5891E-01

9433
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Table 12 Poles for the center-driven TWTD data,
Results are for the actual model.

Monte Carlo rum: 1

SNR = 20 dB.

2
Real Imag
-.2338 -6.908
-.1261 -.9441
-.2784 5.037
-.2338 6.908
-.2380 2.944
-.2380 -2.944
-.1261 . 9441
-.2784 -5.037

(non convergent)

Real Imag
-.2387 -4.,953
-.1322 .9218
-.2680 7.441
-.2387 4.953
-.2529 -2.991
-.1322 -.9218
~-.2529 2.991
-.2680 -7.441

4

Real Imag
-.7754E-01 -6.633
-.3585 -9.651
-.4145E-01 2.860
-.1255 5.696
-.6661E-01 -2.857
-.9278E-01 -4.817
-.7889E-01 -.9011
-.7535E-01 9164

(non convergent)

5

Real Imag

-.3701 -6.471
-.2955 -4.644
-.3701 6.471
-.2955 4.644
-.8846E-01 .8996
-.1485 -2.766
-.8846E-01 -.8996
-.1485 2.766

3

Real Imag

-.3080E-01 - ~-6.768
-.1611 - 2.889
-.2358 9.027
-.6666E-01 6.835
-.2928 '=4,893
-.4115 4.948
-.8578E-01 ~.9389
-.1060 .9287

(non convergent)
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Table 13 Poles for the center-driven TWTD data, SNR = 25 dB.

Results are for the approximate model.

Monte Carlo run: 1

Imag

Real
-.1475 -6.903
-.1475 6.903
-.1185 .9031
-.2017 8.814
-.1185 -.9031
-.1860 -2.874
-.1860 2.874
-.1920 4.839
-.1920 -4.,839
-.2017 -8.814
4
Real Imag
-.2155 -6.951
-.2851 8.901
-.1535 2.827
-.2910 4.818
-.1535 -2.827
-.2851 -8.901
-.8306E-01 -.8998
-.2155 6.951
-.2910 -4.818
-.8306E-01 .8998

2
Real Imag
-.3101 - ~6.736
-.1861 8.822
-.1861 -8.822
~.2587 4.757
-.2587 -4.757
-.3101 6.736
-.8285E-01 .9080
~.1508 -2.817
-.8285E-01 -,9080
-.1508 2.817
5
Real Imag
-.1414 -6.881
-.1666 2,917
-.1272E-01 -8.808
-.1414 6.881
-.1175 -4,891
-.1175 4.891
-.9697E-01 -.9240
-.1272E-01 8.808
-.9697E-01 L9240
-.1666 -2.917

3

Real Imag
-.1277 -6.737

.6944 -3.925
-.1621 4.889
-.4030E-01 9.042
-.1918 ~-4.834
-.1325 6.806
-.9154E-01 .9176
-.1465 -2.914
-.1490 2.894
-.8939E-01 -.9262

(non convergent)
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Table 14

Poles for the center-driven TWTD data,

Results are for the actual model.-

Monte Carlo run: 1

SNR'= 25 dB.

Real Imag:
-.2006 -6.904
-.2006 6.904
-.1195 .9009
-.2843 8.794
-.1195 -.9009
-.1982 -2.864
-.1982 2,864
-.2281 4.833
-.2281" -4.833
-.2843 -8.794

4

Real Imag -
-.2727 -6.953
-.3926 8.884
-.1700 2.819
-.3850 4.833
-.1700 -2.819
-.3926 -8.884
-.8443E~01 -.8959
-.2727 6.953
-.3850 -4.833
-.8443E-01 .8959

2
Real Imag
-.3656 -6.745
-.2445 8.815
-.2445 -8.815
-.2941 4.769
-.2941 -4.769
-.3656_ 6.745
-.8502E-01  .9049
-.1622 -2.815
-.8502E-01 -.9049
-.1622 2.815
Real Imag
-.1861 -6.872
-.1775 2.913
-.6740E-01 -8.804
-.1861 6.872
-.1403 -4.885
-.1403 4.885
-.9942E-01 -.9230
-.6740E-01 - 8.804
-.9942E-01 .9230
-.1775 -2.913

