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Introduction.

This paper is a summary of the invited lecture given by
the author at the meeting on mathematical foundations of SEM
in November 1980. There were engineers, physicists and mathe-
maticians at this meeting. Thus this paper was written for
readers with various interests and backgrounds. The questions
under consideration are of practical interest in the fields
where wave propagation and scattering are of importance, that is
in the fields of unlimited diversity. On the other hand the
underlying mathematical theory is deep and relatively new. The
mathematical machinery includes the spectral theory of nonself-
adjoint operators and pseudo-differential equations on compact
manifolds. The mathematical results of uée in the EEM and SEM
were obtained relatively recently. The author 'tried to present
some of the results and their applications as simply as he could
but without making any wrong statements. Whether he succeeded ,
the reader will tell. The structure of the paper is clear from

the contents.
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Statement of the SEM and EEM.

1.0. SEM and EEM were widely used by physicists and

electrical engineers during the last decade [1]-[4],[30].

The]

(7]

whe

ir mathematical analysis was started in [5],[6] (see also

, [81).

. Let us formulate the EEM. Consider the problem
2 2 .
(V- + k" J)u=0 1in Q , (l.1)
ulr = £, (l.2)
r(gﬁ - iku) + 0 as r » «© , (1.3)
or
re k>0, r=|x|], o is an exterior domain with a smooth

boundary I'. Let us look for a solution of (1.1)-(1l.3) of the

form W e
u = I Gvo(x,S.k)g(S)ds o (1.4)
T
where
_ exp(ik|x-y|) ‘
Gy (x,y,k) PP (1.5)

and g(s) is an unknown function. The function (1.4) satisfies

(1.

1) and (1.3). Substituting (1.4) into (1.2) we get the fol-

flowing equation for g:

Equ

Se

Ag = £, Ag = I Go(s,s',k)g(s')ds', s €r . (1.6)

r

lation (1.6) is an integral equation of the first kind. 1In

~tion 3 we will study this equation.

At this moment we restrict



ourselves by describing the EEM. Suppose that the operator A

in (1.6) has eigenvectors:

Af, = A.f. ,
S R RS

{v

E (1.7)

and the set {fj} forms a basis of H = LZ(F)- This means that
any element f € H can be uniquely represented by a convergent
in H series | |
©
f = jzl cjfj - (1.8)
If this assumption is true then one can look for a solution of

(1.6) of the form

oo

g= ) 9g.f. , (1.9)
521 7373

substitute (1.9) and (1.8) into (1.6) and find, the unknown
- l ’

coefficients . 8 . = M. c. « Thus
95 % 935 7 A3
T .-1
g= ) A, c:f (1.10)
j=1 J J 3
is the solution of (1.6). This was the argument used in [1]-[3].

The above method for solving equation (1.6) was called EEM. It
was pointed out in [5] that the operator A in (1.6) is non-
selfadjoint and therefore it is not obvious that A has eigen~
values. It is even less clear that the eigenvectors of A form
a basis of H . 1Indeed, even in a finite dimensional space a
linear operator (a matrix) can have a set of eigenvectors which

does not form a basis. For example, if A = (é i) is a matrix



of| an operator on IR2 (twb dimensional Euclidean space) then
A 'has only one eigenvector and this vector certainly does not

form a basis of ZR2 . Nevertheless it is known that a root

system of a linear operator on R® forms a basis of R. By

a root System of a linear operator A we mean the union of the
root vectors of A. To construct the root vectors of A we
‘take an eigenvalue xj and a corresponding eigenvector f£. and

consider the following equations

I LA ) R V- S SN O L € 2 RS o T UE R S

J 33 J J 3] ]
If these equations are solvable but the equation Af§r+l) —‘Ajf§r+])
= ;r) is not solvable, then the set (fj,fgl),...,fér)) is

called the Jordan chain associated with the pair (Aj,fj), r+l is
the length of this chain and f;l) ,...;f;r)*‘are called the root
vectors of A. If A is a compact operator on a Hilbert space,
‘the definition is the same. It is known [9] that a compact linear
operator on a Hilbert space has a discrete spectrum with the only
linit point A = 0 and the length of any Jordan chain associated
with a pair (Aj,fj), Aj # 0 is finite. 1In a finite dimensional
space Rp the root system of every linear operator forms a basis
of R". Unfortunately this is not true in the infinite-dimensional
Hilbert space} For example the Volterra operator VI = fx fdt

on| H = LZ[O,l] has no eigenvalues. Thus, we face the g%llowing
basic problems:

1) When does a nonselfadjoint operator A on H have

a root system which forms a basis of H?

| N : ! ML L i NN




2) When does the set of eigenvectors of A form a basis
of H?

It‘is clear that the EEM as described by formula (1.10) is not
valid generally sﬁeaking because one should take into account
the root vectors when writing the series for g and £ . This
will not make the calculation much more difficult as we will show in Section 3.
Therefofe from now on we will understand by EEM the solution of (1.6) by means of
expansion in series in 1"001: vectors of A. Both questions 1), 2) will be o
discussed in Section 3. It should be mentioned that the specific
form of the bonndary value problem (1.1)-(1.3) does not play any
significant role. We can treat by the same methods the Neumann
or the third boundary value problems. What is essential is that
the problem in the 3-dimensional unbounded domain @ is reduced

to an equation on 2-dimensional compact manifold (surface T).

1.3. We now pass over to the SEM.

Let us consider the problem

2
utt'" v u, t >0, x€¢Q (1.12)
= 1.13
ul, =0 Saa
ul, =0 u = f(x) (1.14)
l =0 t] 2
If we define
[«
vix,k) = f6 exp(ikt)u(x,t)dt, (1.15)
then
(V2 + k%) v = -f (1.16)
VIP =0 (1.17)
e ikv) 20, £ oo (1.18)
or
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Thus
v(x,k) = {QG(x,Y,k)f(y)dy (1.19)

where G 1is the Green's function for the problem (1.16)-(1.18).

O

We| have
f 3G(s,v,k
G = Gy = | 6y(x,5,10 388K 4, (1.20)
T s
and for gy = §§%§L25£L it is easy to get the equation
g
' oG v y el
[T+ T00Iu =2 522, T = [ SXRUKIS=S'D) ohagr (101)
s ; s 2m|s-s']|

From (l1.21) it follows that M 1is a meromorphic function of

k |on the whole complex plane k and f:om_ﬁgis and (1.20) we
conclude that G(x,y,k) can be analytically‘continued as a mero-
morphic function of k on the whole complex plane k . Moreover
the reSidues of >G(x,y,k) (and yu(s,y,k)) are kernels of operators
of |[finite rank (degenerate kernels). This conclusion is an

immediate corollary to the following:

Proposition 1.1. Let T(k) be an analytic compact operator

function on H for k € A where A is a connected open set in
the complex plane. If I + T(k) is invertible at some point

1

k. € A then (I + T(k)) is finite-meromorphic in A.

Remark. Finite-meromorphic means that the laurent coeftiients are operators
of finite rank. Though the proposition is well known we will give

a short proof in Section 3 for the sake of completeness.

O



From (1.15) it follows that
-1 (% . ' ~
u(x,t) =(27) I_m exp(-ikt)v(x,k)dk (1.22)

The function v(x,k) is analytic in the half plane Im k > O
and meromorphic in Im k < O.

