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Abstract

The problem treated is that of identifying the poles of a finite order
system by observing its transient decay after cessation of input, for a
limited time, using (possibly) multiple observation points and experimental
repetition. Various approaches are studied, having the common characteristic
that a homogeneous matrix equation must be solved, Several techniques that
have been given scant attention in the literature are consolidated into the
treatment, together with new results including an analytical treatment of the
consequences of assuming an excessively high system order, derivation of a
statistically unbiased estimate for an intermediate parameter in the solu-
tion, new theorems on error effects, a recipe for effective use of the
singular value decomposition, a new method for suppression of extraneous
poles, an elucidating derivation and extension of the method of Jain, a
new form of the problem wherein the system poles are eigenvalues, and a
study of the relationship between various pole identification methods.
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INTRODUCTION
One often seeks to determine the poles of a system by observing -its
natural response after cessation of input. Several examples can be cited:

(1) Acoustic transducers [1,2] and electromagnetic anténnae-[B]*are lately

* being tested by applylng a pulse input, . (11)A1rcraft and other military

hardware are being subjected to electromagnetlc pulse {EMP) tests [4], (iii)

Engines and other cast'metal objects are often tested by direct mechan-~

ical 1mpact [5], (iv) Rooms are excited acoustlcally and decay characterlstlcs

are recorded [6] In these and other cases the response after cessation of

~input stlmulous may be expressed as

y. = I a. exp(s. t) ’ S
t = % K

The dk's depend upon.the~excitation, location of the sensor that extracts
yt,'and seleccion of time origin, bot the s—poles; S+ are inherent char-
acteristics of the system and remain invariant so long es the parameters

of the applicablelwave equation andvitskpost—excitation boundary -conditions
are not disturbed. Sampling at interval T, starting at to' gives’a

sequence {y(n)}:

Y. zZ

yi(n) = i X ; u(n)  for =-c<n<+w - (2)

k k k

where z é exp(s,T), ¢ é ak exp(skto) and the unit step sequence, u(n), has




‘been used to,extend {y(n)} with zeroes for negative n. Taking Z—transforms‘

gives

’Y(z)/z = rk/(z _‘Zk) (3)

I
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so that {z } and {r } are the poles and res1dues of Y(z)/z. This paper
concerns the problem of identifying the "system poles” {z } through observa-

tion of {y(n)} sequences} Then the s—poles can be determined from

-1 . .
sk =T "log zk = (1og|zk| + j[arg(zk) + 2m]) /T : (4)

The’ambiguity duejto aliasing is éxﬁressed by 2. If n/T is known to be
greater than the imaginary part of every s—polq then ¢ = 0. Even when this 
is not true,‘if one can repeat the identification procéss with a siightly
different sampllng 1nterval, say T + 4T, g1v1ng displaced system poles

gk + dzk, then s;nco_dzk = s, z, dT it follows that s, = dzk/(zde). Thls.

k7k k
computation only has to be accurate enough to resolve the uncertainty in 2.
Some of the pole 1dent1f1catlon methods to be discussed here use dec1mated
subsequences and determine only the g h-power of each system pole This

contributes an additional "decimation aliasing" expressed by % in the

formula
zk = 2 ‘ k‘ exp{j(arg[z 1+ 2m2)/q} ‘ - (5)

But this ambiguity can be resolved in a similar manner. If zi 1 can also
‘ ; S . Lo
be determined then z, = 2y /zk_, which should be accurate enough to
resolve arg(z,) - |
In all that follows we shall assume that the system poles are non-zero,
distinct, and K ih_number. Throughout this paper we shall use the nota-

tion K~ 4 K + 1. Equation (3) can then be expressed with a ratio of

polynomials,




‘be inferred from the context of its use. If z is explicitly z, the i

Z + caee t Bz 'B T

: — ; ' (6)
eKz + eK.'_lz  + e * elz«+ 90

where the‘system‘poles‘are the roots of the denominator polynomial. Our
failure‘td normalize either polynomial enables us to scale the coefficients
of the denominator freely, with the ﬁumerator coefficients then beihg
uniquely determined. Due to the assumptions abéve, 6K;$nd 90 ahd at least

one of the B's must be non-zero, and the polynomials can have no roots in

. common. We shall’define the K’Xl vector, eé<eo,el,...,eK)T} Furthermore

the symbol Z will be used to denote the "power vector" (& ,zl} 2,...)T Where

z is a generic complex variable. The number of elements in the vector must
‘ th
system pole, then>its power vector will be denoted Zi. (Othervfhan~this Z
function, all,veétbrs and métrices iq this‘paper will He real. Note also '
thét the first element of a vector will always be-denoted by a "0O" sub-
script.) Using this hotétion the pole polynomial is simély GTZ, and the
system poles satisfy éTZi = 0. Clearing the denominator and takiné invérse

transforms in Eg. (6). gives
. . ‘e F(f+K) = + +oye. + (n+K) 7
90Y(n) +V91Y(n+l) oot QKY(H K) Boé(n l)’ | BK'lé(n ) (7)
in particular, for n3 0,

(y(n), yn+l), oo, y(n+K) 2 8 @)

o
o

Since in Eq. (8) one can solve for y(n+K) as a linear combination of the
preceeding‘y(i)‘s, the set {y(n)} forms an_autoregressive.(AR) sequence.
Another interpretation is that.whenvthe'sequence is passed through a finite

impulSe response (FIR) filter, represented by Eq. (8), Whose transfer




function has zeroes that coincide with the system poles, then its output
will be zero after enough time has elapsed to f£ill the delay line with sig-
nal. But the geometric interpretation is that the vector 8, which is‘an
1nvar1ant parameter of the system and unique to within a scalar multlple, is
orthogonal to any post ex01tatlon output sequence of length K” regardless
of the system 1nput stimulus and sensor location. A variety of such subse-
guences can be extracted from a s1ng1e long output sequence. But if the
.system can be repeatedly excited;in a variety of ways, if the sensor loca-
tion can be varied, or if multiple sensors can be used to record response
data, then an enormous amount of information can be gotten on wﬁat B is
orthogonal to. This should enable one to accurately determine the direction
of 8, which is all that matters since its magnitude‘is'arbitrary.
Unfortunately the problem is confouﬁded by the presence of”moise in
the recorded data or in numerical‘computations. The 8 vector mﬁst be‘deter-

mined very. precisely to ensure that the roots of GTZ accurately estimate

the system poles. . The selection of T relative to a given s-pole's frequency.

and decay time caﬁ greatly influence the results;_ vaT is too short then
all of thevelemeﬁts of an output‘subsequehce~of length K” have about the
same numeric value, so that every subsequence "points" approximately in’the
direction represented by thevsingle vector (1,1,.}.,1)T. Being repeatedly
told that 9 is orthogonal tokthis vector is not much help. Consider the
case of a system whose natural reverberant response is a simple undamped
(or very llghtly damped) osc1llat10n at an unknown frequency Wy ; so that

there are two_s-poles, = _jw , SO Z = exp(+3w T). Then the pole

1,2 1,2

polynomial is (z2 - 2cos(on)z + 1) so GT = (1, —2cos(on), 1)~ . Since
this vector is orthogonal'to every subsequence of length 3 we have

y{n) - 2cos(wOT)y(n+1) + y(n+2) S 0, so Qo can be‘determined from

- dE
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wé = T~1arc cos[(y(ﬁ)+y(n+2))/2y(n+1)], Clearly if T 15 so short that
y(n)~y(n+1)—y(n+2) then' the accuracy would be very poor.k A crude sensitivity
analysis of thls formula suggests that w, can most accurately be determined
when the argument of the arc cosine is near zero, which 1mp11es T -%ZW/wO)

or some odd mqltiple thereof.. This leads to the conjecture that, even for

systems with many poles, z, might be most accurately estimated if T is one

half the oscillatiohcperiod of that pole, provided the ﬁecay time of the

pole is long enoughvthat it rings loudly throughout the sampling process.
In any case some control over the sampiing rate .is obviously desirable,’but
this may be achieved simply by using’decimation subsequences, assuming that

T is not too long an interval to begin with. Decimation is equivalent to

v muitiplying T by an integer g (the decimation "epoch") and shifting tO by

some integral multiple of T, and leads directly to a modified version of

Eq. (8):

(y(n), y(n+q), y(n+2@), .. , y(n+kg) ¢ £ 0 (9)

where ¥ é(wo,wl,...,wK)T is the vector of coefficients for a polynomial

wTZ whose roots. are {ZE}.- Thus subsequences of length K”* whcse elements are
spaced q~samples aparf are ‘orthogonal to {, and oﬁe can aetermiAefthe system’
poles fromkw provided the decimation aliasing ambiguitf can be resolved.

If T was rather short to'begin with, then these decimation sﬁbsequences may.
point in much more varied and useful éirecticas than if‘the sequehce had not
been decimated;v the that in decimatiﬁg the data one does not need tc dis-

card. anything, since many subsequences can be staggered along the orlglnal

-data sequence. In v1rtually all that follows, the technlques proposed for

estimating 6 can also be used to estimate y provided one uses dec1matlon.

subsequences.




- The poie identification probiem hasfbeen addressed by many investigators,
and the numbef of references to it in the literéture is almost unbounded.
Entire areas of control theory and spéech processiﬁg have been~devoted to it,
but‘often with the foilowiﬁg differences: (1).The system is assumed to be
.persistently excited, perhaps by é pulse train or by4nqise, (2) The system
input is measured‘and indorporatéd into the analysis. However, much éf the
literature’doe5~pertain to our problem. Nevertheless, we shall break with
‘traditioﬁ'by preséntiﬁg our results first and thén discussing theii‘relation
to those of other researchers.,

’Finding 6 when shown what it is orthogonal to is equivalent to solving
a homogenéous matrix equation Ax=Q, whére the rows of the A matrix consist
of output data subséquénces. Because the homogeneocus ﬁrpblem’is lightly
freated iﬁ most tethooks, a»section‘of our.paper summarizes some of the rel-
evant techniques. ’This is followed by sbme autoregression matrix'ﬁérminology,
theofems, and aigorithmé developed by the author especially for this applica-
tidn; although.fheir’simpliéity suggests tha£ they may have been discovered
in some. form by mathematicians long ago.. With this preparation, various
approaches to solving ﬁhe'central proSlem are aiSCussed. Connections with
the work of Jain [7] are considered and a simpler and more elucidating patﬁ-
way to hié resﬁlﬁs is found, providiﬁg a generalizatiqn of the‘method. Some
topics from the 1iterature are discﬁSséd and several other results are.pré—
sented before posing unanswered questions.