3

Real Imag

.1795 -6.719
.2118 -4.345
.2283 4.878
.8176E-01 8.972
.1876 -5.020
.1969 6.774
-9999E-01 .9139
. 1369 -2.884
1717 2.885
.9145E-01 -.9236

(non convergent)




The preprocessing of the waveforms was done primarily to reduce
the number of samples that the method is required to process in order
to improve efficiency. The preprocessing also reduces the noise level

of the waveform although the information content of the waveforms re-

mains the same. The performance of any method should be judged by how

well it uses available information instead of by how large a SNR it can
tolerate. |

Attempts to analyze waveforms consisting of ﬁighly damped expo-
nential components, such as the transient responses of a sphere, were
not successful. The adaptive method does not converge for such wave-
forms which dlsplay double pole characteristlcs, that is, waveforms
with components of the form t exp(st) Slight modifications to the
adaptive method might allow the analysis of such waveforms. The de-
scription of these modifications will have to wait until further study

is completed in this direction.
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Chapter V

CONCLUSIONS AND FUTURE DIRECTIONS

This document has related three identification methOdS,namely‘
the pencil-of-~function method, Prony's method, and the adaptive
method to the general identification scheme preéented in Chapter II.
Each method results, fundamentally,froﬁ a certaih choice for the fil—‘
ters in the‘genéral identification modél. A meaningful way to sum-
marize the relation between the three methodé is to pl6£ the‘transfér
functions of their respectivé filters as shown in Figure 15. It should
be pointed out that the filters of Prony's methad and the pencil—to—
functions method are‘cascaded, while the filteré of the adaptive méthod
afe not. The poles of the discrete filters have been mapped into the
S-plane with the mapping defined by: z = exp(sT). The filters of
Prony's method treat all frequencies in an equal manner; the filters
of the pencil-of-functions method are preferential to the low fre-
quencies; those of the adaptive method possess passbands which
are adjustable.

The adaptive method is a new method which, in many cases, pro-
vides excellent poles estimates under difficult conditions. The
method is unique in that a solution to a polynomial is not required
to find estimates of the process poles. The method, in effect,

"swallows" the polynomial solver in its own iterative pole-searching

68

O




ADAPTIVE METHOD

=~

!Fi(jw)l \ |

PRONY's METHOD
A\_\ PENCIL-OF-

FUNCTIONS
~.._ METHOD
/

jw, jw

Figure 15 Illustrative plot of the magnitudes of the transfer
functions of each method as a function of frequency.
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M

P1

cheme. The adaptive method is thought to be closely related to the
method of Steiglitz and McBride [19] since both models filter the in-
put and output records with filters whose poles are the most recent

estimates of the process poles. However, the method of Steiglitz and

cBride does not provide pole estimates but only estimates of the

rocess transfer function during the course of iteration. The primary

utility of the adaptive method, in the author's opinion, lies in re-

finement of predetermined poles.

The pencil-of-function method was found to be ill-conditioned for

the identification of high order processes. Although the method can
provide superior estim;tes of low-order processes. It is shown that
use of the\/Aii/A;o in place of the a, was less accurate in general,
than using equation (4) or (6) to estimate the o, for the approximate
model. Sincéﬂthé4parameter Valueé themselves are transplanted into
the actual model, it is not clear if the /K;;7Z;; or the ., more
accurately portray the process after this transplant. But there is no

regson to believe the VAii/Aoo provide a better estimate after the -

transplant and every reason to believe that they do not.

Dudley [11] indicated that the noise sensitivity of least-squares

Prony's method was due to parameter bias. In this document, the

parameter bias has been related to the transplanting of parameters

from the approximate model to the true model. Past workers have

applied an ad hoc technique that partially alleviates the noise sen-

sitivity of Prony's method. This technique consists of setting

1

= 2n (no redundant data) and setting the model order, n, de-
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liberately high to make M large. Since M is the number of samples .
used in the estimation procedure,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>