Let us introduce the following three conditions:
v is memorphic (and analytic in Im k > 0) (1.23)

vl < e (1 + [kD7®, a > 1/2, |[Re k| +® , Ink = b (1.24)
where b 1is an arbitrary comnstant,

|Im k;] » = as j > (1.25)
where {kj} are the poles of v ordered so that

[Im ;]| < |Im ky| < veees

In (1.23) we can assume that v has a finite number of poles.
in Im k > 0. Also the assumption (1.24) can fe relaxed: we
can assume that a is an arbitrary fixed number. But we will
not discuss these possibilities here. The assumption a > 1/2

" guarantees that the ihtegral in (1.22) converges in LZ;@.Z‘I)?(?.ZQ.
Using (1.23)-(1.25) and moving the contour of integration

in (1.22) down we get

N -ik.t -|Im k|t
u(x,t) = ) c.(x,tle I + o(e ), t > 4o (1.26)

j=1 J

Here
-ik.t —ikt m,-1
c.{x,t)e J = Res v(x,k)e , (x,t) = O(t 3y (r.27)
J k =k. J
J
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and mj is the order of the pole k., . If and only if all

he poles are simple, then cj(x,t) = cj(X). We have proved

Proposition 1.2. Conditions (1.23)-(1.25) are sufficient for

fad

1

=

i

the "asymptotic" SEM. i

By asymptotic SEM we mean formula (1.26). BY SEM we will

understand the following formula

u(x,t) = ) c.(x,t) exp(-ik.t), (1.28)
j=1 J J

where the series (1.28) converges uniformly in x and +t running

hrough bounded domains. In Section 3 we will show that condi-

tions (1.23)-(1.25) can be verified under relatively general
assumptions about the scatterer. Therefore the asymptotic SEM
in the form (1.26) can be established. But 'SEM in the form (1.28)

" geems to be not established even under very restrictive assumptions

ybout the scatterer. It is an open question:

3) When does (1.28) hold?

10
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2. Discussion of the related questions.

2.1. Interpretation of the EEM as eigenoscillation method

with spectral parameter in boundary conditions.

As we pointed out in Section 1 the mathematical idea behind
the EEM can be formulated as follows: We substitute the boundary
value problem in the exterior 3-dimensional domain by an integral
equation over 2-dimensional compact manifold. 1In Section 3 we
will show that this integral equation is a pseudo-differential
equation with an elliptic pseudo-differential operator. These
terms will be explained in Section 3. Here we want to‘show that
there is a possibility of a physical interpretation of the EEM.

Indeed, let the fundtion (1.4) satisfy the following equations

(v2 + kHu =0 in R\T I (2.1)
+ - _ du, + du, -
u =u , u= }\[(an (an) ] and (1.3) (2.2)

where n is the outer unit normal to T and +(-) denote the

1imit value on T from inside(outside) of T . Since u]r = Ag,

where A is defined in (1.6), and (%% oo (%%)- = g, the
second equality in (2.2) is equivalent to equation Ag = g.

Thus expansion (1.9) is the expansion in eigenfunction of the

problem (2.1)-(2.2) where the spectral parameter A 1is in boundary

condition. This parameter differs from the usual frequency para-

meter in the classical approach.

11
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2.2. Complex poles of Green's function (resonances:

existence, multiplicity, calculation, stability,

asymptotic formulas).

In Section 1 we saw that the complex poles kj of
Green's function G(x,y,k) are important in SEM (see (1.26)).
seems to be an open question whether the simplicity of the
plex poles of G is equivalent to the ébsence of the root
tors of the operator T(k) defined in (1.21). In [10] it
proved that there are infinitely mahy purely imaginary poles
roT, Y TR but it is still an open question whether there
infinitely many complex poles of G off the imagihary axis.
one dimensional potential scattering (thé Schrodinger equation
the semiaxis) it was proved that the Green's function has

initely many complex poles (see [11]). This proof can not be

ried out for three dimensional potential scattering because

uses essentially the expression of the Green's function in

ms of two linearly independent solutions of the Schrodinger
ation. It would be interesting to work out a new proof which
ers the three dimensional case. It was proved in [12] that
Green's function of the Laplace operator of exterior boundary
ne problems can be analytically continued on the whole complex

ne of k as a meromorphic function. 1In [13] it was proved

t (1.25) holds for the Schrodinger operators with compactly

ported potentials. 1In [14] it was proved for the Laplace

rator in the exterior domain and in [15] for the Schrodinger

rator in the exterior domain. In [15]), estimate (l.24) was

roduced and established. Thus we have

12



Proposition 2.1. The asymptotic SEM in the form (1.26) holds

for smooth star-like scatterers.

A body D 1is called star-like if there exists a point X,
inside D such that every point on the boundary T of D can
be seen from X - |

It is an open guestion whether the complex poles kj .are
simple. Engineers and physicists conjectured that this is the
case, but no conclusive arguments were given. For the spherical
and linear obstacles the poles are simple but this is due to
the fact that the operator A in (1.6) is normal (i.e. A*A =AA%*)
if I is a sphere or a line [8], [5]. To show that there can be

multiple poles of the Green's function of the third boundary value

problem consider the following

Example. Let

(V2 + kz)u =0 in 9 = {x: |x|] =r>1}, x € R3, k>0 (2.3)
(&2~ 2y) = cos § and (1.3) holds (2.4)
ox r=1

It is easy to find the solution to this problem:

-1/2 y (kr)cos ©

-ik econst. r ’
3/2 | (2.5)

e (k% + aki - )
Thus k = -2i is a pole of order 2. Note that for k > 0

the problem (2.3)-(2.4) has a unique solution so that the

existence of the'multiple pole can not be explained by the

13



presence of acﬁive impedance sﬁeeﬁ on T: the boundary condi- 'i
tion (2.4) is passive in the sense that for k > 0 the homo- .g:)
geneous problem (2.3)-(2.4) has oniy trivial solution u = 0.

How does one calculate the complex poles? Are they
stable under small perturbations of T'? These questions were -
answered in [5], [7], [8]. We describe three different approaches
given in [8]. ‘The first approach is a general projection method.
It was introduced for calculation of the poles in [5]. The
complek poles of G are the points at which the operétor
I + T(k) (see (1.21)) is not invertible (has a nontrivial null
space). .Let {h } be a:basis of H = LZ(F), Fn \ flcjhJ We substi-
ute the equation [I+T(k)]F-O by the equatlon P [I+T(k)fP F =0,where
Pn is the pro;ectlog‘on the linear span of {hl,...,hn}. This

-~ e

leads~to the iinear system:

©

n : ‘
g b;j(k)cj =0, 1<ic<n, pij =([I +T(k)]hi,hj) (2.6)

where (.,.) denotes the inner product..in H = LZ(P). System

(2.6) has a nontrivial solution iff

det bij(k) = 0. (2.7)

In the left hand 51de of (2 7) we have an entire functlon of k.
Let k(n) be its zeros.
Proposition 2.2. The set of k = lim k(") coincides with

N>
the set of the points at which I + T(k) is not invertible,that is

w1th the union of the set of the complex poles of the Green's function

G - defined in (1.20) and the spectrum of the interior Neumann problem.

_
14 O




This proposition justifies the current numerical method widely
used by engineers for calculation of the complex poles. 1Its

proof given in [5] and has an interesting by-product:

Proposition 2.3. The complex poles depend continuously on the

scatterer.