‘vOur treatﬁent departs from‘most of the literature in that it stresses
the use of matri# methods and Ve&tor space geometry rather than "sequential"
concepts, primarily because we befmit_the use of several output sequences
derived from pOssibly‘different input excitationskor sensors, and it strives

to avoid ad hoc and asymmetrical treatments of the data that have been used




in the past. In particular we avoid the artificial conversion of what is

- fundamentally a homogeneous problem into an inhomogeneous one. We present

.for the first time a rigorous theoretical. foundation for the popular prac-

tice of using "extra-wide" data matrices, i.e. of pretending there are more

poles than éctually exist.

SOLVING THE HOMOGENEOUS MATRIX EQUATION

For an MxN matrix A define the nullspace, ¢(a), and rowspace, ¢11A), as

“{x: Ax = 0} and {x: x = ATy}.» If the rank of A is K, then ¢~L-(A)CRN and

¢L(ATX:RM, both being subspaces of dimension K. Also ¢(AXZRN, and it is a
subspace of dimension N-K. Indeed ¢ (A) and ¢11A).are orthogonal complements
of RN, so that any xx-:RN can be expressed as an drthogonal sum, X = xA + xz ’

where xA,is the projection onto the rowspace of A and xz is the projection

onto the nullspace. Given a matrix E of the same shape as A we shall denote

by EA and EK the matrices obtained by decomposing the rbws of E similarly;

thus E = EA + Ei‘ AA = A, and AA = 0. Moreover, occasibnally we shall use

' . . . a T
the notation "[x] . " to denote the unit vector in the direction of x. A'A
u ' :

nit
and AAT also have rank K and ¢(ATA) = ¢ (A). The homogeneous equation Ax=0

is thus solved by any x in ¢(ATA). If the rank of A is N-1, then the solu-

tion is unique to within a scalar multiple, since ¢(A) is of unit dimension.

If rank(a) is N, then no solution exists.

If A is a square NxN matrix, then AX adj(a) = det(A)XI; reéaliing that
adj (a) ié the matrix obtainea byvreblacing each element of A by its cofactor
and then transposing. In pafticular‘if rank(ad) 1is thhen the matrix is non=
§inguiar and the inverse can be defined as 2™t =_adj(A)kdet(A). Howevef if

rank(A) <N, i.e. A is singular, then det(A) = 0 so that A% adj(a) = O,

implying that every column of adj(A) solves the homogeneous equation Ax=0.




Unfortunately adj(A) is identically zero whenever,rank(A) < N-1, so a non-
trivial solution is provided only if rank(aA) is N-1, in which case all the
columns of adj(A) are collinear and at least one is non-zero. Thus the,

solution to Ax=0 can be‘takeﬁ as any non-trivial column of adj(A) or alter-

.

natively as x = adj(n) X x  for any Nx1 vector x_ so long as it is chosen

to avoid a trivial solution. ,
Given an MXN matrix of rank,K% the traditional approach to solving Ax=0

is to proceed as follows: First discard rows of A so as to form a rank-

‘preserving KxN matrix B; since ¢ (a) = $(B), it follows that Bx=0 has the

3

i

‘same solutions. Now delete columns of B to leave a KXK nonsingular matrix Bl'

‘and move the deleted columns_to‘ihe right side of the equation_together With
the cofresponding elements of x to produce the‘inhomogeneous equation

'le1 = -ono, whére Bojis KX(Njﬁ) and x ﬁas_been separated into the ¥x1 and

.‘,kN—K}Xl vecﬁors xi and X If, as is usually the case, the rank of A can be

preserved by simply deleting its rightmost columns, then one can simply par-

tition B = [Bl7Bol' and'xT =k[x$;xz] to achieve the desired result. Now

x, = =B."B x- So that the general solution is
-1 1 oo o : i
. }
-1
. |-B. B :
A 170 :
x = C¥y = 1 *0 ' (10

where I is (N-K) x (N-K) and xo_is an arbitraryQ(N—K) X 1 vector, thus giv-
ing a solution subspace of dimension N-K. If something more complicated

than a simple partitiohing is used to form the matrices B, and Bo' then Eq.

1
(10) is still valid with the rows of c interchanged appropriately.
This traditional method is fine if the data (i.e. A) are noiseless and

computations are exact. Otherwise it is worthwhile to search for better

alternatives. In particular if M >> K then it is wasteful to discard so

10




can be expressed as Iqjjl x [ (%)

many rows to get B, sincé each row provides some information on what 8 is
orthogonal to. It wouid be better to>501ve‘Px=O, wﬁere P = ATA so thét

$(P) = ¢(A); then oniy a few,rowé of P will havé to be}discarded to get B,
and every element of A cohtributes soﬁéthing to the solution. (&An alterna-
tive would be to fabricate rows of B as averages of thoge of A, perhaps aver-

aging out some of the noise in the process. But this could as easily average.

out some of the signal, and it would be hard to guarantee preservation of

‘rank. This alternative will not be explored further.) Typically there are

many rank-preserving ways to disdard rows of P, and to choose which columns
to transfer to the other side of the equation. These choices are arbitrary

and may influence’the‘accuracy of . the result; indeed they control. the degree

‘to which each of the elements of A contribute to the final result. This

arbitrary and asymmetrical use of data is‘bothersome and might produce statis-
tical bias.

In the special case whére rank (A) is N-1, the adjoint solution éan‘post—
pone or remove thé arbitfary ésymmetry, The direct solution to ATAx=0 is
just x = adj(ATA)xo,’where xé is an arbitrary Nx1 vector. Even the arbitrar-

iness of X can be symmetrically removed. Since oA adj(ATA) has&collinear

. S . : 2
columns and is symmetric, its elements obey qij =q

I%

and the jth column
BT
"1,

1i%5

& R
a7 @ola, ™ o @ glay,

- where (i)i é'sign (qij). Thus the solution can be expressed formally as

xT = [Al, A2, cee AN]T, where Ai is the square root of the magnitude of

the ith diagonal cofactor éf ATA, with the proper sign affixed. The signs
can be determined by examining any column of adj(ATA).

The adjoint sblution enabies the development of an unbiased estimate,
based on the following theorem:

§ 1 THEOREM: Let Al, Az_bé statistically independent, random matrices,

11




whose eleﬁents are also statisﬁically independent. ThenvE{adj(AIAz)}‘=
adj(E{Af}E{Az}), wherékE is the expectation operator. E] ' C:) |
Thus if Al and‘A2 are separate measurements of the samé A corrupted by |
additive, zero-mean noise that is independent frbm element to.element, then
the estimate § = adj(A'{Az)xo is an unbiased estimate of a true solution x.
The singular value decomposition (SVD) can always be uéed to obtain a
solution; indeed its applicability overlaps that of the adjoint solution;
The SVD of an MxN matrix A is expressed by UTAV=S and A=USVT where S is an
MXN diagonal matrix of elemegts s, 2 s, z_.f. zjsK+1 = ?K+2 = ... =5 = 0,
where rank (A)‘is K. The "singular values" s, are the square roots of
eigenvalues‘of the non-negative definite matrix ATA, whose eigenVectors aisov
f§rm the coluﬁns of the‘NXN orthogonal matrix V. The éigenvectors of AAT
form U. (Incidentally ATA and AAT agree as to their non-zero eigeﬁvalues.)
The notation svi(A) will denote the ith sihgular value of any matrix Af
- The singular values can be used to bound ||ax]| for any x as follows [8]: v(:)
[l % svy ) 2 flax]| > []x]] * svy@r ana |1y || 2 lxy] | x sv )
where rank (A) is K. <Clearly ||A|l = svy(A). (Note: [|x[| denotes the

Euclidean norm of the vector, and I]A||»is defined as the maximum of 1’Ax||

for all unit vectors x.) The U and V matrices are not quite unique; the

directionbof any column vector can be reversed, and corresponding to a
multiple eigenvalue (including the zero eigenvalues) any orthonormal»basis
for the eigenspace can be used. The homogeneous equation Ax=0 now takes
thé form USVTx=O or simply Sy=0 where y 4 VTx,and we have premultiplied
the‘equation by UT=U—1. But due’to the diagonal form of S, the solution is
immediate: y = [O,O,..O;yg]T where Yo is an arbitrary (N-K)X1 vector.

Thus x = Vy = Voyo, where VO consists of the rightmq;t N-K columns of V.

But these columns are just the basis vectors for the eigenspace of the zero

12




eigenvalueﬂof ATA, i.e. basis vectors for ¢(A), so it seems we have only
reiterated that Ax=0 implies~xs¢(A). But the superlorlty of the SVD method

emanates from the fact that, due to noise or computlng inaccuracy, A A will

" not be exactly slngular; the SVD method will reveal the extremely small

eigenvalues that arise, and the'associated columns of V should approximately
span o (a). Furthermore the SVD can be achieved by a very orderly procedure.

An extremely well docunented aigorithm and FORTRAN program appear in the

'textbook of Lawson and'Hanson [9] under the label SVDRS. (Note: In their

notation,one’should set BA=0 so that\array'Bvis not referenced.)
When the diagonal matrix S resulting from the SVD algorithm is replaced
by é, wherein all but the first k elements (i.e. the k largest} have been

. A'AT . , .
forced to zero, .and then used to compute A=USV", the result is an optimum

- approximant to A of rank k, denoted ﬁ(k;SVD); It has been shown [9] tQ be

closest as,measured‘by either the ordinary matrix norm, T|A-A||, or the

Frobeniué norm, !IA-ﬁIlF, where ||A||F‘é (Z(aij)z)%. Thus if A has been

A

corrupted by noise then a logical estimate of the nullspace is ¢ (A) =~¢(£(K;SVD)),

where K is the "true" rank A would have if it were uﬁcorrupted by noise.

Thls estimate of the nullspace. thus provides a general solution to Ax—O

Using the approx1mant to solve nonhomogeneous equations is a common practice.

The justlflcatlon for our approach to solving the homogéneous equation is

. strengthened by the following theorem.

