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Abstract

The singular terms contained in the eigen-function expansion of

the dyadic Green's function of the electric type in the spherical and

_cylindrical coordinate systems were not propef]y analyzed in a previous

work, [Math Note 28, July, 1973]. The correct form of these terms is

summarized in this work.




THE SINGULAR TERMS IN THE EIGEN-FUNCTION EXPANSIONS OF

DYADIC GREEN'S FUNCTION OF THE ELECTRIC TYPE

Introduction

The singular terms contained in the eigen-function expansion of
the dyadic Green's functions of electric type in the cylindrical and
spherical coordinate systems discussed in Reference [1] were not
properly assembled. A careful examination of the discontinuous
behavior of both the electric and the magnetic dyadic Green's functions
shows that the function of the electric type has the general character-
istics described by
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whera ﬁ denotes the unit normal to the surface of discontinuity and
§e(?|R') the eigen-function expansion of the residue series or

integral. We tabuTate below the urit normal for various problems.

Problems Surface of Discontinuity Unit Normal n
Waveguides and R
flat earth z =12 z
Circular cylinder -
and wedge r=r' r
Elliptical cylinder £ =g £

>

Sphere and cone R

H
=

In this note we show a derivation of these singular terms in the

spherical and cylindrical coordinate systems.
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THE EIGEN-FUNCTION EXPANSION OF Eeo IN THE SPHERICAL COORDINATE SYSTEM

The expression for Eeo in sphericalltoordinate systems as
given in the Mathematics Note No. 28 [1] was not properly synthesized.

The term Ne (K)Ne

mn mn
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was not properly recognized. This error is corrected in the present

(K') in v x amo contains a singular term which

note.
The expression for v XEmo as given by Eq. (2) on p. 35 of the
note is
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The singular term in (1) can be factored out as follows. We decompose

first the function Ne (K) into two parts
mn
0

N () = B, (0 +R,_ (K | ‘ (2)

similarly for i (K). The dyad N (K)N
' gmn gmnt

be written as NtNL, is given by

(K), which will simply
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The primed function ﬁé is defined with respect to the primed
mn
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variables 8',4'. We now let KR = &, KR' = £', then: the product

involving the spherical Bessel functions can be written in the form
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Where we have used the recurrence relations

C3p(E) = T g @) b3 (e)]

and

G Lein ()] = iy [ln + D)5 4(8) - ndpg(e)]

to convert the product to the form shown in the second line of (4).

We now write Ntﬂé in the form
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Eq. (1) can now be decomposed into two distinct parts, i.e.,

B RIR) = [ D el ¢ (@A),

+ — [(NtN't)2 + RN+ NG+ NRNh]} (6)

We have omitted the subscript "emn" for clarity. The first integral
0

in (6) represents the singular function TtG(R—R'), i.e.,
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and in the spherical coordinate system

s(R-R) = SR-R)s(e - 8')8(s - ')
R2 sin o

The second integral in (6) is regular at infinity, hence, it can be

evaluated by the method of contour integration, the results gives
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The expression for S is the same as the one given by Eq. (18), p. 174
of Reference [2]. Thus, we have

v X émo = kzgéRlR') +-i; ftS(R - RY)
hence
§ = liox® -Ts(R-R)]=5RIR) - RRs(R - R') .
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Similar analysis applies to the conical case. The dyadic
Green's function Ee] should have the form
G, (RIRY) = SRIRY) - - RRs(R-RY) (8)
kz
where S(R|R') is defined by Eq. (3), p. 41 of Reference [1] or Eq. (22),
p. 192 of Reference [2].




THE EIGEN-FUNCTION EXPANSION IN CYLINDRICAL COORDINATE SYSTEMS

In the cylindrical coordinate system, according to Equations (5.2)

of Reference [1], the expression for Emo using both the continuous

spectra of h and i is

= =, - A
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the primed functions are defined with respect to R' or (r',s',2').

Since
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in order to find the explicit singularity of Eeo we must search for the

singularity term contained in v x amo‘ In Reference [1], it was
erroneously stated that 2z6(R-R') was the only singular term contained
\

in v x émo' Actually, the correct result should be

e = k2% S 4 99)s(R - R
v X Gmo k Sh + (¢¢ + zz)s(R - R') . (11)

To derive this result it is convenient to examine the discontinuous terms

in Gmo and then evaluate these terms involving the differentiation with
respect to r. In the first place, the A-integration in amo can be
evaluated in a closed form by applying the circuit relation of Bessel

functions and the residue theorem, the result yields
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where we have used a new notation in (12), in contrast to the old
one used in Reference [1], namely,
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o (h) = v x [Jn (nr) gi’; ne e NZ 2] (14)
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The old notation for (13) is #(1) and for (14) is just M. The top line
in (12) dinvolving NTR -+ ﬁ+N"app11es to r > r' and the bottom line
involving TR I applies to r < r'. By writing out the explicit
expressions for the vector wave functions we found that the following

dyads are discontinuous at r = r',
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We have omitted the subscript "e_ " for simplicity. We adopt the
0

shorthand notation in regards to the sum of even and odd fdnctions
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contained in the summation of (1), to
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and similarly for H; Né+ . In evaluating v x Emd the terms involving the
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differentiation with respect to r are:
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The sum of (13) and (15) is continuous at r = r', consequently, they
|
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do not produce a singular term. e consider, in detail, the explicit

expression for (13) and (15). They are given, respectively, by
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Using the recurrence relation for cylindrical functi
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The sum of these two terms corresponding to the top members within the

curly brackets of (13)' and (15)' for r > r', yields

2 W) (ar)a (et + H Geda (e)T L (16)

Similarly, the sum of the radial functions of the bottom line of (13)'

and (15)' yields

22 g ey + 3 ar{(e)] (7)

These two functions are continuous at r = r' although their derivative

with respect to r is discontinuous at r = r'. In other words, (13) and
- (15) do.not produce any singularity term. We conside?.nowlthe,exp]icit

expression of (14), it i& given by >
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The function within the curly bracket is now discontinuous at r = r'
and its discontinuity is given by the Wronskian of Jn and Hgl), i.e.,
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to the theory of generalized functions, is interpreted as
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The dyad defined by (19) therefore has the explicit value
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Similarly, it can be shown that term (16) contributes a singular

term to Vv x Emo in the form 5&6(?-?'). Therefore, we obtain
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This method can also be applied to the spherical case although the

(25)

extraction of -RRs(R-R')/Kk2 directly from the integral representation

of aeo seems to involve less steps when properly done as in this note.
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Conclusion

The singularity terms contained in the eigen-function expansion
of the dyadic Green's function of the electric type in various coordinate
systems have been correctly identified. This author has made repeated
errors in the past to extract these terms. It fis hoped that with the

issue of this amendment to a previous amendment he has redeemed most

of the sins.