This can be formulated in more detail as follows. Let

— 3 2 —
xj = xj(sl,sz), 1 <3 <3 0c¢< Sy 52 <1, xj e c”, s-—(sl,sz)

be a parametric equation of the surface T, and Xj(e) =

xj(s) + eyj(s), yj € Cz, € >0 1is a small parameter, be a para-

metric equation of the perturbed’surface Fe . Let kj(kj(e)) be

the complex poles of the Green's function G(G_). Then

kj(e) - kj as ¢ + 0 uniformly for |kj|-§¢R, where R > 0

is arbitrarily large fixed number. For a detailed proof see [8].
The second approach to the calculation of the poles ié based

on variational principle. Let us consider the set of functions

which have the following representation

©

u(x,k) =r * exp (ikr) ) fj(n,k)r—J, n= xlxl-l, r = |x| (2.8)
3=0

f0 Z 0. The solutions to the Helmholtz equation in an exterior

domain satisfying the radiation condition for k > 0 satisfy

(2.8). It can be proved [16] that if u(x,kl) and v(x,kz)

belong to the above set, Re(k, + k,) # 0, T < arg kﬁ < 27 ,

m=1,2 then the following limit exists

15
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' ‘ f
<u,v > lim J exp(-er lnr)uvdx, ] = f

= ’ (2.9)
© e~>+0 Q
and the complex poles of G (defined in l.l9)»aﬂe the sta-
tionary values of the functional
2 <Vu, Vu >
k = st ‘“‘?{1—;——‘1;—* - ’ (2-10)

The admissible functiéns in (2.10) should satisff (2.8) and

vanish on T'. Some choice of the basis functions for principle
(2,10) is suggested in [16]. The third approach to the calculation
of [the complex poles is based on the followiﬁg statement which was

proved in [5] (see also [71).

Proposition 2.3'. The set of the complex poles of G coincide

with the set of the complex zeros of the functions An(k), where

r_ (k) are the\eigenvalues of the operator A(k) defined in (1.6)

The set of all zeros of the functions An(k), n~=1:1,2,... 1is the

union of the set of complex poles of G and the set of eigen-

values of the Dirichlet Laplacian in the interior domain D with

boundary T.

k_For a proof see [8].

Remark [8]. The set of complex poles of G can be also found
as| the set of the complex roots of the equations “n(k) = -1,
n=1,2,... where un(k) are the eigenvalues of the operator

T (k) vdefined in (1.21).

According to Proposition 2 we can calculate the complex

poles by calculating the functions An(k) and finding their

16
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complex zeros. The eigenvalues An(k) can be found by means
of the projection method. In Section 3 we given a new variational
principle for the spectrum of'a compact, nonselfadjoint linear

operator on a Hilbert space.

2.3. Mittag-Leffler representation.

From (1.20) and (1.21) if follows that the poles of G
coincide with the poles of the operator (I + T(k)) Y. This
operator is a meromorphic function. One can apply the Mittag-
Leffler representation to this function. Since in thé ehgineering
literature [3] the Mittag-Leffler Theorem was used not quite‘
accurately, we give the statement of the theorem here and discuss
the difficulties of its application to our problem (representation

of (I + T(k)) 1).

Proposition 2.4. Let f(k) be a meromorphic function on the

whole complex plane k and |£(k)] <c |k|P, ke C , where C_

'is a proper system of contours and p > 0 is an integer. Let us

assume (without loss of generality) that k 0 is not a pole

9£ f . Then

o

£(k).= h(k) + ] Ig (k) - h (K], ; (2.11)
n=1 : ,
where
. (3)
p (3) . g (0) .
hk) = § A0 k) = % 2k, (2.12)
j=0 I° j=0 '

and gn(k) is the principal part of f(k) at the pole kn .

17



" Remark. A proper system of contours {Cn} is a system of
closed curves such that 1) k = 0 1lies inside. of Cn ’
2) 1%1C:Dh+l , where Dn is the domain 1n81deicn ’
- a4 -1 |
3) dn = dlst(o,cn) >+ o as n » o and dn |Cn|‘5 = ¢ = const.

where |C | is the length of c, -

A more general statement is the following Pnoposition;

Proposition 2.4'. Let f£(k) be a meromorphic ﬁunction. There

exists a sequence of integers pl,,..,pn,... sudh that (2.11)

holds with

o
|

(3)
g "~ (0)

. xJ . | ' (2.13)
0 ]

'hn(k) =
J

7

Remark. We do not know how fast the numbers Py in (2.13)

grow and therefore it seems impossible to usé Proposition 2.4'

for numerical calculations. The estimate || (1 +‘T(k))?l|| < c|k|P,
k € Cn is not known, so that (2.1l) is also dif#icult to apply.
ch |

k -kn

Even in the case when the poles are simple (so tqat gn(k) =

we do not know hn(k) and therefore can not use (2.11). In the

Sn

k -k

engineering literature, sometimes the formula (*) f(k) = X:=l
- n

©
was used. This is not correct because the series } 9, does not
: ‘ - n=1

converge in general. Even if p = 0 , formula (2.11l)takes the form

o C C

fk) = £(0) + § (=2 + ) (2.14)
, ‘ n=0 n n

which differs from (%) .

18
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2.4. Perturbation of complex poles (resonances).

Consider the problem in a general Setting. Let T(k)
be an analytic compact operator function such that I + T(k) is

1

invertible for some k. Then (I + T(k))_ is finite mero-

morphic (Proposition 1.1). Let 2z be a pole of order m of
the function (I + 'J.‘(k))”1 . Let T(k,e) be a compact operator
which is analytic on {]k - z|} <a, |e|] <b} and such that
T(k,0) = T(k). We want to study the poles of (I + T(k,e)) *

‘as functions of g. Our conclusion is as follows: under a per-
turbation dependingianalytically on ¢ the multipiicity of the

- pole 2z cannot inérease. It can decrease and the pole z(g)

of (I + T(k,s:))”;l can have a branch point ¢ = 0 as a function
of € . It can be represented by Puiseux series, i.e. by a

1/r

series in the powers of ¢ where r is some integer. A

proof is given in Section 3.

2.5. Asymptotics of resonances.

In this,section we give some asymptotic formulas for
the large complex poles nearest to the real axis. Consider the
exterior domain  and assume that its boundary T 1is smooth
and convex and its Gaussian curvature is stri&tly positive. 1In
the two-dimensional case the following formula for the complex

poles of G can be obtained by the method of geometrical optics:

27 : Cgp ,
x 1= —Em, >> 1, (2.15)

19



where c¢ = const. depends only on the geometry of T, |I| is
the length of T, gp = tp exp (in/3), and t_ < 0 are the

~1/2 I” 3

- zeros of the Airy function v(t) = 7« 0 cos(ty + %?)dy,

and p is an integer small in comparison with gq.

From (2.15) it follows that

lmm | = o(lre k[, a1 (2.16)

qu
This estimate can be verified for a circle by direct calculation
of the complex poles.

If the boundary I is not smooth then instead of (2.16)

one can get |Im kpq[ = 0(1ln|Re kpq|) , g >>1 (2.17)

Let us explain this by taking a polygon as T. The field dif-
fracted by a wedge is proportional to exp(}kr"— % ln(kr)).
Consider a ray having passed once around the poly@on. The phase
of the field at the point of destination is iklﬁ] - % ln[kn] +
terms which do not depend on k . We assume that the polygon

has n sides. 1In order that the field amplitude conserves,

one requires that the quantization condition be satisfied:
ik|T| - 3 lnk = 2mqi (2.18)
where q is integer. For gq >> 1 , one gets

27 _ in 1n(2%q)

q Tl - 3TT] , g > 1 (2.19)

k

20
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The

Forﬁula (2.17) follows from (2.19). For the exterior 3-~dimen-—
sional domain with a smooth convex boundary with positive Gaussian
curvature a similar result to (2.15) can be obtained. An addi-
tional difficulty in the 3-dimensional problem consists in finding
a closed elliptic geodesic Je on I'. Let s be the length along
Jf, v be the coordinate measured along the geodesic orthogonal
tox » K(s) be the Gaussian curvature at the points on a'f and
T = ] is the length of gfl. Consider the equation

2

(*) -d—-%’-«u K(s)v =0, K(s + T) = K(s), = < 8 < =,
ds ‘

geodesic Je_ is called elliptic if equation (*) is stable in the

sense of Liapunov. Formulas of this section éan be found in [18].

In [18]-[21) some asymptotic formulas for the Green's function as

'k > 4o, Imk = 0 are given, but they seem to be of no use in

calculating the complex poles. The reason is that the formulas
give an expression for the Green's function in terms of exponential

functions (geometrical optics) and this expression has no poles.