52 THEOREM: If £=A¥E; where nofhing is knewn‘of the MxN matrix A except that
it is of rénk K, and the elements of E_are‘zero—mean, independent, Gaussian
rapdom variables having eqeal variance, then i(K;SVD) and its nullspace are
maximum likelihood estimates of A and ¢(A), respectively. Moreover, if it

is known onl§‘that A is singular, with rank (A) unknown, then the maximum

likelihood estimate isvobtained‘with’K=N—l. If on the other hand K is

13




random with known‘probability'distribution PK' then choose K to minimize
||i-i(K;SVﬁ)1|;‘- 202 log Per where cz.is the noise variance. O (:)
If only a single‘sqlution to Ax=0 is desired rather than‘the generall
(nullspace) solution, then one can simpl? point4x ln the direction of'the‘
rightmost column vector.of v, since it is;the basis vector of ¢ (A) that has
: possibly been pefturbed the least. But that is the same.as pic¢king x to be
the elgenvector correspondlng to the smallest elgenvalue of ATA~ i.e. picking
X to minimize (x A Ax)/||x|| or I|Ax[|/[]x[|. When normalized to |]x||=1
we shall denote this estimate by*ﬁ[norm], where "norm" stands fof both "normal-v
ized" and normnmlnlmlzlng", but it is only unique to within a dlrectlon
reversal. Since the addition of noise can be expected to destroy all singu-
larity of A, and even eliminate any multiple eigenvalues, then ATA will be
nonsingular and itS'smallest eigenvalue is theblargest of (ATA)-I. Matrix
ite?ation; Xiq = [(ATﬁ)flxi]unit, will converge to ﬁ[norm]. Howeyer since
A"A is honsingular only because of noise,kit may be poorly conditioﬁed and | ) C:)
difficult to invert accurately, so the‘method mﬁst be used cautiousl?. of
‘course direct matrix inversion can be avoided by numerlcally solving the
equatlon ATAx.+1= X, w1th subsequent normalization for each 1terat10n. It is’ ;
interesting to note that since (A A) -1 = A xadj(A A), where the scalar A is v %
just the determlnant the adjoint solution discussed previously may be |
*

regarded as one step in the matrix iteration process (except for the trivial-

ities of normalization and poss1ble dlrectlon reversal) from an arbltrary

starting point Xqe Indeed an "1mproved" adjoint solution may be put forth

as [adj(ﬂTi)]on for any integer 2. In the absence of noise it will still

* ' ~ L L ’
A connection between the adjoint solution and the traditional least-

squares solution of the inhomogeneous equatlon will be given in.a later
section. :

" R O




give the same‘solution when rank(A) is N-~1, and in the presence of noise it
tends toward‘the direction of §[norm]. Moreover by using several separate
measurements of A in conformance with Theorem §1 one can improve the unbiased
estimate in a siﬁilar.ﬁanner.

| When A is corrupted by‘noise one expects that x will depart from b (B) .
The following theorem provides an upper bound for that error; |
§ 3 THEOREM: If the unit Vecto£ X is an estimated solution to Ax=0 constructed
to be w1th1n the- nullspace of A(K SVD) where A=A+E and rank (A) = K, then the

error xA is bounded according to le ||<b “b b /b, ; and if I[E|l<<sv (a)

4;

then the denomlnator of each bound is approximately SV (A), where b é‘ ||A§||

+ ||E||}/va(A) ; b2‘=‘2 ]lE]l/va(A) i by a {||Ax|| + ||Ei||}/va(A+EA) ;

. { . .
b A | - '
b, = 2||EA|[/va(A+qA). Moreover by < b, < 2b) and by < b, < 2b,. []

Discussion: Note that the theorem includes x =-§[norm] as a special

case. §i is the "correct" portion of % (i.e. the component actually in ¢ (A))

and Xy is the error. Since x is a. unlt vector, IIxA|[~is the sine of the

angle between % and ¢ (A).." (The angle between twokunit vectofs is the afc
cosine of their inner produet; the angle between a vector and a subspace is
then defined as the smallest such angle, always taken pesitive.) Note that
IIEII is the square root ef the largest eigenvalue ofETE,with a similar result
holding fer Ei' AlSO(SVK(A)FiSAthe smallest non-zero eigenvalue ef‘ATA;

Clearly if ||§J|<<va(§) then b2<<l so the error comporient -is small, but . the

‘b4 bound shows that error occurs only when some portion of E "complies" with

the rowspace of A. Observation'offa single naoisy matrix éhwill tell ue

little of the error, E; thus knowledge of ![E![ or [IEAII must be obtained
g_priofi, e.g. in statistical form. The singular values of A can be used
3_§osteriori eo approximate the denominators‘of the bound s. Since bounds

b, and b4'are‘a1m0st as tight as bl and b3, use of ||i§||'§_posteriori does

15




little to refine our error estimate.v The distinétion between ||£§|| and

|{xA[| is important: The “fesidual error", i.e. ||§§|| = st(ﬁ), measures

the degree to which‘the noisy matrix A refuses to admit a homogeneous solu-
tion. On the other hand ||§A|‘ measures the actual errd; in the estimate x.
Although scaling a row of A does not affect the solution of the ideal equa-
,tioh Ax=0, scaling Of a row of ﬂrmay influence the error in x[norm] since it
“can affect SVK(A).

Even when Q‘ié truly a solution’of Ag=0, the "residual!" vector Ax cannot
be expected to be a null vector. In some problems the statistics of the
residual vedtér may'be ké?wy, at least approximately. Indeed suppose ﬁhat
it is zero-mean with posit{;e definite covariance matrix A. Then instead of
chooéing X to minimize | |Ax] | it is more equitable to minimize the‘weighted norm
| |2x|| ;l = (XTSTA-lﬁx)%. We shall denote by §[norm:A-1] the unit vector that
mihimiges this norm; It is the weakest eigenvector of ﬁTA—li. The SVD ﬁethod
.can also be médifiedito incorporate this covariance weighting. One simply
L ;

%i}instead of A. fhe matrices A and A & A-%

does the SVD of A A have the

same nullspace and ﬁw(k;SVD) is the best k-rank approximant to Aw,,minimizing

Y

3 [ So A

||Aw-§w|| = ||AfA+ A, ﬁw is the best weighted approximant to A.

-1f
A !

Therefore the corresponding weighted estiﬁate of ¢(a) is ¢ (A ﬁw) = ¢(ﬁw).
'All of the results given in this section hold when the weighted norm‘is»sub—

stituted for the brdinary norm, with appropriate interpretations and adjust-

ments.

AUTOREGRESSION MATRICES, GENERATORS, AND.SUBSPACES
§ 4 DEFINITIONS: For any K'Xl vector 6, the "polynomial produced by 6" will
refer to STZ, where Z is the complex power vector defined previously. Any

vector 8 is said to be a "generator" if its first and last elements are both
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non-zero and the roots of the’"gene:ator polynoﬁial"IGTZ are distinct. Gen-
erators that differ by a,scaler multiple are considereé equivalent. (Note:
the interpretation of the elements.of 8 as coefficients of the systeﬁ pole
.polynomial will be igpored until the next section.) Given any generator 6
and a positive integer % define the XN matrix G(£;0), where N = K'—l+i =
K+%, as:

‘6 el,....,SK,O 0,...,0 ]
0 ...,e ,0, .,0

G(2:0) = |. , B | (11)

[0/0,+-2,0,00,6,,...8 |

Now define the "Zth autoregreésion nullspace generated by 6", denoted
91(6), ae'the rowspace of G. Then it is easy to prove the following theorems:
§ 5 THEOREM: Rank(G) is %, so that'Qz(G) is a subspace of RN,having dimen-
sion 2, where N=k+2. Moreover the Qenerator of the subspace Qz-is unique to
within a scalar multiple. ] |
§ 6 THEOREM: For ever§ Nx1 vector X in Q (0), the roots of the polynomlal
‘x Z constitute a superset of the roots of the generator polynomlal 6 Z. The

"extraneous rootsg" age 2-1 in number, and any coTplex extraneous roots must
occur in complex conjugate-pairsf indeed an X 1n,Qz can be found to produce
any specified set of extraneous reots. []

§ 7‘THEOREM: The subspace nz(e) can also be defined as that subspace ef RN
which is orthogonal to each of the complex power vectors Zi,»of the K roots
of the generator polynomial z, with N=K+%. ]

§ 8 DEFINITiON: A sequence {y(n)} is said to be "g-autoregressive" (6-3R),

where 6 is K'x1l, if every subsequence of length K' forms a vector erthogonal
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to 6. This implies that for n > K, y(n) = 6;1 X (eK_iy(n—l) + BK_zy(p—Z) +
cee. t Soy(n-K)); Thus the first K members of the sequence are arbitrary and
will be termed the “seed", while the remaining members are determined by a
trecursion formula. Clearly if any leading qioup df‘members is deléted, ﬁhe
remaining sequence is still 6-AR. ;
§ 9 THEOREM: The elements of an.Nx1l vector y form a 0-AR seqﬁence if and
only if ylf,(8) where & = N-K = N-(K'-1) and 8 is K'xl. B

§ 10 DEFINITION: An MxN matrix A is said io be 6-AR if each row constitutes
a 6-AR sequence. Clearly the definitibn makes no sense unless N>K'. The
matrix is termed "minimal-width" if N=K' and "extra-wide" if N>K'. If rank (A)
iva(=K'-l), which according to the ne#t theoreh is the most it can be, then
the 6-AR matrix A is s;id.to be of "sufficientvrank“.

§ 11 THEOREM: If the MXN matrix A is 6-AR where 8 is K'x1, then rank(ad) <

K=K'-1. Further, if A is of sufficient rank then ¢ (A) 92(6) where £=N-K,
and any solution of Ax=0 produces‘a‘polynomial of degree N-1 whose roots con-

stitute a superset of the roots of the generator polynomial.y[]

§ 12 MORE DEFINITIONS AND DISCUSSION: Clearly a 8-AR matrix is the continua-

tion eastward of its "seed submaﬁrix“ consisting of the leftmost K columns.

If it happens that AT is 6-AR as‘well, then the seea submatrix may instead

be regarded as’the KxK matrix in‘the northwest corner, sincé from it the entire
matrix can be propagatéd‘autoregressively. A sufficient (but not necessary)
condition that a sqﬁare seéd matrix can propagate such a matrix is that the
seed be symmetric. A special case is the "Hankel" f~AR matrix, so named
because the MXN matrix A is forméd from a single 0-AR sequence {h(n)} of

length M+N+1 as Aij = h(i+j-2). The Hankel matrix has an interesting prop-
erty: For any NX1l vector x, Ax = G(M;x)h where h is the vector whose elements

constitute'{h(ﬁ)}. This property is just a consequence of the fact that
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discrete convolution is commutative. The numbering pattern for a 8x6 Hankel
matrix is showniin Figure 1. For thiS‘case‘there is no need to deflne the
kernel as a submatrix: the kernel simply con51sts of the flrst K matrix
elements encouhtered along elther edge startlng from the northwest corner, and
the entire matrix is,propogated from it via the G-AR property. Any submatrix

of contiguous rows and columns remains a Hankel 6-AR métrix, and A'and AT are

both 6-AR.

The central problem considered in this paper may‘be stated succinctly as
follows: Given a 6-AR matrix A or a noisy version thereof, i, where the K'x1l

generator 8 is unknown, find the roots of the generator polynomial. Finding

9 is normally an 1ntermed1ate step, albeit one we would prefer to bypass since

the roots may be poorly condltloned with respect to the polynomial coefficients.

Varlous paths to the solutlon are possible, given a matrlx A of sufficient
rank and at least mlnimal—width. From Theorem §ll d(A) = 92(9), and any X
solving Ax=0 produces a bolynomial ﬁhose roots include the desired roots of
the generator pOlynomial. LIf the extraheous roots can‘somehow be identified
then the problem is’solved. If instead we find % 1ihear1y‘inde§endent solu-
tions of~Ax=O, i.e. a baéis forlﬂz(e), then 6 can be determined by a pfocess

described below without having to identify the extraneous poles. If a noisy

‘matrix A is used then the method used to solve Ax=0 becomes significant. The

estimate ﬁ[notm]rcen be found as the weakest eigehvector of ﬁTi and used to
broduce a.polynomial whose'ektraﬁeous roots may now be regarded as "noise
poles". The more traditional methods of solving the equation may aleo be used;
they may entaillless cOmpdtation but perhaps more error. If the A matrix is
of minimal width then any solution of Ax=0 is collinear with 8 and there are
no extraneous roots. However the roots may be perturbed greatly by noise in A.

. Supéo%e that a set of % basis vectors 9yr Iyr - qz has been found for
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$(A) = mz(e); i.e. the gi's are linearly independent solutions_of Ax=0. ;n
practice the gi'S'may be obtéined as the rightmost columns of the V matrix in
the SVD expansion of’A, or by some cruder technique. For example if some
quick method is used to solve the noisf equation ix;o then repetition of the
solution after tinkering with A (i.e. inserting new data, scaling rows, etc.)
would likely result in linearly independent solutions. Regardless of how

obtained, the solution vectors g, can be used to find 6 through the following

algorithm:

l 2!

§ 13 ALGORITHM: First define G, as the XN matrix whose rows are gi, gT
T ; . . . '
ooy gz, so that the rowspace of Gl is ¢ (A) = Qz(e), thus identical to the

rowspace of G(£;6) defined in Eqg. (11). Then starting with the topmost row use
‘Gaussian elimination to form the upper-trapezoidal matrix G

2

in Figure 2(b). Then repeat the process starting with the bottom row and elim-

as exemplified

inating terms on the right to form the upper-parallelogramic matrix G3 exempli-

fied in Figure 2(c). Assuming the rank of G. has been preserved the rowspace

1
of G3 is the same as that of G(%;0), so the non-zero portion of each row of
.G3 is a replica‘of GT to within a scalar multiple (If a noisy matrix A is

used then the rows are only estimates of 6.) Now define G4 as the XK' matrix

formed by "straightening out" the non-zero paralellogram of G4 and diséarding
thé zeroes. In tﬁe absence of noise or computational error the rows are
collinear and rank(G4) is 1. If noise is present then each row is'an estiméte
ofyeT. Logically‘a "best" estimate of ST can be obtained by using the SVD to
v find the best unit-rank approximant to G4, whose collinear rows then produce
identical estimates ofIGT. But this is completely equivalent to estimating

8 as the strongest eigenvector of GZG4, a task that can be performed very

easily with matrix iteration.

The procedure presented above can be modified so as to constitute a
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i

stepwise reduction of 92(6) to 92_1(6), ultimately arriving at nl(e) whose
single vector direction is 8.
§ 14 THEQREM: Let the Nx1 vectors 997 g2,..., gZ form'a basis of sze), of
which at least one must then have a non-zero first element; assﬁme it is gl.
Furthermore assume the gi's areﬂscaled so that the firsﬁ element of éach is
either 1 or 0. Then for i=2 to & define a; & gi~gi if the first elément of-gi
is 1, otherwise a; é'gi; Then the set'{gl,az,a3,.,,a£} is still a basis of
né(e), and the set'of contiacted veétors'{az,aj,;.,sg} dbtained by discarding
the first element of each a; forms a basis of 2, _1(8). O
§ 15 COROLLARX: The theorem remains valid if the words "last element" are
sﬁbstituted-for "first element" at every occurrence. O
It should be remémbergd thét QQC,RN while‘Ql_fIRN-l. If in the process
ofbstepwise reduction one uses Theorem §14 repeatedly thé final result will be
a single Qector equivalent to the bottom row of the matrix G4 obtained with
Algorithm §13. But if one switches at somebpoint to usihg the eorollary then
the result will correspond to one of the other rows of Gé.
wa we present a formula for the sensitivity of the‘roots of the generator
polynomial, when estimated. as the non—extraneouslroots of the éolynomial pro~
duced by §, where x is some approximate solution to Ax=0. Recall that if x
is a unit véctor then its error component is measured by II;AII'
§ 16 THEOREM: Suppose ||%|[|=1 and % lies approximately within ¢ (a), i.e.

lle||<<l|x£||. Then the non-extraneous roots of the polynomial xTZ depért

from the true roots zl, Zoreos zK of the generator polynomial according to

the first-order formula:




where D is a diagonal matrix, {1-0 D =l/k for k=2 to N. E]

If in particular x is x[norm], then the above result can be combined with
Theorem §3 to produce an approximate error bound in terms of IIE—II and the
non-extraneous roots, z of the polynomial it produces, (The bound is
épproximate because the sensitivity formula is correct only to first order,
and estimated roots are used.)

: : K k. 1%
as | . 2l D 1£17]

i k=0 .
T ST S (2)
i sV (A)Xlx DZ.l"

: K i

In the problem of finding‘6 given a noisy version 6-AR matrix A, it -
mlght appear that Theorem §2 should always apply, and that ¢ = ¢(£{K;SVD)) is
a maximum llkellhood estlmate of ¢ (A). However, there are two critical assump-
tions in the hypothe51s of Theorem §2: (l) that the noise corrupts the ele-
ments 1ndependently, and (2) that absolutely nothing of A is known except for
its rank. Clearly if A is known only to be of minimal—widthtand sufficient
rank with 6 unknoWn, then we knowvonly that its rank is one less than its
'wioth. (If any MxN matrix A hasvrenk(A) = N-1, then it is eutomatically B—AR‘
for the vector € that spans ¢(a).) So if assumption (1) is satisfied then
Theorem §2 doesAindeed apply. On the other hand if A is extra-wide and 8-AR

then we know more than just its rank, so assumption (2) is violated. 1If A is

known to have been formed as a Hankel matrix then both assumptions are violated.

(But if by some fortuitous circumetance i(K;SVD) does indeed conform to all
of our prior knowledge of A, th?n/the'conclusion of Theorem’§2 should still
apply.) These facts might lead one to avoid using either extra-wide or Hankel
matrices. However Hankel matrices appear to be very economical since each
new element of data permits the inclusion of ahother row. Furthermore several

investigators have proven that if one uses an extra-wide Hankel matrix and
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traditional methods of solving Ax=0, then the non-extraneous roots of the
resulting polynomial often estimate the true roots much more accurately than
if a minimal-width matrix had‘been'used [10,11,12]. Clearly there remain many

unanswered questions regarding the efficacy of the various alternatives.

POLE IDENTIFICATION

To apply the methods developed above to the pole identification problem
posed in the introductibn oneé has mefely to observe that every post—éxcitation
output sequence that can be élicitedvfrom a system of order K is 6-AR, where
the.genérator 6 is the K;Xl vector of the pole polynomiél's coefficients.
Thus every output subsequence of length N=K+% will be orthogonal to 92(8),
which we shall now denote simply as QQ, the "zth poiespéce", to concede its
relationship to the system poles. Of course Ql is just the space spanned by
6 itsélf. Thus any MXN data matrix A whose rows are output sequénces will
obéy ¢(A) = ¢(ATA) = QZ' where f = N~K, provided enough rows have been used to
give the matrix sufficient rank (i.e.:rank(A) = K). This will hoid true even
if the various rows were obtained as a result of separate tests, With‘different
input excitation, or different sensor placement. Any solution of Ax=0 will
produce a polynomial whose roots include‘the‘system poles together with N-K'
extraneou§ ones. ‘If decimation sequences of epoch g are used, then the approp-

riate subspace is Qﬂ(w),’which we shall denote as QE. -The K'X1 vector ¢ is

formed of the coefficients of the polynomial whose roots are the qth powers

of the system poles.

§ 17 PRONY'S METHOD [14]:  Given a single output sequence of leﬁgth 2K, form
an MxN minimal-width Hahkel matrix A, where M=K and N=Kf. Then solving Ax=0-
gives the generator 6. Traditionally this is done by converting to a non-
homogeneous equation, which in this case is entirely equivalent to forcing

9K=l. Since the equation is not overspecified it always has an exact
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solution, and the only errdr‘is due to noise in A. Experience proves that
even a small gmqhnt of noise .can be aevastatingv[lb].