2.6. Nonsmooth boundaries.

If we want to apply Proposition 1.1 to the problem with a
nonsmooth boundary T (for example, surface‘with conical points
or edges) we face the following difficulty:v the operator T(k)
defined in (1.21) is not compact if T is not smooth. Potential
theory for domains with nonsmooth boundaries was studied in [22].
In this section we will show how to handle the above difficulty.

To this end let us first define an essential norm of a linear
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operator T : |T|ess = inf '”T - Q|| » where K is the set
Qe

of compact operators. Assume that |T] < 1. Consider the

ess
equation (I + T)g=f in a Hilbert space. By our assumption
we can write T = S + Q where Q is compact and Is]l < 1.

Therefore our equation is equivalent to(the equation (I +Ql)g =f

ll
Ql = (I + S)-lQ, fl = (I + S)_lf, where Ql is -compact and
(I + S)"1 is a bijection of H because ISl <'1 (bijection is
a continuous map onto H which has continuous inverse). There-

fore equation (I + T)g = £ with a noncompact opérator T with

| T| < 1 is equivalent to the equation with compact operator.

ess

This argument shows that the following generalization of Propo-

sition 1.1 holds.

Proposition 2.5. If T(k) can be represented in the form T(k) =

T + Q(k) where Q(k) is analytic and compact, | |T| <1

ess

1

and I + T(k) is invertible at some point, theq (I + T(kK))

is finite-meromorphic.

In order to apply this proposition, we use the result from

[22] which says that |T(0)] < 1 if the surface T is piece-

ess

wise smooth, has no cusps and its irregular poidts are conical or
the edge of the wedge (in fact in [22] much more general results
are given, but they are of no interest to us at this moment. When

the surface has cusps we are in trouble, otherwise the theory

given in Section 1 holds). We can write T(k) = T(0) + T(k) -T(0).

If Q(k) = T(k) - T(0) then Q(k) is analytic and compact and
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we can use Proposition 2.5. This argument shows that the
mermorphic nature of the Green's function holds also in case

of non-smooth boundaries without cusps.

2.7. Asymptotics of resonant states. Their orthogonality.

ILet a - ib, b > 0 be a complex pole of G. A resonant

state is a solution to the problem:

(v2 +k2)u==0; N,k = a~ ib, b > 0; u|r =0,
(2.20)
satisfying (2.8).
Remark. Radiation condition can not be used for the statement

of the problem of finding the resonant state and the corre-
sponding complex poles of the Green's function. Indeed, the
problem (v2 + k%)u = 0 in RS, where u satisfies (1.3) has
a nontrivial solution for any k with Imk < 0. For example,

if f is a smooth compactly supported function then

q = I exp (ik [x-y]|) f(y)dy - I exp(-ik|x-y|) f(y)dy

BEEE2 [x -y

is such a solution because the second integral is O(exp(-|Im k|r))

as r - o and does not change the radiation condition (1.3). The
solution of (2.20) satisfies the estimate: u = o(r 1 exp (br)).

We want to answer the following question: what can be said about
u if u = o(r-l exp(br)) as r » o ? The answer is: u =0 in
this case. 1In order to prove this statement consider the function

v = r exp(-ikr)u, k = a - ib. By the assumption v = o(l) as
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r + o, It is easy to see that

-2 %
-y" - r Av - 2kv' =0 for r > R0 ’ (*)

where A* is the angular part of the Laplacian and R is the

0
radius of a sphere containing I . Multiplying (*) by v in

2 . . . .
L (Sz), where 82 is the unit sphere in 33 , integrating in

r over (R,») and taking the real part, we get

oo

f ' © _ 2
0 = [plviZars [ -are, wrfar + 3 AL wnpv®)
r=R r=R
d 2 2 C o . 2
Thus - |v|” + 2b |v|® <0, r > R,. This implies that | v|

0(exp(-2br)), |v| = O(exp(-br)) and u = 0(-lr-).  Therefore u

can be represented by the Green's formula

u = fr G. Y 35, G =exp(-ikr)/(4mr), k = a - ib, b > 0. D

0 9N 0

Therefore u = 0(exp(-br)), u € LZ(Q) énd —k2 is an eigen-
value of the Dirichlet Laplacian in Q. Since this operator
has no eigenvalues we conclude that u = 0.

Let us answer another gquestion: in what sense can the
resonant states corresponding to different complex poles k and

1

k be considered as orthogonal?

2
The answer 1is : <u(x,kl), u(x,kz) > = 0 where the form

< e+, > was defined in (2.9). For details see [16] and Section 3.

Remark. In the EEM method we can use the symmetry property of

the operator A for finding the coefficients in the expansion
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Indeed, let us introduce the form /[ fgdx

(:> (1.8).

is clear that

[flg]- It

[Af,g] = [f,Ag]. (2.21)

If we assume that the eigenvectors fj of A form a basis

of H = Lz(r), then expansion (1.8) holds and [fj,fm] 0

if j # m. The last statement follows from (2.21): if

[Afj,fm] - [fj,Afm] = 0. Thus [fj,fm] = 0. For -kj = A, = A
one can find linear combinations of the eigenvectors fl,...,fr
corresponding to A which are orthogonal with respect to the
form [+,+], at least if [fj,fj] #0, 1< 3j<r. This can be

used for calculation of the coeffidiénts cj in (1.8) :

@!' c. = [f,fj].

]
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3. Mathematical Results.

3.1. Justification of EEM. Basisness. Convergence of

series in root vectors.

We need some definitons. Let '{hj} be an orthonormal basis

of H, m1 <My < oee a sequence of integers, mj »> o - and Hj

be the linear span of the vectors hm.'hm.+l""'hm. -1 + Let
3 j+1
{fj} be a complete minimal system in H and VFj is the linear
span of £ ,...,£
mj mj+l |
for any m vector fm does not belong to the linear span of

-1 + A system {fj} is called minimal if

the remaini tor £.}.
e ining vectors { J}J#m

Definition 1. If a linear bijection B exists such that BHj =

Fj' j=1,2,... theg the system {fj} is cal}eé a Riesz basis
of H with brackets and we write ‘{fj} e Rka) .

Let us remind that B is a bijeétion if it maps continuously
and one-to-one H onto H . By bgsisness we mean the property of
a system of vectors to form a basis of H . A system {fj} € Ry (H)
2 2 Cl > 0 such that for any £ € H the
inequality &he analogue of the Bessel inequality) holds

iff there exist C

, o ’
c, I£N%< ] ||ij|l2 <c,ll£]|>, where P, is the projection
i=1 .
onto Fj . We write A € Rb(H)(A € R(H)) if the root system of

the linear operator A on H forms a Riesz basis of H with
brackets (a Riesz basis of H). Let L be a linear selfadjoint
operator on H with discrete spectrum 0 < Xl < Az < k3 oo

A. > as Jj - « . In this case L"1 is compact.
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Proposition 3.1. Let Q be a (nonselfadjoint) linear operator,

D(Q) > D(L),

. P
gy = r0G !

j ) as j + =, p,c > 0, Py <P

|L-aQ] <cyrac<l; p(l-a) > 1 .

Then the spectrum o(A) of the operator A =L + Q is discrete;

(o] .
o(pa)c U {A:Ik—kjl < ijlca} ~ where g > 1 is an arbitrary
j=1 '

number, and A € Rb(H)-. If p(l-a) > 2 and Py < p-1 then

A e R(H) .

A proof of this proposition and someadditionalinformation
can be found in [8]. Let us show how ﬁhis proposition can be
used in order to prove that A e.Rb(H) and ‘T(k) € Rb(H) ¢
where A(k) and T(k) are defined in (1.6) and (1.21).