§ 18 LEAST-SQUARES ' PRONY METHOD [10;11,12]: Given an output sequence of
length greater than 2K one can still form an MxN minimal, width Hankel matrix
A, where N=K' but now M>K. The equétipn Ak=0 is now.dverspeeified. Following
the tréditional approach discusséd earlier‘one seeks to determine the null-
space ¢ (A) =,¢(ATA) by solving ATAx=O. Even thié equatipn is overspecified
since A'a is K'xK' but rank(ATA)‘= K. If the rightmost column of A can be

partitioned off without”altering the rank, i.e. A = [A+;a] where "a" is the

v
- .

rightmost column of A and the submatrix A+ is nonsingular, then the equation

oo
A Ax=0 can be expressed as

T T

A+A+ i A+a
-__-ff_--— x = 0.
T 1T .

a A+ : a a

The solution, normalized so that the last element of x is one, can be

expressed immediately as

B ‘ (13)

Since A is a minimal width data matrix the solution, x, giﬁen by Eg. (12)
should be the generator vector 6, since the solution of Ax=0, or equiva-
lently ATAx=O,‘is‘ﬁniqﬁe to within a scalar multiple. Thus the same
answer would result if‘one used‘the adjoint solution x = adj(ATA)xO, regard-
less of the choice of Xg- On the otﬁer hand if a corrﬁpted version of A
is used, namely A = A+E where the noise matrix E increases the rank so that‘

rank (&) is K', then oné expects that the adjoint solution would produce a

result different from that of Eg. (13). However the following theorem
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establishes a connection.
§ 19 THEOREM: Let A = [A+;a] where rank(a) = rank(A+) = K and A, is non-

singular and let A = A+E = [A+;A] where rank(A) is K'. Then

adj(ATA)xo S

provided - Xy = [O,O,;..,O,u]T

T x ~Ts  wl1aTo o
. s a {I—A+(A+A+) A+}a

. 0

det(iTA)

Many users of this least~squares Prony Method have demonstrated quite
clearly that when one "requests" more poles than actually exist, i.e. when
one constructs A to be extra—w1de, the resulting non-extraneous poles estimate

the system poles with greater accuracy [10,11,12]. This fact persists even

when data are generated artlflclally to ensure that only a finite number of

poles are really present. Theoretically (A+A+) -1 should not even exist,
since‘AIA+ is then an (N-1)x(N-1) matrix of rank K<N—l. Clearly it is possi-
ble to carry out the computation of Eg. (13) only because of noise inherently
present in A or introduced by imperfect computation of AEA+. Indeed in the
presence of noise we may regard Eq. (13) as a special case of the adjoint
solution through Theorem §19. Thus when an extra-wide data matrix is used
the least-squares ?rony Method succeeds only becausevof noise, and Eq. (13)
produces an (approximatel‘solution to the equation ATAx=O. Mereover the

fact that the roots of the resulting polynomial xTZ include the true system
poles as a subset has previously been observed‘only experimentally; it has
remained unjustified by theory until now (i.e. in our Theorem §6). But

the fact that poles can be estimated more accurately by using an extra-wide

matrix remains to be justified by theory. (The reader may argue this point




with references to “genéraliéed least squares", noise modelling, decorrela-~ (:)
tion of residuals and the like, but we shall contend’in a later section that
such an explanation has serioﬁs logical gaps, atyleast as it pertains to our
._problem.)
The methods described in p;eceeding sections of this paper provide many
alternate avenues toward the solution. Specific approaches, results, and

adaptations are discussed below:

§ 20 CONSTﬁUCTING DATA MATRICES FR,OMYA SINGLE OUTPUT SEQUENCE {y(n):n=0,1,2,

...}: The construction of a Hankel matrix as described under the 1eastvsquares

Prony method is an obvious céurse of action. However in that cése‘the noise

éohtributions are notvstatistically independent from element to element in the

matrix, since the noisesvappear repeatedly along with the elements of {y(n)}.

But it is possible to construct an MxN data matrix‘in which the noises are

independent by using a "sliding grid" of decimated subséquences; for example ‘ (:)
Aij =Y, where r = (i-1) + (j-1)g and q(>M) is the decimation epoch. An
advantage of the noise independence is that it is possible to apply Theorems ‘
§1 and §2. But in applying Theorem §1 to obtain an unbiasedcestimate of § ‘
it is necéssary to have Eyg'replicates of the same seguence {y(ﬁ)}, each with k
'different (and totally independe?t)‘noise componenﬁs, td construct Al and A2. , ‘ &
Also note that Theorem §2 is of somewhat limited valué, since the K-rank
approximant i(K;SVD) probably will not strictly possess the "sliding’grid"
characteristic (i.e. its rows cannot be reassembled into aléihgle autoregres-
sive sequence), and thus 6 is not the true maximum likelihood estimate.
Whether or not the c¢nstruction of matrices with independent noise components
has other benfits beyond_applicatiOn of Theorems §1 and §2, or perhaps even

has drawbacks, has not been demonstrated.

§ 21 USING ROWS OF A DERIVED FROM DIFFERENT EXCITATIONS OR SENSORS: A O f
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single output sequence {y(n)} may reveal some poles only,weakly, and pfovide

only a brief glimpse of poles having a rapid decay rate (1 e. small lz I

The advantages of obtalnlng separate output sequences, u51ng totally different
system excitations (to within the limits of one’s ability to control the
excitation at all), énd thén using them to construct more rows of A, has been
largely ignored in the literature. ~Fprther, the use.of independent rows may _;
enable usé of Theorems §1 and §2 to oﬁtain "nice" estimates ofle.

§ 22 USING'"BEiTER" SOLUTIONS TO Ax=0. Since investigations of the past

have usdaily cbnverted Ax=0 t6 a nonﬁomogeneous problem, the cost¥effectiveness
\of using the other solutions we have'diScussed is worth exploring. ‘Indeed the
norm minimizing solution §[norm] is not that mﬁch more difficult to obtain.
The least~squares Prony solutlon of Eq. (13) is usually obtained by solv1ng
(A+A+)x+ = A+a, where X, is all of x except for its last elemegt, rather than

(- ;
actually inverting the  (N-1)x (N-1) matrix. However if an extra-wide matrix A

is being used (which igfalmost always the case) then the matrices (ifi+) and
(ATA) are nonsingular énly because of noise, and matrix iteration with
(ATA)‘l can find x[norm]. But this can be done by successively solving

ATA Xiv1 = %50 w1th occasional renormallzatlon.v Indeed the solution’for X
found from Eg. (13) could be used as the initial guess for %x. Thus instead
of solving a single (M=-1)X(M-1) nonhomogeneous matrix‘equgtion we solve an
MxM equation repeatedly; hopefully a few repetitighs wili\suffice. Of course
with A extra-wide, X's polynomial will have some éxtraneous poles to sort out.
§ 23 EXPUNGING EXTRANEOUS POLES: When an extra-wide A is being used,
Algorithm 813 or Theorem §14 provide a means for elianating the extraneous
poles if K linearly independent solutions of Ax=0 are first’found. These

independent solutions can be obtained by use of SVD or perhaps simply by

repeating the solution after some tinkering is performed on A (for example
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.by the 1ntroduct10n of some ‘new data contalnlng new nolse). Whether the roots | <:)
of the resultlng 6~polynom1al will be more accurate estimates of the true
poles than,are the non—extraneous roots of the 1arger x—polynomlal remalns
to be determined, but at least thls approach can reveal which roots of the
polynomlal are extraneous in a fashion remlnlscent of the de-aliasing pro-
cedures described earlier.
§ 24 PREFILTERING OF DATA: It may be de51rableito prefilter a data‘sequence
{yv(n)} by some simple dlgltal fllter, for example to improve the signal-to-
noise ratio. This may be done to enhance the accuracy in determining a
partlcular pole or. set of poles, as by the use of a bandpass fllter. After
such fllterlng the data sequence has the filter poles 1ncorporated into its
generator polynomlal Thls 1ncrease in the number of poles must be taken into
account when constructlng the A matrlx. ‘These new poles are known, ‘and ought
to be forced into the solution somehow (see below). Moreover if the use of (:)
a particular prefilter enables us:to'accurately determine some subset of the
poles, then when we use another prefllter to enhance estlmatlon of other
poles we should force our prev1ously estlmated poles into the solution. ’ ;

§ 25 FORCING KNOWN POLES- The use of prefllters is not the only impetus for

wanting to force known poles. The cholce of the sampling interval T or deci-
mation epoch "g" may be tailored‘to accurate estimation of particular poles,
and once determined these estimates should be forced into subsequent analyses
done with- different T or q. Forcing poles is not difficult. Assuming for
simplicity that A ls a matrix of ordinary (i €. not decimated) data, then

$(n) =Q

e And the power vector Z of each system pole zl is orthogonal to

92 by Theorem §7. But if a z, is known then we need only solve Ax=0 subject
T . T 01
to Zix=0. If the pole z, is real, then Z = [z 1200002 ] can merely be

adjoined to A as a new row with a large scaling constant C. The larger C, (:)~
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the more strongly the pole z. is forced into the solution of Afx=0, where Af

is the new matrix formed by addition of this new row. If the pole z, is com-
plex then the same procedure could be used, but this has the unfortunate
effect of maklng A complex. A better approach is afforded by realizing that
complex poles occur only in complex conjugate palrs, so that instead of

T T
adjoining Zi and Zi+1 = [(z.) ,(Z&) ,...,(z ) ] one adjoins ai C/2[Z + (Z ) ]

-1

- and a, 2 5 jC,[Z; - (Z )| ] ‘which are both purely-real row vectors, and can

be expressed as

=

7

Ccl1, rcosw, r%coszm,..; r cosNw]
o {

[

and - a

|

cl1, rsinw,,r2s1n2w,nj,,rNsian]
with r é'fzil and w 4 arg(zi).

Thus for each pole forced, one more row is added to Af The choice of
the scaling factor C is EQ-EQEJ aﬁd some adjustﬁent may be neceesary.
§ 26 VUéE’OF DECIMATED DATA; Everything that has been saio'concerning the
linkage between A and 9 when A is not cOmposed of decimated data carries over
to a linkage between A and ¢y when A is decimated, where { defines a polynomial

whose roots are the qth powers of the system poles. Obvious modifications

are needed in a few places.