We will discuss only A(k) since T(k) can be treated
similarly. We have to use SOme results from the theory of
pseudo-differential operators. These results are given in the
book [27]. ' ~Let us denote by
H? the Sobolev spaces Wz'q(r) . If g is a positive integer
14 consists roughly speaking of functions with g derivatives

square integrable over I . But H? is defined for any real

(3.1)

(3.2)

g . We say that ord A =m if A: H? » #9™™ , ord A = order of A.

By N(A) we denote the null space of A: N(A) = {f: Af = 0} .
We omit some important details and try to explain how to prove
that A(k) € R (H).

Let A = AO + Al p AO = Re A, Al = iIm A . The operator

cos (k|x-y|) ,i sin(k]|x-y]|)
4w|x-y[ ( 4n]x—y[ ) for k > 0

has the kernel

AO(Al) .
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We assume for simplicity that a1 and Aal exist. This assump-

tion is not essential and can be removed at the cost of some

additional technical arguments. Let Aal = L . The operator

L 1is selfadjoint and it can be shown that ord L =1 ,

Aj(L) = cjl/z + 0(1) as j » » . We have a7l =14 Q, Q=

-(I+LA1)-1LA1L . The first factor is a bijection and its order

is 0. Thus ord Q = 2 ord L + ord A; = 2 + ord A,;. But A,
has aninfinitely smoothing kernel and therefore ord Al = -= .

Thus ord Q = ~» . This means that |L“aQ] < ¢y for any a < 1
(we can take a < 0 and |a| as large as we want). From this

it follows that conditions (3.1) and (3.2) are satisfied and

A_l € Rb(H) . Therefore A € Rb(H) . This argument can be

used for complex k also. But in this case the kernels of

A and A, will be different and in particular, the kernel

0 1
of Ay will not be infinitely smoothing. It can be shown that

ord A; = -3 for complex k .
Now we turn to convergence of the series in root vectors.
First we derive some formulas for the coefficients of solution

J
on
is the projectionVthe root space spanned by the root vectors of
r.
'( J)
‘ J
are the root vectors. This

to equation (l1.6). Let g = Z;=l Pjg , £ = Z§=1 P.f , where Pj

A corresponding to the pair (Aj,f§0)) ,- SO that f;o),...,f )

J
is the basis of this root space, fgm)
root space R. 1is invariant under the action of A . This means
that if f € Rj then Af € Rj . Therefore Ag = f can be

rewritten as APjg = ij , Oor else

(K, (r) _ 573 (O (o) .y, .
zr-_-o gj Afj zr=0 j fj r ] 12740 (*)
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In what follows, we omit the index j for some time. By the

definition of root vectors we have Af(r) - Af(r) = f(r—l) '

r>1i, A =_Aj, Af(o) = Af(o) . Therefore from (*) it follows

that
(r.) cf#j) cgm)~g§m+l)
gy 3 = 34— ,gjfm)= g m=r,0 0 303)
J J "

These recurrent formulas are convenient for the calculation of the
coefficients of the expansion of the solution to the equation

"Ag = £ in terms of the root vectors of the operator A . The

(m)

coefficients cj corresponding to f are taken to be known.

We can rewrite (3.3) as

(r.) (r.-1) ‘(rj)
(r.) c. J (r.-1) c. J c.
s L J = .
9% v 95 v 5
J J Aj
(r;-2) (r;-1) (r.) 3
(r.-2) c. 3 c. c. 3 |
g ] = JA - J ? + J 3 ’ "o k (3.4)
? j 2 A | .
r.-m X
@ c(m) c§m+1) o (m+2) (-1) 3‘ o 3
g " 3 - 4 + - + ...+ ] )
J A 2 . 3 r.-m+l
J A Al j
J J Aj

In order to investigate the rate of convergence of the series in
root vectors let us first consider the series in the eigenvectors

of the operator L . We note that
o IEllgery < ILElly < o5 Ellgyy - (+%)

where ¢; < c, ; and H-[]q is the norm in H? . Such type
of estimates are well known in the theory of elliptic operators.
1f Lf e HY , then its series in eigenvectors of L converges

. . +1
in HY . Therefore the series for £ converdges in a4 .
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This argument holds for the series in root vectors provided

that (**) holds for A . 15 A"l exists then ord A =1 ,

ord A™1 = -1 , because a = rn(r+17Q), a7t = (z+7lg) "7t . O
Therefore (*» holds for A .. We conclude that if f e,Hq then

its series in the root vectors of A converges in H? . This means

that the smoother £ is the better itsvseries in the root vectors

converges.

One can estimate the remainder of the series. For example,

. o 2 - _ d.f,
if h=Lf €H =1L°(r) , then zj:N cyfy = Zj=N v where
ij = Ajfj ' f = Zj=l cjfj,_h = Zj=1 djfj . Therefore

|Z§=N cjfjl < fi'(2§=N 'dj|2)1/2 < %ﬁl .->If was proved in [8]
that the series in eigenvectors of L and root vectors of A
are equiconvergent if p(l-a) > 2-.
Finally let us note that the root vectors -
are absent if A is normal, that is AA* = A*A ., This (:)

condition can be considered as a condition concerning the

surface I . It can be written [5] as

/ sin(k|x-s|-|s-y[) ds = 0 for all x,y el . : (3.5)
|x-s||s-y|

For the cases when I is a sphere or a line the operator A

is normal and the EEM method in these cases takes its "engineering”

form (without root vectors).

3.2. Justificaton of the Asymptotic SEM.

In Section 1 we gave conditions (1.23)-(1.25) sufficient for

thevalidity of the asymptotic SEM defined in (1.26). Condition
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O

(1.23) was established in Sections 1, 2 under weak restrictions
which cover the practical cases. We complete the arguments
given in Sections 1, 2 by proving Proposition 1.1. The proof

is taken from [12d].

Proof of Proposition 1.1. Let fl,...,fn be a basis of

N(I+T(z)) , where 2z is an isolated point where I + T(z)

is not invertible. We will show that 2z is apoleof the operator

1

(I+T (kX)) and its Laurent coefficients are finite rank operators.

Consider the operator B(k) = I + T(k) +f2?=l(3f')gj , where

{gj}, 1 <3 <n is a basis of N(I+T(k)*) . Let us show that

 N(B(z) = {0} . Indeed, if B(K)Ef = 0 , then (*) (I+T(z)f =

E?:l(f'fj)gj . Since ‘gj e N(I+T(k)*) they are ortthonal

to Ran(I+T(z)) (Ran A is the range of the operator A) .
Therefore from (*) we conclude that (f,fj)~= 0, (I+T(z))f = 0.
Since {fj} is a basis of N(I+T(z)) we get f = 0 . ’Therefore
B-l(z) is invertible and B 1(k) is invertible if |k-z| < § ,
where § > 0 is some small number. Equation (I+T(k))h = £

is equivalent to B(k)h = £ + z?:l(h'fj)gj ;, or to the system

O § n -1
h=B “(k)f + Xj=l ?j B (k)gj, c.

3 = (h,fj) .. From this it

follows that

I3.1 [8547b;5k)ley = d;(0), 1<i<n,
(3.7)
by (k) = (BT (K)gs.9;)

_ -1 ,
and di(k) = (B (k)f,gi) . The functions bij(k) and di(k)

are analytic in |k-z | < §. From Kramer's formulas, it follows
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that each cj(k) has a pole at k = z and from (3.6) we can

1 ..
are finite

see that the Laufent coefficients of (I+T(k))
rank operators.

We now turn to conditions (1.24), (1.25). Unfortunately
the known proofs of these condiditions given in the papers
cited in Section 2.2 are not easy. Therefore we restrict
ourselves to a remark concerning Condition (1.24). Suppose

that (1.24) holds with some real a (even negative). From the

Helmholtz equation (1.16) it follows that (*) v =-S5 - —5 .