THE METHOD OF JAIN AND ITS EXTENSIONS
Transformation of a complex variable according to some formula ¢ = f£(z)
is often employed in polynomial root solving programs, and the resulting

roots are then transformed back into the z-space. Previously we have seen

‘that if one transforms the pole polynomial produced by 8 to a new polynomial

whoseé roots are the qth powers of the true poles, the rew y vector is related
to decimated output sequences in the same way that 8 is related to undeci-

mated sequences {y(n)}. Suppose instead that the pole polynomials were modified

by a simple linear transformation of the variable z. Would the new polynomial
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coefficient vector be related to some other modlflcatlon of the data sequence i (:) k

{y(n)}? The answer is yes. Suppose the transformatlon is g = [l--clz]/c2 so

= [1-c C]/C ’ convertlng the S-polynomlal to a u-polynomial:
0 +6.z 4+ 6.z5) = (u_ + 2+ oow N ' 14
R S L I T T T 14

where ¢ = [l—clz]/cz. Solving the u-polynomial and then transforming the
roots will give the roots of the 8~polynomial. 'Applying Eqg. (14) to Eq. (6)

and clearing éhe denominators gives

{ug + u,[(Q-c,2) /c] + + [(l-c 12)/¢, I} v(z) = B, 1z + ...+ B,z° + g z
oM 157/C 0 T e K-1 TR 0%r

where Y(z) is the Z—transform of {y(n)} and the S are the coefficients in

's
the numerator polynomlal of Y(z)/z. Defining H(z) é cé/(l—clz) and multiply-

ing both sides by H(z) " gives

K oKR=1 K, . . K L2 _
Bt (V) + BT Y@ ¢ vy @) = #e) (g K e L Byz” + Bz} O
. . : . ' (15)

The assumption that H(z) is the Z-transform of some filter

impulse response {h(n)} whose reglon of convergence is compatible with that

of {y(n)} permlts us to take the inverse transform of Eq. (15) to get

uOnK(n) + uan_l(n) *oeee Fupng(n) = {h(n) 1+, {BK_16<n+K) oo+ B S+ }

(16)
where {h(n)}*K: represents convolution (filtering) by h(n) for a

total of K times, and {no(n)} é"[y(nb)}; {nl(n)} é'{h(n')}*{no(n)}; cens
etc., i.e. the {ni(n)} sequence is’thelresult of filtering the data sequence
i times. But whaﬁ kind of filter is represented by H(z)? Actually H(z) has
Eyg.inVerse Z-transforms, one causal and one not, corresponding to the

difference equations:

-1
Causal: xout(n+l) =c xout(n) - (02/C1)xin(n) (17)
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,{ﬁo(n)}

Non Causal: x (n) = ¢
out

1 xout(n+l) + c, xin(n) (18)

We shall choose the non-causal filter, fqr whose Z-transform the region
of convergence is |z| < |éll-l, so that to be compatible with the region of
convergence for {y(n)} one must have IclI—l > mik{lzkl} where the z,'s are
the system poles. The filter has fhe property that inputs arriving at n<0
will contfibuté to the 6utput only for n<0. Since the S-sequences on the

right hand side of Eg. (16) are already zero for n>0, K-fold convdlution by

{h(n)} will preserve this property, so for n>0 Eq. (16) gives uono(n) +

ulni(n) + o0+ gl (n) =0 for n>0, i.e. the sequences ni(n) are linearly

dependent through the vector 4 [uo;ul,...uK]. Furthermore recall that

{ym)}, and, using the difference equation for H(z), ni+1(n) =

c - (n+ +-
c ni+l(n 1) c

1 ni(n) for i, n > 0.

2

Thus given a {y(n)}'sequence generated by K poles, we can prefilter it

K times using the first order non-causal filter described in Eq. (18) to get

" the ni(n) séquences, and then construct an MxK' data matrix A, where-

Bi3 T MNe1

(i-1) and then solve Ap = 0 or (ATA)u = 0 for the K'x1l Qector M.
Then the corresponding u-polynomial can be solved for its roots, which are
thenisubjected to a simple linear tfansformétion to get the system poles.

Jain's method t7],ié a special case of this procedure wherein ¢ =¢c, =
so that thé filtering is a simple reverse-time integration of a discrete
sort, and his A matrix is‘essentially infinite in height (i.e. M>>1). This
gives a solution

. T
U = adj (A A)uo

T
where uo is an arbitrary K'xl vector. Note that with P é (A"A) we have
M M-1
= 3 =1 . . here the summation is extended
Pij E:l(A)li(A)Kj R U "3—1(n)’ W umma
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to ® when M+ to be ‘in conformancevwith_Jain's results, wherein our p matrix
corresponds to Jain's "Grammian" matrix. Moreover Jain uses the diagonal

elements of adj[P] so that the u—vector is [(+)IA [E [a l%]

®es e 0o r (i)K| KIKI
T ,

= u where A ; are the dlagonal cofactors of R, and the (+) notation has

been discussed earlier. The potentially annoying. (+) signs might better be

avoided by s1mply using one of the other ways of constructing the solutlon of

P = 0. (See our section entitled “SOLVING THE HOMOGENEOUS MATRIX EQUATION. ")

THE POLES AS EIGENVALUES
§ 27 THEOREM: Given an MXK' data matrix A, Whose rows are post-excitation
output sequences from a system having K poles, the poles z, are the eigen-

values X in the following generalized eigenvalue problem:

T T -
(AR )x = K(A+A+)x (19)

where A+ is A with its rightmost column removed, and A is A with its left-
most columnvremoved. []

The usefulness of this result is difficult to determlne. At least it
provides a restatement of the problem in which the poles are eigenvalues,
‘and in whlch the data appear in falrly simple form with no matrlx inverses,
offering the hope thateimethod can bé employed to directly determine the
eigenvalues without having to compute polynomial coefflclents hence avoiding
what is generally con51dered to be a poorly posed problem. Perhaps as better
numerical algorithms become available for the Ax=ABx‘ei§envalue problem, one
of them can successfull& be applied.

It is interesting to‘note that‘the eigenvalue‘problem cen alsovhe

written as

T B |
A (A~ XA)x=o, (20)
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Equation (20) has a SOIﬁtion only if the matrix AE(A_f A A.) is singular,
which must occqr Qhenever A is a system pole. The similarity of this to
Jain's "pencil of functions" concept is nbtéWorthy, particularly in view of
the following observation: The it? row of A is a data sequence‘{di(n):

n =0,..,K} so that the ith row of (A - A A+) iS){di(n+l) - A di(n): i=0

17

(R-1)}.

OTHER ESTIMATION CRITERIA, ITERATIVE METHODS, AND ASYMPTOTIC ERROR
For a single post-excitation output sequence'{y(n)}, Eq. (6) shows that

the Z-transform, Y(z), can be expressed as a function of the parameter vectors
T A T : i _

87 = [60,61{...,8K] and B~ = [BO,Bl,...BK_l] that cons;st of the coefficients
of the pole polynomial and numerator polynémial. Equation (6) can be
expressed as

B +8 2z s 4 soz—(K—l)

: -1
SK + BK_lz + L.+ Goz

R SR (21)

We can define B+ and 64 as the finite impulse response (FIR) operators
(Filters) whose transfer functions are the numerator and denominator poly-
‘nomials of Equation (21), and 8+ as the recursive infinite impulse response

(IIR) operator that is the recipxoéal of 84+. To illustfate; {fa(n)} = g4{bm)}

means a(n)

BK_lb(n) + BKeZb(n-l) + .. + Bob(n—K+l) and {a(n)} = 64{b(n)}

means a(n) [b(n) - GK_la(n—l) - el = eoa(n—K)]/eK for -» < n < + «», With

]

this notation 04084 is the unit operator and the sequence {y(n)} may be

expressed by inverting the Z-transforms in Equation (21) as
{y(m)} = 6¥pt {8(n)} (22)

where {§(n)} is the impulse sequence. If the data sequence is corrupted by

noise to give {y(n)} = {y(n) + e(n)} where the e(n)'s are zero mean,
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, . . . . 2
independent Gaussian random variables with common variance ¢“, then the log~

likelihood function for {$(n)} given B and 6 is

1

L = = e

5 I (y(n) - Y(n))2 + const.
20° n>0

where {y(n)} is defined in terms of the paraméter vectors B and 6 by Equation
(22).’ Thus the maximum likelihood estimate of 8,8 is obtained by choosing
them to minimize Jl évgzo(§(n) - y(n))Z, i.e. to minimize the mean square
error in fitting {y(n)} to the data sequence {§(n)}. If the noise components

1

0 and this null seqguence could be operated upon by 6+, to

{e(n)} are vanishingly small then the minimum value is J.=0. In that case

il

{y(m) - ymn)}

give 64{y(n)}

8+{y (n)}

1l

84{y(m)} - B4{8(n)} = 0. Thus the same result
o , 5
would have been achieved by minimizing J2 4 LI r (n) where the sequence
' nz0 .

{r(n)} = e4{y(m)} - B4+{6(n)}. But J, can be decomposed as Ty =Ty * S
' K-1 '

‘ A 2, . CA 2
where J20 = Z_Or (n) and le = E}Kr (n). Furthermore the sequence B8+{8(n)}

-

- is identically zero for n>K, so J21 depends only upon 6. Indeed J20 can

always be minimized to gero by setting BK—l = SKy(O);fBK_2 = eKy(l) + SK_ly(O);

etc., ... ; and ultlmately Bo = eKy(K-l) + GK_ly(K—Z + ... Gly(O).

Thus.the estimate of 9 is obtained by choosing it tokminimize le, i.e.
to minimize the mean square output of the 6+ FIR filter for n>K when thé
‘input is the data sequence {y(n)}. But if one constructs an MxK' Hankel
data matrix A according to Aij = §(i+j—2) then J2l = GTATAB so that the
optimum 6 is simply the X[norm] solution of Axéo discussed in earlier sec-
tions of this éaper.

However minimizing Jl is nbtvreally equivalent to minimizing J2 unless
both can actually be minimized to zero, i.e. the noise is vanishingly small.

Otherwise the §[norm] solution does not minimize Jl' and is therefore not
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the maximum likelihood estimate. Direct minimization of Jl is difficult,

being a highly nonlinear problem. Steiglitz [18] has very neatly described

the "iterative-prefiltering" procedure for minimizing Jl by choosing the FIR

operators 64 and B+ to minimize

) A e 2
3, = gzo(6+6¢{y(n)} - g4By{stm) )

where 8+ is the IIR operator defined as the réciprocal operator to the FIR
opefator é+ resulting from.the previous step in. the iteration process. (The
4procedure cdn be sﬁarted by taking 8 as the %[norm] solution.) Each time
the minimization is.done the resulting 6 is used as 8 in the next step. If
the procedure converges then 6=8 and J3=leso the reéulting 0 is a maximum
likelihood estimate.