Suppose that £ 1is a émooth function which is zero near T

and near infinitj. Then Vzv satisfies (1.16)-(1.18) with

f substituted by sz . Therefore Vzv satisfies inequality
(1.24). From this and (*) it follows that. v satisfies
inequality (1.24) with a substituted by a + 2 . This argument
shows that for smooth and compactly supported in @ functions
f we can estimate (1.24) if we only know that v(x,k) grows
not faster than a polynomial as |Rek| < », Im k = const.

The idea of all the known proofs of (1.25) is to show that the
Green's function is small if |Re]<| + ® and |Im k| < (|re kl)
where ¢(xr) > 0 is é nondecreasing function ¢(xr) > +* as

r + © . For the three dimensional potential scattering it was
proved in [13] that é(r) = a+ b&nr , b>0. For diffraction
problems inc(case of a smooth scatterer (Dirichlet or Neumann

1/3

boundary conditions) ¢ (r) ~ r as r > ©, while for a

nonsmooth scatterer ¢(r) ~ &nr as r >« (see (2.16) (2.17)) .
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3.3. A variational principle for the spectrum of compact

nonselfadjoint operators.

Let T be a compact linear operator on a Hilbert space

H with eigenvalues Aj o 1Al 2 Iagl > eer o Let g = | Re Am(j)l

> ... and ‘t, = |Im A ordered

2> j n(i !
> ... . The indexes m(j) and n(j) make the

order so that r, > r

so that t, > t

1 2
ordering. Let Lj be the eigenspace of T corresponding to

vxj,LMj(Nj) be the eigenspace corresponding to rj(tj) (that

is to

~

A a _ 73 . ~
xm(j n(j))) - Let I, zm=1 + L . and My /Ny are

defined similarly. The sign + denotes the direct sum. Let

11 denotes the direct complement in H .

Proposition 3.2.. The following formulas hold

.([) |Aj|= max min | (Tx,y) |
xeLj__l '(§?§)=l
ry = max min |Re (Tx,y) |
-1 %i?y)=i
tj = me~ - min |Im(Tx,y) | -
31 %i?y)=l;

A proof is given in [8]. It would be interesting to try

this variational principle numerically.

3.4. Variational principle and perturbation theory for resonances.

In this section we prove existence of the limit (2.9) and

orthogonality of the resonant states corresponding to different
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k Im k

llk2I
defined in (2.3). Our argument is close to the one in [16]. (:)

1 <0, Im k2 < 0 with respect to the form <.,. >

In order to prove existence of the limit (2.9) it is sufficient
to prove existence aof the limit

<u,v> = lim | u(x)v(x)exp(-ergnr)dx, r = |x|.
v e++0 |x| >R (3.8)

For |x| > R the functions wu,v can be represented by the series

2 (S2 is the

(2.8). These series converge uniformly in n € S
unit sphere in R3) and absolutely. Therefore it is sufficient
to prove the existence of the limits

lim Afexp(—e rin r)r_j + exp(br+iar)dr , where b = -Im(k.+k,) > 0,
e>+0 1 72

a= Re(kl+k2) # 0, j >-2 . Suppose that a > 0 . Let

Cy = flz: | z-R| =N, 0 < arg(z-R) < 6} , Cgoo = {z: arg(z-R) = 6,

o

< |z-R| <N}, Ccp={z: R<z<R+N},Cy=C

O
= CN vC VC, . We have f exp(—erznr)r-Jexp(br+iar)dr > 0
ON R CN -

Q

as N > o ,e > 0 . Therefore

.

[ exp(-ermnr)rfjexp(br+iar)dr = [ exp(—erlnr)r—jexp(br+iar)dr
R o (3.9)
Let us choose 0 < 6 < % . such that sin 6 > g cos 6 . Then
the integral (3.9) will be absolutely convergent for e = 0
and (3.8) is proved. The case a < 0 is treated similarly with
6 substituted by -6 . It is easy to prove the orthogonality
of the resonant states, corresponding to ki = kg , with respect

to the form (3.8). Indeed, let us multiply the identity

v(V2+ki)u - u(vXk2)v = 0 in @ by exp(-erfnr) = £(r,e),
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integrate over QR = {x: |x| <R, x € N} and take first
R - 4o and then g > +0 . Then use the Green's formula. The
terms which appear because of the differentiation of f(xr,e)

when we integrate by parts will tend to 0as € >0 . As a

result we get <u,v> = 0 . This is what we wanted to show.

Remark. For a = Re(kl+k2) = 0 our argument is not val_i_sl_‘.//‘wmg~~
now turn to the‘proof'of the conclusion of Section 2.4. We
assume that the operétor I +T(z) is not invertible. Let
¢1,...,¢n be an orthonormal basis of N(I+T(z)) , that is

(¢f¢j) = 6

ij’ wl""’wn be an orthonormal basis of N(I+T(z)*).
Let Qh = Z?=l (h,¢j)wj . First lét us show that the operator

I + T(z) + Q is invertible in H . Since T(z) + Q is compact
we only need to prove that N(I+T(z)+Q) = {0} . Suppose that
(I+T(z))h = —X§‘=1(h,¢j)wj = QOh . Then by the Fredholm
alternative we conclude (Qh,¥.) = 0 , 1<i<n. Thus

(h,¢i) =0, 1<4i<n, (I+T(z))h =0 . Therefore h =0 .

We have proved that T = (I+T (2)+Q) "1 exists. In order to

1

study (I+T(k,€)) ~ let us write

1 1

(I+T(k,e)) "~ = (I-a(r,e)) "T(X,e)

where T (\A,e) is analytic in A=k ~2z and € , T(0,0) =T
and a(X,e) = (I+T(z)+Q+T(k,€)—T(z))_lQ . Since af(A,e) is a
finite rank operator (because Q 1is) we can use a matrix

representation of a(X,e) and write

) ,
(1-a(r,en ™t = 2L
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Here A(M,e) = det(dij~aij(k,s)}, A= (Aji(A,e)) is the

algebraic cgmplement to, aji—aji(x,g) »1.<i, 3 <n . By our (:)

assumption the ope;ator %%%f%% has a pole A =0 . Let m be

2 .
A(L,0) - BgtR Ao 0%)

A0 T A" (A gAML 0 (22))

its order. This means that ,

AO # 0, A, #0 . We have

A(A,€) = A(X,0) + €A (1,0 + 0(e?) AoﬂAl+0(A2)+eAl(o,0)+... .

To the function A(X,e) we apply the Weierstrass' preparation
theorem [23]. The statement of this theorem is given below

for convenience of the reader.

Theorem (Weierstrass' preparation theorem). Let F(2A ,e) {e
holomorphic in a neighborhood of (0,0), F(iA,0) = ATE (A) '
£f(0) # 0 . Then there exists a holomorphicwfﬁﬁction glx.,e) ‘ (:)

and holomorphic functions Aj(e) such that

F(h,e) = [A™ + z";;é Ay (e)M1g0,e), Ag(0) = 0, 1< § < ml .
n-
Aj(O) = 0 . It is now clear that the singularities of

From this theorem it follows that A(A,e) = ™ + ) é Aj(e)kjlg(A,e)r

(I-a()\,e))—1 are determined by the function [A™ + Z?;é Aj(e)XJ]-l..
The equation A™ + Z?;é Aj(e)AJ =0 has p <m different roots
Aj(e), kj(O) = (0 . These roots can be represented by the series.

1/r

in powers of ¢ , where r > 0 is some integer. There is an
algorithm (method of the Newton diagram) in the literature
for construction of these series (Puiseux series) [24]. But our

argument has already proved the conclusion of Section 2.4.
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4. Examples, comments and some additional material.

4.1. Examples

1. Consider the following matrix T(k) = (i _?) . This is
an analytic operator function on H = IR2 . Its resolvent is
(T (x)-21) " = (};x IEA) / (Az—l—kz) . Its eigenvalues

A =i/l+k2 . For any fixed A , the resolvent is a meromorphic

in Xk function (as it should be according to Proposition 1.1),

but the eigenvalues as functions of k have branch points.

2. A symmetric (with respect to the form [£f,9] =

ff(x)g(x)dx) nonselfadjoint operator can have root vectors.

1

Example: A = (i _i) "is an operator on r? symmetric with

respect to the form [x,y] = X,¥q Xy, that is [Ax,y] = [x,Ay].

1

The operator (A-AI) ~ has a pole of order 27at 1 = 0 .

The corresponding eigenvector is (1) and root vector is (111) .

3. The fact that the algebraic problem to which an

original integral equation was reduced (e.g. by a projection

method, in particular by the method of moments) has eigenvalues

does not guarantee that the original eguation has. For example,

V£ =‘£f f(t)dt has no eigenvalues, but any n x n matrix has
eigenvalues. Proposition 2.2 says that if the original equation
has eigenvalues these eigenvalues can be calculated by the
projection method described in Section 2. "On the other hand

if n 4is a number of the basis functions used in the projection
method and kén) is the j-th eigenvalue of the operator

Tn = Pn T Pn , where Pn is the projection on the n-dimensional
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space spanned by the basis functions, then the limit point Xj
as n - «» aof the sequence Ain) is an eigenvalue of T
(under weak assumptions about T and the basis functions;

e.g. if T 1is compact and the basis functions form an oxthonormal

set) .

4, There exists an analytic (in k) compact operator

T (k) such that (I+T(k))‘l has multiple poles but T (k) is

diagonalizable for all k that is for any k the operator

T (k) has no root vectors. This means that although the EEM

(as defined in Section 1) can be applied in the form (1.10),

the operator (I+T(k)) "' has multiple poles.
Example: T (k) SR 0 hmgy e (MK 0
: = : ' .= '
0o x? 0 1/1+k%

and for any k T(k) is diagonal and therefore has no root

vectors.

5. In the finite dimensional space Rr" every

linear operator which has n linearly independent eigenvectors

is similar to a normal operator; it is diagonal in its eigenbasis

(that is in the basis consisting of its eigenvectors). In the

Hilbert space there exists an operator with eigenvectors which

span’ H but which is not similar to a normal operator.

An example can be found in [25]. Since this example is rather
technical we will not give it here. It seems to be of no

practical use for engineers.
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6. Whether a root gystem forms a basis of H or not can

depend on the choice of the root svstem if the total number of

the root vectors is infinite.

Example. Let ~-y" = Ay , O <x<1l,y(0)=0,

y'(0) = yv'(1) ; H =-L2([0,l]) . The eigenvalues of this problem

are ), = (21rn)2 , n=20,1,2 and the corresponding eigenvectors
~and the root vectors are Yo =%+, Y, = sin 2mwnx ’
Yél) = X Zii(zﬂnx) . Once can easily check that the biorthogonal
system to the above root system is v0 = 2, v, = 4 (1-x)sin(2wnx),
vél) = 167n cos(2mnx) . Consider now a different choice of the
root vectors. Let zél) = yél) + Yo * The system biorthogonal
(1) . (1) (1) (1) ¢y (1)
to ly .z, Y is Av v 7T ,vi T ‘Thgs Hzn I an —vnll =

(14—0(35)-0(n2) - o as n » <., This means that the system
N .

{ydzn is not a basis of H , because in order for a complete

minimal system {¢_} to be a basis it is necessary that

sup H¢n|IAHwn|| < c , where {y } is the system biorthogonal to
0 ,

{¢o,}. Let us explainthe last statement. If {¢n} is a basis and

{wn} is the biorthogonal system, that is (wj,¢n) = § , then

jn

the expansion of an arbitrary element £ €H takes the form

f = 2j=1 cj¢j with cj=(wj,f) - The norms of the operators §_ ,

snf = 2?=l (wj,f)¢j_ are bounded uniformly in n Dbecause

”Snf'flh-+m +~ 0 for any f € H , where [{+]| is the norm of

an element of H . Therefore the norm of the operator S -S _,
(b re) o ‘is bounded uniformly in n . But I(wn,.)¢n[ =

il Il llw Il , where |.]| 4is the norm of an operator on H .
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We proved that the condition

sup ¢ | ! < c (4.1)
w [log 1l vl < O

is necessary for a complete minimal system to form a basis

of H . In (4.1) {wn} is the biorthogonal to {¢n} system.

It is known that there exists a unique system biorthogonal to a

complete minimal system. The system we gave in example was used

in [26].

4.2. Target identification

An interesting problem both theoretically and practically
is the inverse problem of identification of the obstacle (target)
from the set Qf‘complex poles of the Green's function corresponding
to this target. No solution to this problem is known. Thé
author thinks that in order to use the complex poles for target
identification it is more useful from the practial point of <:)
view to have tables of the poles for some typical scatterers (say,
aircrafts of various kinds) rather than to use some theoretical
results. These few results we will mention below. At present
time there is an experimental technique which gives a possibility
to find several complex poles corresponding to a giveﬁ scatterer.
It is an interesting theoretical problem to develop an
optimization type numerical technique in order to calculate the
poles from the experimental data (see Section 5 Problems) .
It was observed in [10] that for a star shaped obstacle which con-
tains a ball of radius Rl and is confined in the ball of

radius R, the number ©N(t) of the purely imaginary complex
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poles —irn + 0 <1 < T satisfies the inequalities:

R

. ) R
l1.,71.2 . . N . N
30207 < uiming B 1im sup Wb o 1222 (4.2)
T > T T+ T
where ¢ = 0.66274 . Theoretically this gives some information

about the scatterer if the asymptotiés of large purely imaginary
poles is available. But practically one can find from the
experimental data only several poles ordered accofding to the
growth of |Im kjl (poles nearest to the real axis). These
poles in general are not purely imaginary. Therefore from the
Ppractical point of view it is difficult to make use of (4.2).
Let us mention some related results. For interior problem the
set of all eigenvalues (which are the poles of the Green's
function of the interior problem) does not define the shape of
the body uniquely.

For potential scattering on the semi-axis, the set of the poles
bf the Green's function does not define the potential uniquely.
There exists an r-parametric family ofhpotentials having the same
set of poles of the Green's functions. Here r is the number
of the bound states that is complex poles with positive
imaginary“parts. Since this observation seems to be new we
will give some details. From the theory of the potential
'scattering for central potentials it is known [11, c¢h. 12] that

the Jost function can be represented in the form

£(k) = £(0)explik R) 1 (1-% , , (4.3)
, ' n=1 n

41



where we assume (without loss of generality) that f£(0) # 0

In (4.3) the numbers k, are the poles of the Green's functicn
of the Schrodinger operator &y = -y" + V(r)y, y(0) = 0 ,
0 <r <« ., There can be equal poles in (4.3). We aésume

that V(r) =0 for' r > R . The Jost function f(k) = £(0,k),
where f£(r,k) is the solution of the problem Ly - k2y.= 0, r > 0,
y = exp(ik r) + 0(l) as r - « . Thus if we know the poles of.
the Green's function we can find f(k) by formula (4.3). If

we know f(k) we know the phase shift and the bound states. The

phase shift J(k) 1is to be found from the formula

exp(216§) = féii) = S(k) , where S(k) is the S-matrix [11].

Fh

This data and r arbitrary positive parameters (the normalization
constaﬁts)arezsufficien; for‘cpnstructing the potential V(r)

which has the above scattering data. The algorithm for the
reconstruction of V(f) is well known inverse séattering theory
[28]. 1In particular, the potential V(r) can be uniquely determined

from the knowledgé of the complex poles iff the.imaginary part of

each pole is negative.