A different iteration method can be used to "improve" the estimate‘bf 6
beyond that of simply minimizing J,, = o K A6 = ||56||2, although it is
based on heuristic arguments.’ Even when 6 is truly correct the residual
vector A9 cannoﬁ be expected to possess uniform statistical variance in its
elements. Due to the Hankel matrix form of A thebresidual,vector‘cén be
expressed as AB = G(M;8)y where G is the matrix defined in Equation (11) and
y is (M+K)x1 the vector whose elements form the sequence {y(n):n=0,..., (M+K-1)}.
But y can be expressed as § = y+e where y and evare the vectors of the
uncorrupted énd noisé components respectively, and if 6 is the true solu-
tion then GyZ0 since every data subsequence of length K' is orthogonal to 6.
Hence ﬁ9=G(M;6)e and is;therefore a zero-mean, Gaussian random vector with

co-variance matrix A = &[A8) (38)T] = €[G(M;0)eeTGT (M;0)], or A = 0°GG"

since e[eeT] = 021 and the G matrix is not random. If A were known a priori

then instead of minimizing Iy = ||§6||2 oneé might prefer to minimize the

weighted quadratic form I4 & ||ie||2;1 = GTﬂTA—lAG. Unfortunately the’
A .
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matrix A = O'ZGGT cannot be computed without knowing 6, but an iterative pro-
cedure can be employed in which each new estimate of 6 is used to compute G
~and estimate A for the next step. This procedure is a modification of that
used in Refs. [19] and [31]..

In the control theory literature the J2 criteria is the one most often
used for minimiiation [15,16]. However‘in that context the problem is
usually complicated by the presence of a peréistently exciting input to the
system. Furthermore there is much emphasis~placed'on the problem of "biasg"
in the estimate of 6, but it is not statistical bias of the type dealt with
in our Thecorem §1 and‘the disqussion following. Rather it pertains to asymp-
totic bias in the estimate of 6 as the observation interval of the system
output {y(n)} beéomes infinite. 1Indeed in thatbcontext the asymptotic bias
is connected to statistical correlation in the residuals [15], a problem that
can be alleviated by the use of pre-whitening filters, "generalized-least-
squares", or often simply by supposing that the system is of higher order
[16]. By these approaches one can theoretically produce an estimate of 0
that converges to the actual 6 (not just its maximum likelihood estimate)
as the inter?al of observation becomes infinite. In view of the last
approach one might conclude that the use of extra-wide data matrices in our
problem, since it is equivalent to supposing a higher system order, is
therefore justified by the experience of researchers in the control theory
area. However in our problem there is no persistently exciting input, and
the "signal" portion of a noise-corrupted data sequence {y(n)} = {ym)} + {e(n)}
will eventually decay to insignificance, ieaving‘only the noise, and we
cannot expect the estimate of § to converge to the true value. Tndeed it
will almost certainly begin to diverge as soon as the signal component

decays to the point of becoming lost in the noise.
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But there is a line of heuristic reasoning that lends sohe relevance to
the asymptotic behavior described. above. ‘Suppose the signal component of
{;(n)} does strongly peréist for a long enough time that the statistical law
of large numbers can be applied to compuﬁations ihvolving the noisy data; -
i.e. the obserVatién intérval is infinitg withkrespect.to the noise but

finite with respect to the signal. Largeness of the interval of observation

' corresponds to largeness of M in the MxN Hankel data matrix A. The nature

of the "quasi-asymptotic error" in estimating 6 using i can be determined by
o ' R e T, T T T .

studying the matrix A"A = (A+E) (A+E) = A"A + 2(A E)s + E'E, where E is the

Hankel matrix of error components, and ()S denotes the symmetric part of a

matrix.  Every time M is increased, new rows are added to the A and E matrices.

This means that the elements of,the NXN matrix ATA will continue to reflect

. N .
these additional summed components for as long as the signal persists. How-

ever the matrix E is a Hankel matrix derived from a sequence of independent,
. 3 . 2 L .
zero mean Gaussian variables of variance ¢, and it immediately follows that

T . C . : \
E E tends asymptotically toward M-I*o2 where I is the identity matrix. More-

i T . . P . N
over (A E)s is a linear combination of the independent, zero-mean noise

variables, and can be expected,to‘converge to its mean (zero) by the law of
large numbers; i.e., it becomes insignificant compared With<ATA and ETE.
(This is a broad conclusion‘which wouid require an unwieldy set of assump-
tions and pre-conditions to attain mathematical rigér)._ The conclusion can
be stated succinctly: For M>>1, ATR = ATA + M-02'I where I is an NxN
identity matrix. Moreover if the rightmost column of i is isolated by par=-
titioning it as.i = [£+;;], then by a similar line of reasoning i+£+ :
AEA++ M-UZ-I where I is now’ank(N-l)X(N—l) identity matrix. With these
approximations it is pqssible to estimate the qﬁasi-asymptotic error in

determining 8 given an MxN data matrix A with M>>1,
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First consider the least-squares Prony solution. In this case A is
N R . ~ '
MxK' and the solution x = [xi;l] estimates eT, where from Eq. (13), X, =

~i~ =1~T~ . . . ~M~ _ ~p~ .
-(A+A+) A+a which means that x, is the solution of A+A+x+ = -A+a. If one

uses the approximations just derived, the result is AEA+X+ + M02x+ = —53;
T o~ T .2 m op o m .

or A A x = A,a + Y where v = -Mo X, —hAe-Ea E e. The result is
clearly a perturbation in the solution, a fact that has been explored in
more detail by Kay [17]. The behavior of the adjoint solution, x =

g Nad ; \ g . T o~ T 2, ,
adj (A A)xo, in light of the approximation A"A = A"A + Mc“T is somewhat
similar, but it is more instructive to view it as one step in the matrix
iteration process from xo toward §[norm]; whose asymptotic behavior is dis-

cussed below.

~ . ~
Fortunately the solution x[norm], wherein x is chosen to minimize

||£§l| subject to ||§[| = 1, has no quasi-asymptotic error sincé ||£§||2 =
§T£T£§ = §T(ATA + M021)§ = ||A§||2 + M02||§||2 which obviously leads to the

same solution as if there had been no noise. Of course we do not mean to
suggest that x[norm] is absolutely errorless, since our argument is funda-
. . . T~ ~ T 2
mentally limited by the accuracy of the approximation A°A = A"A + Mog“I.
Nevertheless it is clear that x[norm] is free of the "asymptotic bias" that
is giVen so much attention in the control theory literature, and this is
perhaps the strongest argument in its favor. Before continuing to the next

section we remind the reader that the above discussion pertains strictly to

estimating ® from a single data sequence {y(n)}.

PREVIOUS WORK AND UNANSWERED QUESTIONS
Since the problem treated in this paper is in most respects an extension
of that studied by Prony in the eighteenth century, not surprisingly there

exists more literature than can be referenced here. Nevertheless, we shall
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attempt to reference some of the more relevant results, particularly those

with which some of our readers may not be aware.

An interesting treatment of the least-squares Piony method, in which
the polynomial of the system poles is expressed directly as a determinant,’
is given by Ellingfoh et al. [20]. Demonstrations of the noise sen51t1v1ty
problem have been presented by Hildebrand [14] and some analytical work
along those lines has been done by Dudley [21]. A very interesting study of‘
the behavior of "noise poles" as a functlon of signal to noise ratio has |
been recently publlshed by Kay [17]1, including a theoretical analy51s ‘that
may be considered applicable to our problem when the observation interval is
infinite with respect to the noise butvfihite with regpect toAsurvival of
the signal, and an "autocorrelation" approach is apéropriate. Accuracy of
time domain and spectral domain reeonstructions of noisy signals using
Prony-type estimates have been studied by Spitznogle and~Quazi [22] and

Beatty and George [1], and the latter paper provides a rare look at the use

‘0of decimated data sequences.

The use of the SVD decomposition hes been explored by Holt and Antill
[23]ﬂ but peculiariy enough they have applied it only to the non-homogeneous
version of the least-squares Prony selution, in which the problem becomes
poorly conditioned if extra wide matrices ere used. Indeed; they use the
SVD to “recqﬁdition“ the sioﬁlem, rather than as a direct solution; thus
their adjusted matrix must still be inverted. Earlier approaches. using
Householder triangularization have been reperted by others, in particular
Van Blaricum and Mittra [32].

Price [28] has approached the problem from an eigenvector viewpoint,

~although without reference to SVD. Moreover, he has addressed the problem

of forcing known poles by a transformation of the space rather than through

augmehtation of the data matrix as we have done.
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An apparently different approach to the problém of‘exponential repre-
sentations of signals has been used by Jain with proven success [7,24], but
our derivation and extension has demonstratea‘its kinship with other methods.
Applications of adaptive‘filtersbinspired by Jain's method have been done by
Auton [25]. Modification of the Prony method to represent a set of several
waveforms with a common pole setihas rarely been mentioned in the literature,
although it was utilized by Young and Huggins [26].

There remain many unanswered questions of which we mention only a few:
Does the advantage of using extra-wide data matrices persist if one uses the
methods for solving Ax=0 that are emphasized in our paper (i.é., homogeneous
methods,,Q[norm], adjoint solution)? or when one uses a non-Hankel matrix?
How qqst-effective is the use of the unbiased vérsion of the adjoint solu-
tion, when appiicable? Following our derivatioh_of Jain's method, what hap-
pens When one uses different transformations of the z variable? Would that

approach 1ead'to_other, perhaps superior, prefilters?
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APPENDIX

(THEOREM PROOFS AND PROOF OUTLINES)

THEOREM 51:, If P A AlAZ then P, i = E (Al)ki(AQ)kj so that Pij and Pmn are
statistically independent unless i =m or j = n. Each element of adj(P) is
a determinant of a "minor" submatrix of P with a row and column deleted.

But the determinant of any matrix may be defined [27] as the sum of all
p0351b1e (approprlately SLgned) products of elements of the matrix, wherein
each product has exactly one represeneatlve of each column and each row of
the matr1x~’ .e., no such product contains more than one element from elther
a single row or a single column. Since the latter property applies even to
each minor submatrlx of P, ‘it follows that the expectatlon operator distrib-
utes on each element of adj[P] first over the sum (due to linearity) and
then onto the members w1th1n each product (since P, i3 and P have the statis-
tical 1ndependence property described above), and ultlmately distributes to

the individual elements of Al and AZ' thus prov1ng the theorem.

THEOREM §2: Iﬁ.the first version of the theorem the unknown parameter A
determines the joint‘probability density of the data matrix i, and due to the
Gaussian assumption the log-likelihood function is I = -(202)-l||g—A]I; -

% MN log (2ﬂ02). The meximum likelihood choice for A, given g, is that
which maxiﬁizes L Within the known set of possible A's (in this case. the set
of MxN matrices of rank K). Clearly i(K;SVD) is that choice, since it mini-
mizes the Frobenius norm. If K is also an unknown parameter, known only to
be less than N (where N<M), then L is clearly maximized by u51ng A(K SVD)

with K = N-1, since A can always be approx1mated as well by matrices of
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larger and larger rank. If some probability'distribution for K is known

a priori, say PK,,then the traditional modification to the maximum likelihood

procedure is to choose A to maximize the weighted likelihood, which gives the

log-likelihood function L = -(209) ™| |&-a]|2 + 1og b, - 2 My log (210?).