4.3. Infiniteness of the number of complex poles. .

From (4.2), it follows that if thé scatterer is star-shaped
then its Green's function has infinitely many purely imaginary
poles. It is not proved that there are infinitely many complex
- poles kj with Re~kj #0 . Heuristic»;rguments (e.g. formulas
(2.15), (2.18)) show that there are infinitely many such poles.

It would be interesting to prove it. For three dimenéional
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scattering for a noncentral potential) this problem is
open also.
For potential scattering on the semiaxis it is proved that
there are infinitely many éomplex poles k. with
Re kj # 0 [111 . Lgt us give another proof that there are
infinitggnmny purely imaginary complex poles of the Green's
function of the exterior Dirichlet Laplacian. A proof of this
statement was given in [10]. oOur proof is different, but we
use an idea from [10]. Our starting point is Proposition 2.3.
Let k = -ib , b > 0 be a complete poles. Then the

equation A(b)f = IF Gy(s,s',-ib)f(s')ds' = 0 has a nontrivial

. . _ip) - exp(b[s=s'|)
solution, Go(s,s +=1ib) Inls-s'] - The operator

A(b) is selfadjoint in H L2(F) if b > 0 and analytic in

b . Therefore [29, Ch. 2.56] its eigenvalues An(b) are
analytic in b in a neighborhood of the real axis of the complex
plane b . If b < 0 the operator A(b) > 0 in H and

A,(b) >0 . When b >0 and b > +» the number N_ of the
negative eigenvalues of A(b) goes tuo infinity. Since An(b)
are anal?tic in b (continuity would be sufficient for our
‘purpose) they vanish at some point bn before they become
negative. This point bn» is a complex pole according to
Proposition 2.3. Therefore if we prove that N_+ o as b + «o(*)
we prove that there are infinitely many complex poles —ibn;

Let us prove (*). Let us take a point inside T . and draw

some lines 21,...,2n intersecting at this point. Let s_,s'

n’"n
be the points of the intersections of zn with T . Let us
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choose a function h_ = which is equal to 1l(-1) in a

small neighborhood Sn(sg) of s (s')

n(s) and vanishes outsicde

of these neighborhoods. We assume that Sn n Sm =g, n#n ;

S, N S, = # . In this case the system {hl"""hn} is linearly

independent. If (A(b)h,h) < 0 for h e L and b is sufficiently

large then A(b) has at least n negative eigenvalues.

Here L_  is the linear span of {hl,...,hn} . If h =)0

= C.
=1 7373
n
then (A(b)h,h) = zi,j=l a;4¢;€4 + where
_ exp (b|x-v|) '
a,. = , h. (y)h, (x)dy dx =
ij , v AT [ x-y] i j
S;U S} S50 8}
24 exp(blsi-sjl) exp(b]si—sél) exp(b[si—s!|)
= —— + -
4m ]si—sjl |si—s§] {si—sji
exp(b]si—s.]) 5
- [57-5.] ) ) where a is the area of Sn,Sg and
i3
' 2exp (b|s.-s!])
. . ~ i 73 4 2exp (ba)
iA3, %i5 4ﬂ]sj—s![ a’ + 0753 ) -
We can choose lines %5+ 1 23 <n so that max|s,-s.| <

i#3
- In this case for b > 0 sufficiently large the

min|s.-s!
3 I J 3

matrix aij will be negatively definite because the diagonal
elements ajj <0, 1<3J<n and dominate if b is sufficiently
large. This completes the proof. We make no assumptions about

convexity or even star-shapeness of T

Remark. Suppose that T and P2 are homothetic and g is the

homothety coefficient that is ?G = q?l ¢ S
-

|

-1

hen
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bél) = q b;z) where —ibgl) and -ibéz), 1 <3j <= are the

purely imaginary poles of the Green's function of the Dirichliet

Laplacianin the exterior of II and F2 respectively. This

“can be verified by changing variables (y, = ayy, x, = axq)

(1)
exp(b_i |x1—yl|)

in the equation frl EBEA £(y))dy; = 0 corresponding
1

to the pole ~ib§1).

4.4. Behavior of solutions to wave equation as t - +«

-

In SEM the information about the behavior of solutions to
wave equation as t » +» is obtained (see (1.26)) because some
analytic properties of the eolution to the corresponding staticnary
problems are known ((1.23)-(1.25)) . 1In this section we will
point out a general result which says that for a wide class of
abstract operators (when analytic continuation of the resolvent
kernels of the operators is not necessarily possible) there is a
one-to-one correspondence between asymptotic behavior of solution

to the abstract wave equation in a Hilbert space
U, + Lu= f exp(iwt) , u(0) = ut(O) =0 (4.4)

when t + +» and analytic properties of the resolvent of L
in a neighborhood of the spectrum of L . Since these results
[17] are of a mathematical nature and their statement is not

sufficiently short for -including it in this paper, we want only

. to mention some points of possible interest in applications.
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First, ail the problems studied in the applications can be
formulated as (4.4) with L satisfving conditions from [17].
Second, it is proved in [77]) that the limiting amplitude principle
'is equivalent to the limiting absorption principle. The

limiting amplitude principle says that there exists

lim 1 J; exp(-iwt)P u(t)dt = PV , where in applications P is

T >

~

the orthogonal projection on . Lz(é) , where § 1is a compact
subdomain of & , and v is the solution to the stationary
problem (L¥k2)v = f . .The limiting absorption principle says
that there exists the'fOIlowing limit:

lim Pv(k+ie) = Pv(k), v(k+ie,f) = [L+ (k+ie)?1] %
c-++0 )

Third, some formula of Tauberian type was prbved in [47] but
without usual Tauberian conditions (of the type u(ﬁ) >0

or u(t) > ¢) which are Very difficult to verify in practical
problems (and theoretical problems in parﬁial différential
équatioﬁs as well). This formula gives a relation between the
asymptotic behavior of a function as t + +» and asymptotic

behavior of its Laplace transform.

46



5.

1)

- 2)

3)

4)

5)

6)

7)

8)

Problens.

"Is is true that a(k), T(k) € R(H)?

-In Section 3.1 wevproved that' Afk), T(k)4e Rb(H).

The question is: does basisness without brackets hold?

What is the relation between the order of a complex pole

and the multiplicity of the zeros of An(k)? (See proposi-
tion 2.3).

Can the scatterer be uniquely identified by the set of
complex poles of the corresponding Green's function?

Prove that there are infinitely many complex poles k.

with Re kj # 0 (in’diffraction problems and noncentral
potential scattering).

Are the complex poles of the Green's function of the exterior
Dirichlet or Neumann Laplacian simple?

Make numerical experiments‘in the calculation of the complex
poles.

Prove convergence of the numerical procedure for calculation
of the complex poles suggested in [16].

Find a theoretical approach optimal in some sense to approxi-

mate a function £(t) by the functions of the form

£ ? {j (-ik.t)t™ L Here the numb k
= -1K. C . . ere e n ers c ., ,m, .
NTL L, SFPITEE mj mj '3

are to be found so that fN will approximate f(t) in some
optimal way. Currently some methods (e.g. Proney method)

are used in practice, but they are not optimal. This problem
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seems to be of general interest (optimal harmonic

analytis in complex domain)

9) When can SEM in the form of (1.28) be justified?
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1)

2)
3)

4)

5)

Conclusion.

We hope that it was shown in this paper that:

EEM is justfied (in the generalized form of expansion

in root vectors).

SEM is juétified in the asymptotic form (1.26).
Numerical projection method for calculation of the
complex'poles is jhstifiéd.

There are many interesting and difficult open problems
in the'field;

Numerical results and experiments are desirable.
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