Since A(K;SVD) then maximizes L for each particular K, the optimum K is that

N 1z 2 ' ‘ .
which minimizes HA-A(K;SVD)HF - 202 log P . If one seeks to estimate ¢(A)

rather than A, the situation is more-complicated. The nullspace, ¢(A), is a

peculiar sort of parameter, and is not sufficient to determine the proba-

‘bility distribution of A. It does however determine a family of possible

- distributions, and thus a family of log likelihood functions L =

(202) lllg—Alli + conSt.,‘parametrized by the matrix A (compatible with

the speCified nullspace). . Clearly setting A = E(K;SVD) achieves a global

maximum of L for matrices of rank K, and taking ¢(a) = ¢(i) then gives a
3 .

nullspace estimate whose family of likelihood functions includes one that

achieves the maximum. In another sense, estimating ¢(A) is a partial esti-

_mation problem in which additional parameters (i.e., the elements of A) must

be estimated incidentally.

THEOREM §3: To prove this theorem we first develop several lemmas.

v

Lemma l: For any MxN matrix B and its Kth-rank approximant C é B(K;SVD)

where K < rank(B), then for any Nx1 vector X,

iv

(a) ||BxC|| sv, (B) |Ixc|| , and

IA

) |IBxzl| < sv ® lxsl] .

Proof: Let the SVD of B be given as B = USVT and let S and V be partitioned

as S = [Sl;SO], v =‘[Vi;vo]\where in each case the leftmost K columns are

T

isolated. Then B U(Slvl + sovg), and the diagonal elements of S. are the

1
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first»K-Singular values of B, thus non-zero. The approximant C may be .
obtained by artificially setting So to zero, which means that ¢(C) is simply
the space orthogonal to the colhmns of Vl' i.e., spanned by the columns of

T = T R ‘ . : ] :
VO. Thus leE =0 = VOXC' Then since U and V are qrthogonal'transformation

matrices,
T T
IIBxCJI = utsv] + sl = l|s1 %11 2 va(si> Hvix |
or since Vl consists of orthonbrﬁal columns,
gl | 2 sve@ |l |
Similarly
o L T
|lBxz]| = ||U(s v1 + SO'VO)'XEH = ||SOVQXEH < sv(S.) Iv 218
or simply
HBXEH s SVK+1(B) Hxall

Lemma 2: For any MXN matrix A of rank K, and any Nx1 vector x, -

gl s a1 /sv, @)

Proof: Use Lemma 1l(a) with B é A so thatvc = A also;‘

Lemma 3: With same hypothesis as Lemma 2, and another NXM matrix E,. where

rank (A) = raﬁk(A+EA), then ||xA|| < II(A+EA)]1/SVK(A+EA).

Proof: Apply Lemma 2 with A replaced by A+EA, noting that X, = x(A+EA)'

Lemma 4: If x is a unit vector lying in the nullspace of i(K;SVD), where

~

A = A+E and A is an MXN matrix of rank K, then

1] s sv @ < ||e]]

Proof: Apply Lemma l(b) with B a A and x 4 g. Then by assumption XE = x
and ||xEI| = 1. To get the rightmost inequality we use a fundamental
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property of singular values [9]:

sV, (B) = va+l(A+E) S sV (A) + svl(E) =0 + IIEII .
Lemma 5: Same as Lemma 4, ending with llEili instead of ||E|].

Proof: As before, but use

~

SV, (A) = SVK+1(A+EA+E§) <s

ol +1(B¥E)) + sv. (B) =0 + ||E£||

Yk
Lemma 6: With A,E as before and x any unit vector, then
(@ |laxy || < |[ax|]| + [[&]] , ana

m) | @smx, || < 1Bl + |]ez]|

Proof: Ax, = Ax = (A-E)x = Ax - Ex , so

[ax, || < [1ax|] + [|ex|| < [|&x|] + ||E]] since ||x|| =1 .
Part (b) results‘similar;y upon noting that

(AR+E,) x, = (A+EA)x = Kﬁ-Ei)x .

< B, then o+B < 2B < 2(o+R).

Lemma 7: If o and B are positive and o

Proof: Obvious.
The theorem follows immediately, defining b, & {|]ax|| + ||El1}/va(A)

A . .
and b, = 2||El|/va(A) and using Lemmas 2, 6(a), 4, and 7 in sequence; and

4

defining b, L (11R%]] + |IE£||}/SVK(A+EA)‘and b é 2||E£||/va(A+EA) before

applying Lemmas 3, 6(b), 5 and 7.

THEOREM §5: Since both ends qf‘the 6 vector are non-zero by assumption, no
row of G can be expressed as a linear combination of the rows above, énd all
the rows are therefore linearly independent by induction. To prove unique-
ness of the generator, suppose that there are two matrices G; and G, as in

1 2

Eg. (11) that span the same Q i.e., they have the same rowspace. Then by

17
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construction the top row of G2 ie non-zero only for its first K' elements,

and it can be expressed as a linear combination of the rows of Gl; But that
combination cannot include the lest row of Gl since it Would pro?uce a non-
zero rightmost element. ‘Similarly each higher row of G1 can be ruled out so

that the top row of,Gé is a scalar multiple of that of G_: i.e., the genera-

ll
tor is unique to within a scalar multiple.

THEOREM §6: Although the dimensioh of the power vector Z ﬁas elways been
inferred from the context of iﬁs use, for the proof of this theorem we shall
promote clarity by appehding the dimension as a subscript in parentheses,
e.g. Z(N)' Thus if z is a root of the generatdr polynémial then GTZ = 0,

(X)

which clearly implies GZ(N) = 0, where G is the matrix G(2;8) of Eq. (11).

But erQ(S) implies x lies in the rowspace of G, i.e., x = GTa'for some 2x1

A L .
vector aT = [ao,al,...]T. Then it is easily shown that.xTZ = aTGZ =

(N) (N)
T,

(o ) % (6 Z(K'))d Clearly the roots of the generator polynomlal are a

(l) -
subset of those of XTZ(N), and the 2-1 extraneous roots can be placed at will
by selecting the elements of o as the coefficients of a polynomial whose

roots are the desired extraneous set. Moreover since the polynomial coeffi-

cients of all three polynomials are real, all three root sets contain only

conjugate pairs. : - ‘ = . '

THEOREM §7: The N-dimensional power vectors of the (distinct) roots.é:i of
the generator polynomial constitute a set of K linearly independent vectors
since they can be juxtaposed to form columns of a matrix for which the upper
KXK submatrixxis Vandermonde, and therefore nonsingular. Since each such

power vector obviously lies within the nullspace of the G matrix of Eqg. (11)
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so that the set spans that nullspace, the K-dimensional subspace of RN that

is the orthogonal complement is'identically 91(6), the rowspace of G.

THEOREM §9: Obviously y{l 92(6) if and,only_if Gy = 0, where G is the matrix

of Eg. (11), and the theorem follows immediately.

THEOREM §11: <Clearly if A is 6-AR then AGT = 0 where G is the matrix of

Eg. (11). But AGT= 0 implies [29] rank(A) < N - rank(GT)= N-2 = K. However

T

erz(G)iff X = GTa for some o, but then Ax = AG o = 0, so xe¢(A). If

It

rank(A) = K then ¢(A) is a subspace of dimension N-K = £, the same as the
dimension of nz(e), so in that case ¢(A) and 92(9) are identical. Thus
Ax=0 implies erQ(O) and therefore the roots of xTZ constitute a superset of

the roots of the generator'pdlynomial by Theorem §6.

THEOREM §14: Since both ends 6f 0 are non-zero, at least one member of any
basis of 92(9) must have its first element non-zero, and the scaling described
in thektheorem statement clearly does no harm. Furthermore {gl;az,a3,...}

is still a basis since 9, could be added to the a's to recover the original
basis. Now if X is an arbitrary vector in Qg_l(e) and we augment it by
attaching an initial zero element to forﬁ a vector x, then’it can be expressed
as a linear combination of the bottom %-1 rows of G(%;6), hence as a linear
combination of the basis vectors {gl;az,aB,...}. Indeed 9, can obviously be
ruled out of the combination, and it follows easily that x lies in tbe space
spanned by {52,53,...,52} as defined in the theorem. Sincé that set is of
dimension -1, it muét cohstitute a basis of ni_l(e). The corollary follows

directly.
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THEOREM §16: Perturbations in the (assumed distinct) roots of the polynomial

T e . .

X Z due to perturbations in the x vector may be determined to first order by

setting the total differential of the polynomial to zerc at each root loca- ::

. T } :
tion: (x+6x)°z + xT(Z+GZ) =0 at 2 = Zi’ But since xTZi = 0 we have
(GX)TZ. =-x8z, = - xTDZ z, ldz
i , i
where the diagonal matrix is as defined in the theorem. Solving for dzi/zi
and noting that x = x+0x to first order gives
o T ) T
= 4 .
dzi/zi (6x) Zi/(x 8§x) DZi

For the purpose of the theorem we set the nominal value, x, as the "correct"

~

portion of the approximate solution X, i.e., x = Xze Then clearly 6x = Xy,

and x+6x = x so the theorem follows immediately.

THEOREM §19: The theorem follows directly from the fact that KTR is nonsin-

gular, so that premultlplylng the equation by A A gives det(A A)x on the

left~hand side, and ATA can be partltloned as ' (:)
~ T~ | e
AA= |AA | Aa
- - —'- - -
aTA I a’a

The rest is simple algebra.

THEOREM §27: The least-squares Prony solution of Eq. (13) can be expressed
T T T . . _ T =17

as y = [y+;l] where Y, is a Kx1 vector defined as vy, = - (A+A+) Ala, and

the system poles are the roots of the polynomial yTZ. But the roots of any

such normalized polynomial are identically the eigenvalues of the companion

matrix [30]:

48




. A !
C(y+) = 10,0,...,0 1
———‘-—Iy
3 )
|
i.e., as the eigenvalues A in Cx = Ax, where I is a (K-1)X(K-1) identity

matrix, Premultiplying this equation by AEA+ and carefully carrying out the

partitioned multiplication leads directly to the theorem.
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